Phosgene is an organic chemical compound with the formulaCOCl2. It is a toxic, colorless gas; in low concentrations, its musty odor resembles that of freshly cut hay or grass.[7] It can be thought of chemically as the double acyl chloride analog of carbonic acid, or structurally as formaldehyde with the hydrogen atoms replaced by chlorine atoms. In 2013, about 75–80 % of global phosgene was consumed for isocyanates, 18% for polycarbonates and about 5% for other fine chemicals.[8]
Phosgene is extremely poisonous and was used as a chemical weapon during World War I, where it was responsible for 85,000 deaths. It is a highly potent pulmonary irritant and quickly filled enemy trenches due to it being a heavy gas.
Phosgene is a planar molecule as predicted by VSEPR theory. The C=O distance is 1.18 Å, the C−Cl distance is 1.74 Å and the Cl−C−Cl angle is 111.8°.[10] Phosgene is a carbon oxohalide and it can be considered one of the simplest acyl chlorides, being formally derived from carbonic acid.
This reaction is exothermic and is typically performed between 50 and 150 °C. Above 200 °C, phosgene reverts to carbon monoxide and chlorine, Keq(300 K) = 0.05. World production of this compound was estimated to be 2.74 million tonnes in 1989.[9]
Phosgene is fairly simple to produce, but is listed as a Schedule 3 substance under the Chemical Weapons Convention. As such, it is usually considered too dangerous to transport in bulk quantities. Instead, phosgene is usually produced and consumed within the same plant, as part of an "on demand" process. This involves maintaining equivalent rates of production and consumption, which keeps the amount of phosgene in the system at any one time fairly low, reducing the risks in the event of an accident. Some batch production does still take place, but efforts are made to reduce the amount of phosgene stored.[11]
Inadvertent generation
Atmospheric chemistry
Simple organochlorides slowly convert into phosgene when exposed to ultraviolet (UV) irradiation in the presence of oxygen.[12] Before the discovery of the ozone hole in the late 1970s large quantities of organochlorides were routinely used by industry, which inevitably led to them entering the atmosphere. In the 1970-80s phosgene levels in the troposphere were around 20-30 pptv (peak 60 pptv).[12] These levels had not decreased significantly nearly 30 years later,[13] despite organochloride production becoming restricted under the Montreal Protocol.
Phosgene in the troposphere can last up to about 70 days and is removed primarily by hydrolysis with ambient humidity or cloudwater.[14] Less than 1% makes it to the stratosphere, where it is expected to have a lifetime of several years, since this layer is much drier and phosgene decomposes slowly through UV photolysis. It plays a minor part in ozone depletion.
Combustion
Carbon tetrachloride (CCl4) can turn into phosgene when exposed to heat in air. This was a problem as carbon tetrachloride is an effective fire suppressant and was formerly in widespread use in fire extinguishers.[15] There are reports of fatalities caused by its use to fight fires in confined spaces.[16] Carbon tetrachloride's generation of phosgene and its own toxicity mean it is no longer used for this purpose.[15]
Phosgene was synthesized by the Cornish chemist John Davy (1790–1868) in 1812 by exposing a mixture of carbon monoxide and chlorine to sunlight. He named it "phosgene" from Greekφῶς (phos, light) and γεννάω (gennaō, to give birth) in reference of the use of light to promote the reaction.[18] It gradually became important in the chemical industry as the 19th century progressed, particularly in dye manufacturing.
Reactions and uses
The reaction of an organic substrate with phosgene is called phosgenation.[9] Phosgenation of diols give carbonates (R = H, alkyl, aryl), which can be either linear or cyclic:
n HO−CR2−X−CR2−OH + n COCl2 → [−O−CR2−X−CR2−O−C(=O)−]n + 2n HCl
An example is the reaction of phosgene with bisphenol A to form polycarbonates.[9] Phosgenation of diamines gives di-isocyanates, like toluene diisocyanate (TDI), methylene diphenyl diisocyanate (MDI), hexamethylene diisocyanate (HDI), and isophorone diisocyanate (IPDI). In these conversions, phosgene is used in excess to increase yield and minimize side reactions. The phosgene excess is separated during the work-up of resulting end products and recycled into the process, with any remaining phosgene decomposed in water using activated carbon as the catalyst. Diisocyanates are precursors to polyurethanes. More than 90% of the phosgene is used in these processes, with the biggest production units located in the United States (Texas and Louisiana), Germany, Shanghai, Japan, and South Korea. The most important producers are Dow Chemical, Covestro, and BASF. Phosgene is also used to produce monoisocyanates, used as pesticide precursors (e.g.methyl isocyanate (MIC).
Aside from the widely used reactions described above, phosgene is also used to produce acyl chlorides from carboxylic acids:
R−C(=O)−OH + COCl2 → R−C(=O)−Cl + HCl + CO2
For this application, thionyl chloride is commonly used instead of phosgene.
Laboratory uses
The synthesis of isocyanates from amines illustrates the electrophilic character of this reagent and its use in introducing the equivalent synthon "CO2+":[19]
R−NH2 + COCl2 → R−N=C=O + 2 HCl, where R = alkyl, aryl
Such reactions are conducted on laboratory scale in the presence of a base such as pyridine that neutralizes the hydrogen chloride side-product.
In these syntheses, phosgene is used in excess to prevent formation of the corresponding carbonate ester.
With amino acids, phosgene (or its trimer) reacts to give amino acid N-carboxyanhydrides. More generally, phosgene acts to link two nucleophiles by a carbonyl group. For this purpose, alternatives to phosgene such as carbonyldiimidazole (CDI) are safer, albeit expensive.[20] CDI itself is prepared by reacting phosgene with imidazole.
Phosgene is stored in metal cylinders. In the US, the cylinder valve outlet is a tapered thread known as "CGA 160" that is used only for phosgene.
Alternatives to phosgene
In the research laboratory, due to safety concerns phosgene nowadays finds limited use in organic synthesis. A variety of substitutes have been developed, notably trichloromethyl chloroformate ("diphosgene"), a liquid at room temperature, and bis(trichloromethyl) carbonate ("triphosgene"), a crystalline substance.[21]
It is listed on Schedule 3 of the Chemical Weapons Convention: All production sites manufacturing more than 30 tonnes per year must be declared to the OPCW.[22] Although less toxic than many other chemical weapons such as sarin, phosgene is still regarded as a viable chemical warfare agent because of its simpler manufacturing requirements when compared to that of more technically advanced chemical weapons such as tabun, a first-generation nerve agent.[23]
Phosgene was first deployed as a chemical weapon by the French in 1915 in World War I.[24] It was also used in a mixture with an equal volume of chlorine, with the chlorine helping to spread the denser phosgene.[25][26] Phosgene was more potent than chlorine, though some symptoms took 24 hours or more to manifest.
Following the extensive use of phosgene during World War I, it was stockpiled by various countries.[27][28][29]
Phosgene is an insidious poison as the odor may not be noticed and symptoms may be slow to appear.[31]
At low concentrations, phosgene may have a pleasant odor of freshly mown hay or green corn,[32] but has also been described as sweet, like rotten banana peels.
The odor detection threshold for phosgene is 0.4 ppm, four times the threshold limit value (time weighted average). Its high toxicity arises from the action of the phosgene on the −OH, −NH2 and −SH groups of the proteins in pulmonary alveoli (the site of gas exchange), respectively forming ester, amide and thioester functional groups in accord with the reactions discussed above. This results in disruption of the blood–air barrier, eventually causing pulmonary edema. The extent of damage in the alveoli does not primarily depend on phosgene concentration in the inhaled air, with the dose (amount of inhaled phosgene) being the critical factor.[33] Dose can be approximately calculated as "concentration" × "duration of exposure".[33][34] Therefore, persons in workplaces where there exists risk of accidental phosgene release usually wear indicator badges close to the nose and mouth.[35] Such badges indicate the approximate inhaled dose, which allows for immediate treatment if the monitored dose rises above safe limits.[35]
In case of low or moderate quantities of inhaled phosgene, the exposed person is to be monitored and subjected to precautionary therapy, then released after several hours. For higher doses of inhaled phosgene (above 150 ppm × min) a pulmonary edema often develops which can be detected by X-ray imaging and regressive blood oxygen concentration. Inhalation of such high doses can eventually result in fatality within hours up to 2–3 days of the exposure.
The risk connected to a phosgene inhalation is based not so much on its toxicity (which is much lower in comparison to modern chemical weapons like sarin or tabun) but rather on its typical effects: the affected person may not develop any symptoms for hours until an edema appears, at which point it could be too late for medical treatment to assist.[36] Nearly all fatalities as a result of accidental releases from the industrial handling of phosgene occurred in this fashion. On the other hand, pulmonary edemas treated in a timely manner usually heal in the mid- and longterm, without major consequences once some days or weeks after exposure have passed.[37][38] Nonetheless, the detrimental health effects on pulmonary function from untreated, chronic low-level exposure to phosgene should not be ignored; although not exposed to concentrations high enough to immediately cause an edema, many synthetic chemists (e.g.Leonidas Zervas) working with the compound were reported to experience chronic respiratory health issues and eventual respiratory failure from continuous low-level exposure.
If accidental release of phosgene occurs in an industrial or laboratory setting, it can be mitigated with ammonia gas; in the case of liquid spills (e.g. of diphosgene or phosgene solutions) an absorbent and sodium carbonate can be applied.[39]
Accidents
The first major phosgene-related incident happened in May 1928 when eleven tons of phosgene escaped from a war surplus store in central Hamburg.[40] Three hundred people were poisoned, of whom ten died.[40]
In the second half of 20th century several fatal incidents implicating phosgene occurred in Europe, Asia and the US. Most of them have been investigated by authorities and the outcome made accessible to the public. For example, phosgene was initially blamed for the Bhopal disaster, but investigations proved methyl isocyanate to be responsible for the numerous poisonings and fatalities.
Recent major incidents happened in January 2010 and May 2016. An accidental release of phosgene gas at a DuPont facility in West Virginia killed one employee in 2010.[41] The US Chemical Safety Board released a video detailing the accident.[42] Six years later, a phosgene leak occurred in a BASF plant in South Korea, where a contractor inhaled a lethal dose of phosgene.[43]
^"PHOSGENE (cylinder)". Inchem (Chemical Safety Information from Intergovernmental Organizations). International Programme on Chemical Safety and the European Commission.
^Falcke, Heino; Holbrook, Simon; Clenahan, Iain; López Carretero, Alfredo; Sanalan, Teoman; Brinkmann, Thomas; Roth, Joze; Zerger, Benoit; Roudier, Serge, eds. (2017). Best Available Techniques (BAT) reference document for the production of large volume organic chemicals. Luxembourg: EU Publications Office. p. 443. ISBN978-92-79-76589-6.
^Nakata, M.; Kohata, K.; Fukuyama, T.; Kuchitsu, K. (1980). "Molecular Structure of Phosgene as Studied by Gas Electron Diffraction and Microwave Spectroscopy. The rz Structure and Isotope Effect". Journal of Molecular Spectroscopy. 83: 105–117. doi:10.1016/0022-2852(80)90314-8.
^Gowland, Richard (1996). "Applying inherently safer concepts to a phosgene plant acquisition". Process Safety Progress. 15 (1): 52–57. doi:10.1002/prs.680150113. S2CID110707551.
^Kindler, T.P.; Chameides, W.L.; Wine, P.H.; Cunnold, D.M.; Alyea, F.N.; Franklin, J.A. (20 January 1995). "The fate of atmospheric phosgene and the stratospheric chlorine loadings of its parent compounds: CCl 4, C 2 Cl 4, C 2 HCl 3, CH 3 CCl 3, and CHCl 3". Journal of Geophysical Research: Atmospheres. 100 (D1): 1235–1251. Bibcode:1995JGR...100.1235K. doi:10.1029/94JD02518.
^ abBurke, Robert (2007-11-06). Fire Protection: Systems and Response. CRC Press. p. 209. ISBN978-0-203-48499-9.
^Pohl, Lance R.; Bhooshan, B.; Whittaker, Noel F.; Krishna, Gopal (December 1977). "Phosgene: A metabolite of chloroform". Biochemical and Biophysical Research Communications. 79 (3): 684–691. doi:10.1016/0006-291X(77)91166-4. PMID597296.
^John Davy (1812). "On a gaseous compound of carbonic oxide and chlorine". Philosophical Transactions of the Royal Society of London. 102: 144–151. doi:10.1098/rstl.1812.0008. JSTOR107310. Phosgene was named on p. 151: " ... it will be necessary to designate it by some simple name. I venture to propose that of phosgene, or phosgene gas; from φως, light, γινομαι, to produce, which signifies formed by light; ... "
^Bigi, Franca; Maggi, Raimondo; Sartori, Giovanni (2000). "Selected syntheses of ureas through phosgene substitutes". Green Chemistry. 2 (4): 140–148. doi:10.1039/B002127J.
^Hamley, P. "Phosgene" Encyclopedia of Reagents for Organic Synthesis, 2001 John Wiley, New York. doi:10.1002/047084289X.rp149
^ abWerner F. Diller, Early Diagnosis of Phosgene Overexposure.Toxicology and Industrial Health, Vol.1, Nr.2, April 1985, p. 73 -80
^W. F. Diller, R. Zante : Zentralbl. Arbeitsmed. Arbeitsschutz Prophyl. Ergon. 32, (1982) 60 -368
^ abW. F.Diller, E.Drope, E. Reichold: Ber. Int. Kolloq. Verhütung von Arbeitsunfällen und Berufskrankheiten Chem. Ind.6 th (1979) Chem. Abstr. 92 (1980) 168366x
^W. F. Diller: Radiologische Untersuchungen zur verbesserten Frühdiagnose von industriellen Inhalationsvergiftungen mit verzögertem Wirkungseintritt, Verlag für Medizin Dr. E. Fischer, Heidelberg. Zentralbatt für Arbeitsmedizin, Arbeitsschutz und Ergonomie, Nr. 3, Mai 2013, p. 160 - 163
^W.F. Diller, F. Schnellbächer, F. Wüstefeld : Zentralbl. Arbeitsmed. Arbeitsschutz Prophyl. 29 (1979) p.5-16
^Results From the US Industry-Wide Phosgene Surveillance "The Diller Registry" : Journal of Occ. and Env. Med., March 2011-Vol.53-iss. 3 p.239- 244
Kongres Amerika Serikat ke-54Gedung Capitol (1906)Periode4 Maret 1895 – 4 Maret 1897Anggota90 senator357 anggota dewan4 delegasi tanpa suaraMayoritas SenatPartai Republik (pluralitas)Presiden SenatAdlai E. Stevenson (D)Mayoritas DPRPartai RepublikKetua DPRThomas B. Reed (R)Pres. Senat Pro TemporeWilliam P. Frye (R)Sesike-1: 2 Desember 1895 – 11 Juni 1896ke-2: 7 Desember 1896 – 3 Maret 1897ke-53 ←→ ke-55 Kongres Amerika Serikat ke-54 adalah sebuah pertemuan cabang legi...
Bridging the GapAlbum studio karya Black Eyed PeasDirilis26 September 2000GenreHip hop[1][2]Durasi62:50Label Interscope will.i.am Produser will.i.am apl.de.ap Rhett Lawrence Kronologi Black Eyed Peas Behind the Front(1998) Bridging the Gap(2000) Elephunk(2003) Singel dalam album Bridging the Gap BEP Empire/Get OriginalDirilis: 8 Agustus 2000[3] WeekendsDirilis: 29 Agustus2000[4] Request + LineDirilis: 30 Januari 2001[5] Penilaian profesional Nilai a...
Данная страница является списком политических партий Канады. КанадаЭта статья посвященаполитике КанадыИсполнительная власть Корона Генерал-губернатор (Мэри Саймон) Тайный совет Короля для Канады(Председатель[en] — Харджит Саджан)) Премьер-министр (Джастин Трюдо) Пра...
Dancing in the RainPoster filmSutradaraRudi AryantoProduser Sukhdev Singh Wicky V. Olindo Ditulis oleh Sukhdev Singh Tisa TS Pemeran Dimas Anggara Bunga Zainal Deva Mahenra Christine Hakim Niniek L. Karim Penata musikJoseph S. DjafarSinematografer Rama Hermawan Adam Ojen PenyuntingWawan I. WibowoPerusahaanproduksi Screenplay Films Legacy Pictures Tanggal rilis 18 Oktober 2018 (2018-10-18) (Indonesia) Durasi101 menitNegaraIndonesiaBahasaIndonesia Penghargaan Festival Film Bandun...
Ledakan sinar gama GRB 080319B. GRB 080319B adalah semburan sinar gama yang ditemukan pada 19 Maret 2008 oleh Teleskop Swift NASA.[1] Ledakan GRB 080319B melepaskan energi dalam jumlah besar di dalam spektrum elektromagnetik, dan dengan demikian memberi jendela ke dalam proses pembentukan lubang hitam dari runtuhnya bintang-bintang masif dan merupakan salah satu sinar gama paling kuat bersama dengan GRB 130427A.[2][3] Pengamatan optik menunjukkan cahaya optik, sinar ga...
American helicopter series Bell 204/205 A Kern County Fire Department Bell 205 departs from Mojave Air and Space Port Role Multipurpose utility helicopterType of aircraft National origin United States Manufacturer Bell Helicopter First flight 22 October 1956 Introduction 1959 Produced 1956–1980s Developed from Bell UH-1 Iroquois Variants Bell 212Bell 214 The Bell 204 and 205 are the civilian versions of the UH-1 Iroquois single-engine military helicopter of the Huey family of helicopters. T...
Ligue 1 2005-2006Ligue 1 Orange 2005-2006 Competizione Ligue 1 Sport Calcio Edizione 68ª Organizzatore LFP Date dal 29 luglio 2005al 13 maggio 2006 Luogo Francia Partecipanti 20 Risultati Vincitore Olympique Lione(5º titolo) Retrocessioni MetzStrasburgoAjaccio Statistiche Miglior marcatore Pauleta (21) Incontri disputati 380 Gol segnati 811 (2,13 per incontro) Cronologia della competizione 2004-2005 2006-2007 Manuale L'edizione 2005-06 della Ligue 1, sessantottesimo...
Samlaut Multiple Use AreaIUCN category VI (protected area with sustainable use of natural resources)[1]LocationBattambang Province, CambodiaNearest cityBattambangCoordinates12°43′3″N 102°38′22″E / 12.71750°N 102.63944°E / 12.71750; 102.63944Area599.16 km2 (231.34 sq mi)[1]Established1993Governing bodyCambodian Ministry of Environment Samlaut Multiple Use Area is a 599.16 km2 (231.34 sq mi) large multip...
Family of mammals Rhino redirects here. For other uses, see Rhinoceros (disambiguation) and Rhino (disambiguation). RhinocerosTemporal range: Eocene–Present PreꞒ Ꞓ O S D C P T J K Pg N Rhinoceros species of different genera; from top-left, clockwise: white rhinoceros (Ceratotherium simum), Sumatran rhinoceros (Dicerorhinus sumatrensis), Indian rhinoceros (Rhinoceros unicornis), black rhinoceros (Diceros bicornis) Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chor...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Welcome to Atlanta – news · newspapers · books · scholar · JSTOR (December 2015) (Learn how and when to remove this message) 2002 single by Jermaine Dupri featuring LudacrisWelcome to AtlantaSingle by Jermaine Dupri featuring Ludacrisfrom the album Instructions...
إغناز فون دولينغر (بالألمانية: Ignaz von Döllinger) معلومات شخصية الميلاد 28 فبراير 1799 [1][2][3][4] بامبرغ الوفاة 14 يناير 1890 (90 سنة) ميونخ مواطنة مملكة بافاريا عضو في الأكاديمية البافارية للعلوم والإنسانيات الأب إيغناز دولينغر الحياة العملية...
Season of television series CheersSeason 9Region 1 DVDStarringTed DansonKirstie AlleyRhea PerlmanJohn RatzenbergerWoody HarrelsonKelsey GrammerGeorge WendtNo. of episodes26ReleaseOriginal networkNBCOriginal releaseSeptember 20, 1990 (1990-09-20) –May 3, 1991 (1991-05-03)Season chronology← PreviousSeason 8Next →Season 10List of episodes The ninth season of Cheers, an American television sitcom, originally aired on NBC in the United States between September 20, 1...
2014 Liverpool City Council election ← 2012 22 May 2014 (2014-05-22) 2015 → 30 of 90 seats (One Thirdto Liverpool City Council46 seats needed for a majorityTurnout31% (48%) First party Second party Third party Leader Joe Anderson Tom Crone Richard Kemp Party Labour Green Liberal Democrats Leader's seat N/A,Mayor St Michael's Church Last election 78 seats,67% 1 seat,9.7% 1 seat,16.7% Seats before 73 2 9 Seats won 27 2 0 Se...
British Conservative politician This article is about the British politician. For the American opera singer, see Jessye Norman. The subject of this article is standing for re-election to the House of Commons of the United Kingdom on 4 July, and has not been an incumbent MP since Parliament was dissolved on 30 May. Some parts of this article may be out of date during this period. Please feel free to improve this article (but note that updates without valid and reliable references wil...
1998 England rugby union tour of Australasia and South AfricaSummaryP W D L Total07 00 00 07Test match04 00 00 04OpponentP W D L Australia1 0 0 1 New Zealand2 0 0 2 South Africa1 0 0 1Tour chronologyPrevious tour1997 Argentina and AustraliaNext tour1999 Australia The 1998 England rugby union tour of Australasia and South Africa was a series of matches played in June and July 1998 by the England national rugby union team. Matches The tour is often referred to in rugby culture ...
19th-century U.S. Army officer For the English rugby union player, see George Crook (rugby union). General Crook redirects here. For the musician, see General Crook (musician). George CrookPortrait of George CrookNickname(s)Nantan Lupan, which means Grey Wolf; “Three Stars” to the LakotaBorn(1828-09-08)September 8, 1828Taylorsville, Ohio, USDiedMarch 21, 1890(1890-03-21) (aged 61)Chicago, Illinois, USPlace of burialArlington National CemeteryAllegianceUnited States of AmericaUnionSer...
2016 UK local government election 2016 Gosport Borough Council Election ← 2014 5 May 2016 2018 → 17 of 34 seats to Gosport Borough Council18 seats needed for a majority First party Second party Third party Party Conservative Liberal Democrats Labour Seats before 21 6 6 Seats won 10 5 2 Seats after 19 9 5 Seat change 2 3 1 Popular vote 10,359 3,193 4,826 Percentage 52.9 16.3 24.6 Council control before election Conservative Council c...
College in Thrissur, Kerala For other St. Aloysius Colleges, see St Aloysius' College (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: St. Aloysius College, Thrissur – news · newspapers · books · scholar · JSTOR (July 2018) (Learn how and when to remove this message) St. Aloysius College, Th...
Kingdom in Europe between 1881 and 1947 Kingdom of RomaniaRegatul României (Romanian)1881–1947 Flag Coat of arms Motto: Nihil Sine Deo(Nothing without God)Anthem: Marș triumfal(Triumphant March)(1881–1884) Trăiască Regele(Long live the King)(1884–1948) The Kingdom of Romania in 1914The Kingdom of Romania in 1939Capital Bucharest(1881–1916, 1918–1947) Iași (1916–1918) Largest cityBucharest (1881–1916, 1918–1947) Iași (1916–1918)Official languagesRoma...