Triphosgene (bis(trichloromethyl) carbonate (BTC)) is a chemical compound with the formula OC(OCCl3)2. It is used as a solid substitute for phosgene, which is a gas and diphosgene, which is a liquid.[5][6] Triphosgene is stable up to 200 °C.[7] Triphosgene is used in a variety of halogenation reactions.[8]
Preparation
This compound is commercially available. It is prepared by exhaustive free radical chlorination of dimethyl carbonate:[6]
CH3OCO2CH3 + 6 Cl2 → CCl3OCO2CCl3 + 6 HCl
Triphosgene can be easily recrystallized from hot hexanes.
Uses
Triphosgene is used as a reagent in organic synthesis as a source of CO2+. It behaves like phosgene, to which it cracks thermally:
OC(OCCl3)2 ⇌ 3 OCCl2
Alcohols are converted to carbonates. Primary and secondary amines are converted to ureas and isocyanates.[6][7][9][10]
Triphosgene has been used to synthesize chlorides.[8] Some Alkyl chlorides are prepared by treating alcohols with a mixture of triphosgene and pyridine. Alkyl dichlorides and trichlorides can similarly be synthesized using triphosgene. Vinyl chlorides are synthesized from ketones using triphosgene and DMF to form a Vilsmeier reagent, followed by a ring opening by chloride ions. Aryl chlorides can also be produced using a Vilsmeier reagent from triphosgene and DMF.
Safety
The vapor pressure of Triphosgene is sufficiently high for it to reach concentrations that are considered toxicologically unsafe.[11] While several properties of triphosgene are not yet readily available, it is known that it is very toxic if inhaled. A toxic gas is emitted if it comes in contact with water.[12] There is a lack of information and variability regarding the proper handling of triphosgene. It is assumed to have the same risks as phosgene.[13][14]
^Tang S, Ikai T, Tsuji M, Okamoto Y (January 2010). "Immobilization and chiral recognition of 3,5-dimethylphenylcarbamates of cellulose and amylose bearing 4-(trimethoxysilyl)phenylcarbamate groups". Chirality. 22 (1): 165–172. doi:10.1002/chir.20722. PMID19455617.
^Zhou Y, Gong R, Miao W (September 2006). "New Method of Synthesizing N-Alkoxycarbonyl-N-arylamide with Triphosgene". Synthetic Communications. 36 (18): 2661–2666. doi:10.1080/00397910600764675. S2CID98578315.