Spatial computing is any of various human–computer interaction techniques that are perceived by users as taking place in the real world, in and around their natural bodies and physical environments, instead of constrained to and perceptually behind computer screens. This concept inverts the long-standing practice of teaching people to interact with computers in digital environments, and instead teaches computers to better understand and interact with people more naturally in the human world. This concept overlaps with and encompasses others including extended reality, augmented reality, mixed reality, natural user interface, contextual computing, affective computing, and ubiquitous computing. The usage for labeling and discussing these adjacent technologies is imprecise.[1]
Spatial computers typically include sensors—such as RGB cameras, depth cameras, 3D trackers, inertial measurement units, or other tools—to sense and track nearby human bodies (including hands, arms, eyes, legs, mouths) during ordinary interactions with people and computers in a 3D space.[2] They further use computer vision to attempt to understand real world scenes, such as rooms, streets or stores, to read labels, to recognize objects, create 3D maps, and more. Quite often they also use XR and MR to superimpose virtual 3D graphics and virtual 3D audio onto the human visual and auditory system as a way of providing information more naturally and contextually than traditional 2D screens.
Spatial computing does not technically require any visual output. For example, an advanced pair of headphones, using an inertial measurement unit and other contextual cues could qualify as spatial computing, if the device made contextual audio information available spatially, as if the sounds consistently existed in the space around the headphones' wearer. Smaller internet of things devices, like a robot floor cleaner, would be unlikely to be referred to as a spatial computing device because it lacks the more advanced human-computer interactions described above.
Spatial computing often refers to personal computing devices like headsets and headphones, but other human-computer interactions that leverage real-time spatial positioning for displays, like projection mapping or cave automatic virtual environment displays, can also be considered spatial computing if they leverage human-computer input for the participants.
History
The term apparently originated in the field of GIS around 1985[3] or earlier to describe computations on large-scale geospatial information. This is somewhat related to the modern use, but on the scale of continents, cities, and neighborhoods.[4] Modern spatial computing is more centered on the human scale of interaction, around the size of a living room or smaller. But it is not limited to that scale in the aggregate.
In the early 1990s, as field of Virtual reality was beginning to be commercialized beyond academic and military labs, a startup called Worldesign in Seattle used the term Spatial Computing[5] to describe the interaction between individual people and 3D spaces, operating more at the human end of the scale than previous GIS examples may have contemplated. The company built a CAVE-like environment it called the Virtual Environment Theater, whose 3D experience was of a virtual flyover of the Giza Plateau, circa 3000 BC. Robert Jacobson, CEO of Worldesign, attributes the origins of the term to experiments at the Human Interface Technology Lab, at the University of Washington, under the direction of Thomas A. Furness III. Jacobson was a co-founder of that lab before spinning off this early VR startup.
In 1997, an academic publication by T. Caelli, Peng Lam, and H. Bunke called "Spatial Computing: Issues in Vision, Multimedia and Visualization Technologies" introduced the term more broadly for academic audiences.[6]
The specific term "spatial computing" was later referenced again in 2003 by Simon Greenwold,[7] as "human interaction with a machine in which the machine retains and manipulates referents to real objects and spaces". MIT Media Lab alumnus John Underkoffler gave a TED talk in 2010[8] giving a live demo of the multi-screen, multi-user spatial computing systems being developed by Oblong Industries, which sought to bring to life the futuristic interfaces conceptualized by Underkoffler in the films Minority Report and Iron Man.
In computing, the word "spatial" has also been used to refer to the unrelated concept of moving data between processing elements that are arranged in a physical space. In 1992, "spatial machines" were suggested as an approach to parallel computation.[9] In 2013, a programming standard was proposed for "spatial computing".[10] Computer scientists at ETH Zurich have proposed a "spatial computer" model for energy-efficient parallel computation.[11] AMD describe AMD XDNA as a "spatial dataflow NPU architecture", and the University of Illinois is developing a compiler framework for "spatial dataflow accelerators".[12][13]
Products
Apple announced Apple Vision Pro, a device it markets as a "spatial computer", on June 5, 2023. It includes several features such as Spatial Audio, two 4K micro-OLED displays, the Apple R1 chip and eye tracking, and released in the United States on February 2, 2024.[14] In announcing the platform, Apple invoked its history of popularizing 2D graphical user interfaces that supplanted prior human-computer interface mechanisms such as the command line. Apple suggests the introduction of spatial computing as a new category of interactive device, on the same level of importance as the introduction of the 2D GUI.
Magic Leap had also previously used the term “spatial computing” to describe its own devices, starting with the Magic Leap 1. Their use seems consistent with Apple's, although the company did not continue using it in the long term.[15]
See also
Brain–computer interface – Direct communication pathway between an enhanced or wired brain and an external device
Cyberspace – Concept describing a widespread, interconnected digital technology