Elliptic cohomology

In mathematics, elliptic cohomology is a cohomology theory in the sense of algebraic topology. It is related to elliptic curves and modular forms.

History and motivation

Historically, elliptic cohomology arose from the study of elliptic genera. It was known by Atiyah and Hirzebruch that if acts smoothly and non-trivially on a spin manifold, then the index of the Dirac operator vanishes. In 1983, Witten conjectured that in this situation the equivariant index of a certain twisted Dirac operator is at least constant. This led to certain other problems concerning -actions on manifolds, which could be solved by Ochanine by the introduction of elliptic genera. In turn, Witten related these to (conjectural) index theory on free loop spaces. Elliptic cohomology, invented in its original form by Landweber, Stong and Ravenel in the late 1980s, was introduced to clarify certain issues with elliptic genera and provide a context for (conjectural) index theory of families of differential operators on free loop spaces. In some sense it can be seen as an approximation to the K-theory of the free loop space.

Definitions and constructions

Call a cohomology theory even periodic if for i odd and there is an invertible element . These theories possess a complex orientation, which gives a formal group law. A particularly rich source for formal group laws are elliptic curves. A cohomology theory with

is called elliptic if it is even periodic and its formal group law is isomorphic to a formal group law of an elliptic curve over . The usual construction of such elliptic cohomology theories uses the Landweber exact functor theorem. If the formal group law of is Landweber exact, one can define an elliptic cohomology theory (on finite complexes) by

Franke has identified the condition needed to fulfill Landweber exactness:

  1. needs to be flat over
  2. There is no irreducible component of , where the fiber is supersingular for every

These conditions can be checked in many cases related to elliptic genera. Moreover, the conditions are fulfilled in the universal case in the sense that the map from the moduli stack of elliptic curves to the moduli stack of formal groups

is flat. This gives then a presheaf of cohomology theories

over the site of affine schemes flat over the moduli stack of elliptic curves. The desire to get a universal elliptic cohomology theory by taking global sections has led to the construction of the topological modular forms[1]pg 20

as the homotopy limit of this presheaf over the previous site.

See also

References

  1. ^ Goerss, Paul G. (2009-05-08). "Realizing Families of Landweber Exact Homology Theories". arXiv:0905.1319 [math.AT].
  • Franke, Jens (1992), "On the construction of elliptic cohomology", Mathematische Nachrichten, 158 (1): 43–65, doi:10.1002/mana.19921580104.
  • Landweber, Peter S. (1988), "Elliptic genera: An introductory overview", in Landweber, P. S. (ed.), Elliptic Curves and Modular Forms in Algebraic Topology, Lecture Notes in Mathematics, vol. 1326, Berlin: Springer, pp. 1–10, ISBN 3-540-19490-8.
  • Landweber, Peter S. (1988), "Elliptic cohomology and modular forms", in Landweber, P. S. (ed.), Elliptic Curves and Modular Forms in Algebraic Topology, Lecture Notes in Mathematics, vol. 1326, Berlin: Springer, pp. 55–68, ISBN 3-540-19490-8.
  • Landweber, P. S.; Ravenel, D. & Stong, R. (1995), "Periodic cohomology theories defined by elliptic curves", in Cenkl, M. & Miller, H. (eds.), The Čech Centennial 1993, Contemp. Math., vol. 181, Boston: Amer. Math. Soc., pp. 317–338, ISBN 0-8218-0296-8.
  • Lurie, Jacob (2009), "A Survey of Elliptic Cohomology", in Baas, Nils; Friedlander, Eric M.; Jahren, Björn; et al. (eds.), Algebraic Topology: The Abel Symposium 2007, Berlin: Springer, pp. 219–277, doi:10.1007/978-3-642-01200-6, hdl:2158/373831, ISBN 978-3-642-01199-3.

Founding articles

Extensions to Calabi-Yau manifolds

Read other articles:

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Universal Hospital Tirana – news · newspapers · books · scholar · JSTOR (March 2021) (Learn how and when to remove this template message) Hospital in Tirana, AlbaniaUniversal Hospital TiranaEge Saglik Tesisleri ve Egitim Muesseseleri ASGeographyLocationTirana, AlbaniaServicesBed...

 

Television specialty channel specializing in soccer This article is about the former soccer television channel in the United States. For its ongoing sister channel, see Fox Soccer Plus. For Fox Football Channel, the defunct soccer channel in Southeast Asia, see Fox Sports (Southeast Asian TV network) § Former channels. For the Aussie rules channels in Australia, see Fox Footy and Fox Footy Channel. Television channel Fox SoccerHeadquartersHouston, TexasOwnershipOwner21st Century Fox (Fo...

 

Cet article est une ébauche concernant le sport. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations du projet sport. Universiade d'été de 2009 Généralités Sport Sport d'été (d) Organisateur(s) FISU Éditions 25e Lieu(x) Belgrade Date 1er juillet au 12 juillet 2009 Nations 145 Épreuves 15 sports Palmarès Vainqueur Russie Navigation Édition précédente Édition suivante modifier La 25e Universiade d'été se déroule du 1er au 1...

PT Pertamina Bina Medika Indonesia Healthcare CorporationNama dagangPertamedika IHCSebelumnyaPT Rumah Sakit Pusat Pertamina (1997 - 2002)PT Pertamina Bina Medika (2002 - 2018)JenisAnak perusahaan BUMNIndustriPelayanan kesehatanDidirikan21 Oktober 1997; 26 tahun lalu (1997-10-21)KantorpusatJakarta, IndonesiaTokohkunciFathema Djan Rachmat[1](Direktur Utama)Farid Harianto[1](Komisaris Utama)ProdukRumah sakitKlinikJasaEvakuasi medisPengelolaan rumah sakitPendapatanRp 5,284 tr...

 

Gore RangeBuffalo Mountain (left) at the southern end of the Gore Range seen from Dillon Reservoir.Highest pointPeakMount PowellElevation13,566 ft (4,135 m)ListingMountain ranges of ColoradoCoordinates39°45′36″N 106°20′27″W / 39.76000°N 106.34083°W / 39.76000; -106.34083DimensionsLength77 mi (124 km) N-SWidth46 mi (74 km) E-WArea1,420 sq mi (3,700 km2)GeographyGore RangeGore Range CountryUnited State...

 

Celestino Vietti2019KebangsaanItaliaLahir13 Oktober 2001 (umur 22)Cirié, ItaliaTim saat iniSKY Racing Team VR46No. motor13 Catatan statistik Karier Kejuaraan Dunia Moto2Tahun aktif2021– PabrikanKalex Start Menang Podium Pole F. lap Poin 1 0 0 0 0 4 Karier Kejuaraan Dunia Moto3Tahun aktif2018–2020 PabrikanKTM Juara dunia0 Klasemen 20205th (146 poin) Start Menang Podium Pole F. lap Poin 38 2 8 1 2 305 Celestino Vietti Ramus (lahir 13 Oktober 2001) adalah seorang rapper dan pembalap s...

1st and 2nd episodes of the 5th season of Everybody Loves Raymond ItalyEverybody Loves Raymond episodesEpisode nos.Season 5Episodes 1/2Directed byGary HalvorsonWritten byPhilip RosenthalProduction code0001/0002[1]Original air dates October 2, 2000 (2000-10-02) (Part 1) October 09, 2000 (Part 2) Running time44 minutesGuest appearances Silvana De Santis as Colletta Pierrino Mascarino as Giorgio Alex Meneses as Stefania David Proval as Marco Fogagnolo Sergio Sivori as...

 

This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (January 2014) (Learn how and when to remove this message) Trail running shoes Cross country running shoes are made for cross country running, a form of long distance running. Season-specific trainers are available for different types of training.[1] Cross Country running Main article: Cross country runni...

 

Теорема Ро́лля (теорема о нуле производной) — теорема математического анализа, входящая, вместе с теоремами Лагранжа и Коши, в число так называемых «теорем о среднем значении». Теорема утверждает, что Если вещественная функция f (x), непрерывная на отрезке [ a , b ] {\displaystyle [a,b]...

Vietnamese general Colonel GeneralHoàng CầmPersonal detailsBornĐỗ Văn Cầm(1920-04-30)30 April 1920Ứng Hòa, Hà Tây, Tonkin (French protectorate)Died19 August 2013(2013-08-19) (aged 93)Political partyCommunist Party of VietnamAwards Ho Chi Minh OrderMilitary serviceAllegiance Democratic Republic of Vietnam and later VietnamBranch/servicePeople's Army of VietnamRankColonel GeneralBattles/wars First Indochina War Battle of Điện Biên Phủ Vietnam War Battle of Phước Long...

 

  关于与「华盛顿州」標題相近或相同的条目页,請見「华盛顿」。   此條目介紹的是美國西北部太平洋沿岸的州。关于与之同名的美国首都所在地,请见「華盛頓哥伦比亚特区」。 此條目需要擴充。 (2007年9月26日)请協助改善这篇條目,更進一步的信息可能會在討論頁或扩充请求中找到。请在擴充條目後將此模板移除。 华盛顿州 美國联邦州State of Washington...

 

Galaxy in the constellation Virgo NGC 4260Hubble Space Telescope image of NGC 4260Observation data (J2000 epoch)ConstellationVirgoRight ascension12h 19m 22s[1]Declination+06° 05′ 55″[1]Redshift0.006531[2]Heliocentric radial velocity1958 ± 10 km/s[2]Apparent magnitude (B)13.1[1]CharacteristicsTypeSB(s)a[2]Other designationsNGC 4260, UGC 7361, MCG +01-31-054, PGC 39656[1] NGC 4260 is a barred spiral galaxy ...

Greg Maddux Maddux nel 2009 Nazionalità  Stati Uniti Baseball Ruolo Lanciatore Termine carriera 2008 Hall of fame National Baseball Hall of Fame (2014) Record Batte destro Tira destro Debutto in MLB 3 settembre 1986 con i Chicago Cubs Partite vinte-perse 355-227 Media PGL (ERA) 3.16 Strikeout (SO) 3371 CarrieraSquadre di club 1986-1992 Chicago Cubs1993-2003 Atlanta Braves2004-2006 Chicago Cubs2006 L.A. Dodgers2007-2008 San Diego Padres2008 L.A. Dodger...

 

Women involved in the film industry The examples and perspective in this article deal primarily with the United States and do not represent a worldwide view of the subject. You may improve this article, discuss the issue on the talk page, or create a new article, as appropriate. (January 2016) (Learn how and when to remove this message) From left to right, top to bottom: Marilyn Monroe, Audrey Hepburn, Meryl Streep, Maggie Cheung Part of a series onWomen in society Society Women's history...

 

Disambiguazione – Se stai cercando altri significati, vedi Algebra (disambigua). Questa voce o sezione sull'argomento matematica è priva o carente di note e riferimenti bibliografici puntuali. Sebbene vi siano una bibliografia e/o dei collegamenti esterni, manca la contestualizzazione delle fonti con note a piè di pagina o altri riferimenti precisi che indichino puntualmente la provenienza delle informazioni. Puoi migliorare questa voce citando le fonti più precisamente. Segui i su...

Ethnic group The Abangan are Javanese people who are Muslims and practice a much more syncretic version of Islam than the more orthodox santri.[1] The term, apparently derived from the Javanese language word for red, abang, was first developed by Clifford Geertz, but the meaning has since shifted. Abangan are more inclined to follow a local system of beliefs called adat and Kebatinan than pure Sharia (Islamic law). Their belief system integrates Hinduism, Buddhism and animism. Howeve...

 

COCH بنى متوفرة بنك بيانات البروتينOrtholog search: PDBe RCSB قائمة رموز معرفات بنك بيانات البروتين 1JBI معرفات أسماء بديلة COCH, -5B2, 5B2, DFNA9, cochlin, DFNB110 معرفات خارجية الوراثة المندلية البشرية عبر الإنترنت 603196 MGI: MGI:1278313 HomoloGene: 20868 GeneCards: 1690 علم الوجود الجيني وظائف جزيئية • ‏GO:0001948، ‏GO:0016582 ربط بر...

 

1908 Imperial Fabergé egg Alexander Palace Fabergé eggThe egg (with surprise out) on a matching stand made in 1989Year delivered1908CustomerNicholas IIRecipientAlexandra FedorovnaCurrent ownerIndividual or institutionKremlin ArmouryDesign and materialsWorkmasterHenrik WigströmMaterials usedNephrite, gold, diamond, ruby, ivoryHeight110 millimetres (4.3 in)Width68 millimetres (2.7 in)SurpriseMiniature Alexander Palace The Alexander Palace egg is a jewelled Easter egg made under the...

غراند ريفر   الإحداثيات 40°49′08″N 93°57′45″W / 40.818888888889°N 93.9625°W / 40.818888888889; -93.9625   [1] تقسيم إداري  البلد الولايات المتحدة[2]  التقسيم الأعلى مقاطعة ديكاتور  خصائص جغرافية  المساحة 0.538618 كيلومتر مربع0.538622 كيلومتر مربع (1 أبريل 2010)  ارتفاع 310 متر&#...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Gino CavalieriLahir(1895-07-25)25 Juli 1895Vicenza, ItaliaMeninggal15 Oktober 1992(1992-10-15) (umur 97)Treviso, ItaliaPekerjaanPemeranTahun aktif1937-1983 Gino Cavalieri (25 Juli 1895 – 15 Oktober 1992) adalah seorang pemera...