Shapiro–Francia test

The Shapiro–Francia test is a statistical test for the normality of a population, based on sample data. It was introduced by S. S. Shapiro and R. S. Francia in 1972 as a simplification of the Shapiro–Wilk test.[1]

Theory

Let be the -th ordered value from our size- sample. For example, if the sample consists of the values , , because that is the second-lowest value. Let be the mean of the th order statistic when making independent draws from a normal distribution. For example, , meaning that the second-lowest value in a sample of four draws from a normal distribution is typically about 0.297 standard deviations below the mean.[2] Form the Pearson correlation coefficient between the and the :

Under the null hypothesis that the data is drawn from a normal distribution, this correlation will be strong, so values will cluster just under 1, with the peak becoming narrower and closer to 1 as increases. If the data deviate strongly from a normal distribution, will be smaller.[1]

This test is a formalization of the older practice of forming a Q–Q plot to compare two distributions, with the playing the role of the quantile points of the sample distribution and the playing the role of the corresponding quantile points of a normal distribution.

Compared to the Shapiro–Wilk test statistic , the Shapiro–Francia test statistic is easier to compute, because it does not require that we form and invert the matrix of covariances between order statistics.

Practice

There is no known closed-form analytic expression for the values of required by the test. There, are however, several approximations that are adequate for most practical purposes.[2]

The exact form of the null distribution of is known only for .[1] Monte-Carlo simulations have shown that the transformed statistic is nearly normally distributed, with values of the mean and standard deviation that vary slowly with in an easily parameterized form.[3]

Power

Comparison studies have concluded that order statistic correlation tests such as Shapiro–Francia and Shapiro–Wilk are among the most powerful of the established statistical tests for normality.[4] One might assume that the covariance-adjusted weighting of different order statistics used by the Shapiro–Wilk test should make it slightly better, but in practice the Shapiro–Wilk and Shapiro–Francia variants are about equally good. In fact, the Shapiro–Francia variant actually exhibits more power to distinguish some alternative hypothesis.[5]

References

  1. ^ a b c Shapiro, S. S.; Francia, R. S. (1972-03-01). "An Approximate Analysis of Variance Test for Normality". Journal of the American Statistical Association. 67 (337). American Statistical Association: 215–216. doi:10.2307/2284728. ISSN 1537-274X. JSTOR 2284728. OCLC 1480864.
  2. ^ a b Arnold, Barry C.; Balakrishnan, Narayanaswamy; Nagaraja, Haikady N. (2008) [1992]. A First Course in Order Statistics. Classics in Applied Mathematics. Vol. 54. Philadelphia, PA: Society for Industrial and Applied Mathematics. ISBN 978-0-89871-648-1. LCCN 2008061100.
  3. ^ Royston, Patrick (1993). "A Toolkit for Testing for Non-Normality in Complete and Censored Samples". The Statistician. 42 (1). Royal Statistical Society: 37–43. doi:10.2307/2348109. JSTOR 2348109.
  4. ^ Razali, Nornadiah Mohd; Wah, Yap Bee (2011). "Power comparisons of Shapiro–Wilk, Kolmogorov–Smirnov, Lilliefors, and Anderson–Darling Tests". Journal of Statistical Modeling and Analytics. 2 (1). Kuala Lumpur: Institut Statistik Malaysia: 21–33. ISBN 978-967-363-157-5.
  5. ^ Ahmad, Fiaz; Khan, Rehan Ahmad (2015). "A power comparison of various normality tests". Pakistan Journal of Statistics and Operation Research. 11 (3). Lahore, Pakistan: College of Statistical and Actuarial Sciences, University of the Punjab: 331–345. doi:10.18187/pjsor.v11i3.845. ISSN 2220-5810.

Read other articles:

Dominique de VillepinNama dalam bahasa asli(fr) Dominique de Villepin BiografiKelahiran(fr) Dominique Marie François René Galouzeau de Villepin 14 November 1953 (70 tahun)Khemisset   Perdana Menteri Perancis 31 Mei 2005 – 17 Mei 2007 ← Jean-Pierre Raffarin – François Fillon →   Minister of the Interior of France (en) 31 Maret 2004 – 31 Mei 2005 ← Nicolas Sarkozy – Nicolas Sarkozy → Kabinet: third ca...

 

Dalam nama Korean ini, nama keluarganya adalah Ha. Ha Jae-sookLahir7 Januari 1979 (umur 45)Daegu, Korea SelatanPekerjaanPemeranTahun aktif2000–sekarangAgenFamily Actors Entertainment Nama KoreaHangul하재숙 Alih AksaraHa Jae-sukMcCune–ReischauerHa Chae-suk Ha Jae-sook (lahir 7 Januari 1979) adalah pemeran Korea Selatan. Ia keluar dari Hankuk University of Foreign Studies untuk mengejar karir akting, dan membuat debut teaternya pada tahun 2000. Setelah beberapa tahun di atas pa...

 

Ernei NagyernyeDesaNegara RumaniaCountyCounty MureşPemerintahan • Wali kotaFerenc Jánosi (Uni Demokratik Hungaria di Rumania)Populasi (2011) • Total5.835Zona waktuUTC+2 (EET) • Musim panas (DST)UTC+3 (EEST) Ernei (Hongaria: Nagyernyecode: hu is deprecated ; pelafalan: [nɒɟɛrɲɛ] ) adalah sebuah komune yang terletak di County Mureş, Transilvania, Rumania. Menurut sensus pada tahun 2002, komune ini memiliki jumlah penduduk sebesar 5.835 jiwa,...

This article is about the hockey team. For the song, see Metro Jets (song). For other uses, see Metrojet. Ice hockey team in Mount Clemens, MichiganMetro JetsCityMount Clemens, MichiganLeagueUSPHL PremierConferenceGreat LakesFounded1989[1]Home arenaMount Clemens Ice ArenaColorsNavy blue, white, red      General managerJustin QuennevilleHead coachJustin QuennevilleFranchise history1989–presentMetro JetsChampionshipsRegular season titles2000–01, 2018–19, 2020-2...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Aermacchi AL-60 – news · newspapers · books · scholar · JSTOR (August 2011) (Learn how and when to remove this template message) LASA-60 / AL-60 / C4M Kudu Operational Aermacchi AL-60B-2 registered in Germany Role Utility aircraftType of aircraft Manufacturer L...

 

KaikaKaisar JepangBerkuasa158 BC – 98 BC (traditional)[1]PendahuluKaisar KōgenPenerusKaisar SujinKelahiran?JepangKematian?JepangPemakamanKasuga no Izakawa no sak no e no misasagi (Nara) Kaisar Kaika (開化天皇code: ja is deprecated , Kaika-tennō) juga dikenal sebagai Wakayamatonekohikooobi no Mikoto, adalah Kaisar Jepang yang kesembilan,[2] menurut urutan tradisional suksesi.[3] Tidak ada catatan kapan dia hidup, tetapi diperkirakan dia memerintah mulai tahun 15...

EmpedoclesEpisode The X-FilesNomor episodeMusim 8Episode 17SutradaraBarry K. ThomasPenulisGreg WalkerKode produksi8ABX17Tanggal siar22 April 2001Durasi44 menitKronologi episode ← SebelumnyaThree Words Selanjutnya →Vienen Empedocles adalah episode ketujuh belas dari musim kedelapan dari serial televisi fiksi ilmiah Amerika Serikat The X-Files. Episode tersebut tayang perdana dalam saluran Fox pada 22 April 2001. Episode tersebut ditulis oleh Greg Walker dan disutradarai oleh...

 

2021 single by Band-MaidSenseSingle by Band-Maidfrom the EP Unleash B-side Hibana Corallium ReleasedOctober 27, 2021 (2021-10-27)Length11:01Label Pony Canyon Songwriter(s) Miku Kobato Band-Maid Producer(s)Band-MaidBand-Maid singles chronology Different (2020) Sense (2021) Music videoBand-Maid Sense on YouTube For other uses, see Sense (disambiguation). Sense is the eighth single by Japanese rock band Band-Maid, released in Japan on October 27, 2021, by Pony Canyon.[1] T...

 

Tsuneyasu Miyamoto Informasi pribadiNama lengkap Tsuneyasu MiyamotoTanggal lahir 7 Februari 1977 (umur 47)Tempat lahir Prefektur Osaka, JepangPosisi bermain BekKarier senior*Tahun Tim Tampil (Gol)1995-2006 Gamba Osaka 2007-2008 Red Bull Salzburg 2009-2011 Vissel Kobe Tim nasional2000-2006 Jepang 71 (3) * Penampilan dan gol di klub senior hanya dihitung dari liga domestik Tsuneyasu Miyamoto (lahir 7 Februari 1977) adalah pemain sepak bola asal Jepang. Statistik Jepang Tahun Tampil Gol 20...

Not to be confused with two counties called Goseong in South Korea. County in Kangwŏn Province, North KoreaKosŏng County 고성군CountyKorean transcription(s) • Chosŏn'gŭl고성군 • Hancha高城郡 • McCune-ReischauerKosŏng-gun • Revised RomanizationGoseong-gunMap of Kangwon showing the location of KosongCountryNorth KoreaProvinceKangwŏn ProvinceAdministrative divisions1 ŭp, 23 riArea • Total863 km2 (333 sq...

 

Pendekar Paul De Thouars[1] Pendekar adalah orang yang memiliki keahlian dalam seni bela diri dan menggunakan keahliannya tersebut untuk membela kebenaran, membela orang lemah dan tertindas, atau menegakkan keadilan dengan menentang sebuah kekuatan penindas.[2] Julukan ini lazim disematkan kepada tokoh protagonis dalam cerita-cerita rakyat Nusantara yang mengusung tema kepahlawanan. Si Pitung dalam cerita rakyat Jakarta, misalnya, kerap disebut sebagai Pendekar Betawi, Pembela...

 

30th season of top-tier football league in Argentina Football league seasonPrimera DivisiónSeason1921Dates3 April 1921 – 8 January 1922ChampionsHuracán (AFA) Racing (AAmF)← 1920 1922 → The 1921 Argentine Primera División was the 30th season of top-flight football in Argentina. Huracán won its first AFA league title while Racing won the dissident Asociación Amateur championship.[1] Final tables Asociación Argentina de Football - Copa Campeonato Football league seasonPrimera...

Questa voce sull'argomento contee del Wisconsin è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Contea di RichlandconteaLocalizzazioneStato Stati Uniti Stato federato Wisconsin AmministrazioneCapoluogoRichland Center Data di istituzione1842 TerritorioCoordinatedel capoluogo43°20′05″N 90°23′12″W / 43.334722°N 90.386667°W43.334722; -90.386667 (Contea di Richland)Coordinate: 43°20′05″N 90°23′12″W ...

 

保良局馬錦明夫人章馥仙中學Po Leung Kuk Mrs.Ma-Cheung Fook Sien College翻漆後的校舍東北面(2022年3月)地址 香港新界離島區大嶼山東涌富東邨类型津貼中學宗教背景無隶属保良局创办日期1997年学区香港離島區東涌校長柯玉琼女士副校长鄭健華先生,劉俊偉先生助理校长梁煥儀女士职员人数56人年级中一至中六学生人数約700人,24個班別校訓愛、敬、勤、誠校歌保良局屬下校歌�...

 

American radio station For other uses, see WFTL (disambiguation). WFTLWest Palm Beach, FloridaBroadcast areaSouth FloridaFrequency850 kHzBranding850 WFTLProgrammingFormatTalk radioAffiliations ABC News Radio Fox News Radio Compass Media Networks Westwood One Florida State Seminoles WPTV-TV OwnershipOwnerHubbard Broadcasting(WPB FCC License Sub, LLC)Sister stationsWRMF, WEAT, WIRK, WMBX, WMENHistoryFirst air dateFebruary 14, 1948; 76 years ago (1948-02-14)Former call signsWE...

Season for the Major League Baseball team the New York Yankees Major League Baseball team season 1986 New York YankeesLeagueAmerican LeagueDivisionEastBallparkYankee StadiumCityNew York CityOwnersGeorge SteinbrennerGeneral managersClyde KingManagersLou PiniellaTelevisionWPIX(Phil Rizzuto, Bill White, Jim Kaat, Billy Martin) SportsChannel NY(Mel Allen, Mickey Mantle, others from WPIX)RadioWABC (AM)(Bill White, Phil Rizzuto, Spencer Ross, Bobby Murcer) ← 1985 Seasons 1987 &...

 

North American cult and pyramid scheme NXIVM CorporationCompany typePrivately held companyIndustrySelf-improvement seminarsFoundedJuly 20, 1998; 25 years ago (1998-07-20)FounderKeith RaniereNancy Salzman DefunctSeptember 7, 2021HeadquartersAlbany, New York, U.S.Key peopleKeith Raniere (co-founder, leader)Nancy Salzman (co-founder, president)Allison Mack (recruiter, leader)Clare Bronfman (funder, leader)[1]Emiliano Salinas (Mexican venture capitalist, son of Carl...

 

Overview of the role of France in the Eurovision Song Contest For the most recent participation, see France in the Eurovision Song Contest 2024. France in the Eurovision Song Contest Participating broadcasterFrance Télévisions (1993–present) Former members Radiodiffusion-Télévision Française (RTF; 1956–1964) Office de Radiodiffusion Télévision Française (ORTF; 1965–74) TF1 (1975–1981) Antenne 2 (1983–1992) Participation summaryAppearances66First appearance1956Highest placeme...

Operation in mathematical calculus This article is about the concept of definite integrals in calculus. For the indefinite integral, see antiderivative. For the set of numbers, see integer. For other uses, see Integral (disambiguation). Area under the curve redirects here. For the pharmacology integral, see Area under the curve (pharmacokinetics). For the statistics concept, see Receiver operating characteristic § Area under the curve. A definite integral of a function can be represente...

 

Federally recognized tribe based in Oklahoma Ethnic group United Keetoowah Band of Cherokee IndiansᎠᏂᎩᏚᏩᎩ ᎠᏂᏴᏫᏯFlag of the United Keetoowah Band of Cherokee IndiansSeal of the United Keetoowah Band of Cherokee IndiansTotal population14,300[1]Regions with significant populations United States ( Oklahoma)LanguagesEnglish, CherokeeReligionChristianity (Southern Baptist), Kituwah,Four Mothers SocietyRelated ethnic groupsother Cherokee tribes The United Keet...