Moduli stack of elliptic curves

In mathematics, the moduli stack of elliptic curves, denoted as or , is an algebraic stack over classifying elliptic curves. Note that it is a special case of the moduli stack of algebraic curves . In particular its points with values in some field correspond to elliptic curves over the field, and more generally morphisms from a scheme to it correspond to elliptic curves over . The construction of this space spans over a century because of the various generalizations of elliptic curves as the field has developed. All of these generalizations are contained in .

Properties

Smooth Deligne-Mumford stack

The moduli stack of elliptic curves is a smooth separated Deligne–Mumford stack of finite type over , but is not a scheme as elliptic curves have non-trivial automorphisms.

j-invariant

There is a proper morphism of to the affine line, the coarse moduli space of elliptic curves, given by the j-invariant of an elliptic curve.

Construction over the complex numbers

It is a classical observation that every elliptic curve over is classified by its periods. Given a basis for its integral homology and a global holomorphic differential form (which exists since it is smooth and the dimension of the space of such differentials is equal to the genus, 1), the integralsgive the generators for a -lattice of rank 2 inside of [1] pg 158. Conversely, given an integral lattice of rank inside of , there is an embedding of the complex torus into from the Weierstrass P function[1] pg 165. This isomorphic correspondence is given byand holds up to homothety of the lattice , which is the equivalence relationIt is standard to then write the lattice in the form for , an element of the upper half-plane, since the lattice could be multiplied by , and both generate the same sublattice. Then, the upper half-plane gives a parameter space of all elliptic curves over . There is an additional equivalence of curves given by the action of thewhere an elliptic curve defined by the lattice is isomorphic to curves defined by the lattice given by the modular actionThen, the moduli stack of elliptic curves over is given by the stack quotientNote some authors construct this moduli space by instead using the action of the Modular group . In this case, the points in having only trivial stabilizers are dense.

Fundamental domains of the action of on the upper half-plane are shown here as pairs of ideal triangles of different colors sharing an edge. The "standard" fundamental domain is shown with darker edges. Suitably identifying points on the boundary of this region, we obtain the coarse moduli space of elliptic curves. The stacky points at and are on the boundary of this region.

Stacky/Orbifold points

Generically, the points in are isomorphic to the classifying stack since every elliptic curve corresponds to a double cover of , so the -action on the point corresponds to the involution of these two branches of the covering. There are a few special points[2] pg 10-11 corresponding to elliptic curves with -invariant equal to and where the automorphism groups are of order 4, 6, respectively[3] pg 170. One point in the Fundamental domain with stabilizer of order corresponds to , and the points corresponding to the stabilizer of order correspond to [4]pg 78.

Representing involutions of plane curves

Given a plane curve by its Weierstrass equationand a solution , generically for j-invariant , there is the -involution sending . In the special case of a curve with complex multiplicationthere the -involution sending . The other special case is when , so a curve of the form there is the -involution sending where is the third root of unity .

Fundamental domain and visualization

There is a subset of the upper-half plane called the Fundamental domain which contains every isomorphism class of elliptic curves. It is the subsetIt is useful to consider this space because it helps visualize the stack . From the quotient mapthe image of is surjective and its interior is injective[4]pg 78. Also, the points on the boundary can be identified with their mirror image under the involution sending , so can be visualized as the projective curve with a point removed at infinity[5]pg 52.

Line bundles and modular functions

There are line bundles over the moduli stack whose sections correspond to modular functions on the upper-half plane . On there are -actions compatible with the action on given byThe degree action is given byhence the trivial line bundle with the degree action descends to a unique line bundle denoted . Notice the action on the factor is a representation of on hence such representations can be tensored together, showing . The sections of are then functions sections compatible with the action of , or equivalently, functions such that This is exactly the condition for a holomorphic function to be modular.

Modular forms

The modular forms are the modular functions which can be extended to the compactificationthis is because in order to compactify the stack , a point at infinity must be added, which is done through a gluing process by gluing the -disk (where a modular function has its -expansion)[2]pgs 29-33.

Universal curves

Constructing the universal curves is a two step process: (1) construct a versal curve and then (2) show this behaves well with respect to the -action on . Combining these two actions together yields the quotient stack

Versal curve

Every rank 2 -lattice in induces a canonical -action on . As before, since every lattice is homothetic to a lattice of the form then the action sends a point toBecause the in can vary in this action, there is an induced -action on giving the quotient spaceby projecting onto .

SL2-action on Z2

There is a -action on which is compatible with the action on , meaning given a point and a , the new lattice and an induced action from , which behaves as expected. This action is given bywhich is matrix multiplication on the right, so

See also

References

  1. ^ a b Silverman, Joseph H. (2009). The arithmetic of elliptic curves (2nd ed.). New York: Springer-Verlag. ISBN 978-0-387-09494-6. OCLC 405546184.
  2. ^ a b Hain, Richard (2014-03-25). "Lectures on Moduli Spaces of Elliptic Curves". arXiv:0812.1803 [math.AG].
  3. ^ Galbraith, Steven. "Elliptic Curves" (PDF). Mathematics of Public Key Cryptography. Cambridge University Press – via The University of Auckland.
  4. ^ a b Serre, Jean-Pierre (1973). A Course in Arithmetic. New York: Springer New York. ISBN 978-1-4684-9884-4. OCLC 853266550.
  5. ^ Henriques, André G. "The Moduli stack of elliptic curves". In Douglas, Christopher L.; Francis, John; Henriques, André G; Hill, Michael A. (eds.). Topological modular forms (PDF). Providence, Rhode Island. ISBN 978-1-4704-1884-7. OCLC 884782304. Archived from the original (PDF) on 9 June 2020 – via University of California, Los Angeles.

Read other articles:

Peta Villoncourt. Villoncourt merupakan sebuah komune di departemen Vosges yang terletak pada sebelah timur laut Prancis. Lihat pula Komune di departemen Vosges Referensi INSEE lbsKomune di departemen Vosges Les Ableuvenettes Ahéville Aingeville Ainvelle Allarmont Ambacourt Ameuvelle Anglemont Anould Aouze Arches Archettes Aroffe Arrentès-de-Corcieux Attignéville Attigny Aulnois Aumontzey Autigny-la-Tour Autreville Autrey Auzainvilliers Avillers Avrainville Avranville Aydoilles Badménil-a...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (يوليو 2019) منتخب روسيا البيضاء تحت 17 سنة لكرة القدممعلومات عامةصنف فرعي من منتخب كرة قدم يُمثِّل رياضياً بيلاروس فئة...

 

Neighbourhood of Oslo, Norway For other uses, see Holmenkollen (disambiguation). The Holmenkollen ski jump is a landmark in Oslo. This is the hill that was demolished in 2008 to make way for a new one in 2010. Holmenkollen Norway Holmenkollen Chapel Holmenkollen (Urban East Norwegian pronunciation: [ˈhɔ̂ɫmn̩ˌkɔɫn̩])[1][2] is a mountain and a neighbourhood in the Vestre Aker borough of Oslo, Norway. It goes up to 500 metres (1,600 ft) above sea level and i...

Dixième circonscription des Yvelines Données clés Département Yvelines Région Île-de-France Député Philippe Emmanuel (suppléant) Parti politique RE Population 119 744 (2008) Création 1986 Redécoupage 2010 Étendue territoriale Cantons de Rambouillet et Saint-Arnoult-en-Yvelines, fractions des cantons de Maurepas et Montfort-l'Amaury modifier La dixième circonscription des Yvelines est l'une des 12 circonscriptions législatives françaises que compte le département des Yvel...

 

Pre-1920 dirt road in Monterey County, California This article is about the pioneer road in pre-1920 Big Sur. For the modern highway, see Big Sur Coast Highway. For the Old Coast Road in Australia, see Forrest Highway. The remaining 10.2 miles (16.4 km) portion of the original Old Coast Road. It connects on the north to Highway 1 at Bixby Creek Bridge and on the south near Andrew Molera State Park. The Old Coast Road is a dirt road that still exists in part and preceded the current Big Sur Co...

 

Картиной М. В. Нестерова «Видение отроку Варфоломею» (1890) часто иллюстрируют начало символистского движения. Русский символизм — направление в литературе и искусстве России конца XIX — первой четверти XX века. Русский символизм реализуется как масштабное, знач�...

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (novembre 2013). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références ». En pratique : Quelles sources sont attendues ? ...

 

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

 

Daily newspaper in State College, Pennsylvania Centre Daily TimesTypeDaily newspaperFormatBroadsheetOwner(s)The McClatchy CompanyPublisherJanet SantostefanoEditorJessica McAllisterFoundedMay 12, 1898; 125 years ago (1898-05-12)(as State College Times)LanguageEnglishHeadquarters210 W. Hamilton Avenue #181State College, PA 16801-5232CountryUnited StatesCirculation9,279 Daily 11,521 Sunday (as of 2020)[1]ISSN0745-483XOCLC number61312383 Websitewww.centredaily.com Me...

Public park in Portland, Oregon, U.S. Woodstock ParkOff-leash area at Woodstock Park in 2012LocationSE 47th Avenue and Steele StreetNearest cityPortland, OregonCoordinates45°29′1.22″N 122°36′45.92″W / 45.4836722°N 122.6127556°W / 45.4836722; -122.6127556Area14.11 acres (5.71 ha)Created1921Operated byPortland Parks & RecreationOpen5 a.m. to midnight daily Woodstock Park is a public park located in the Woodstock neighborhood of southeast Po...

 

Villa SciarraFontana di Villa Sciarra situata nel piazzale superioreLocalizzazioneStato Italia RegioneLazio LocalitàRoma IndirizzoPiazzale Wurts o largo F. Minutilli Coordinate41°53′00.6″N 12°27′53.64″E / 41.8835°N 12.4649°E41.8835; 12.4649Coordinate: 41°53′00.6″N 12°27′53.64″E / 41.8835°N 12.4649°E41.8835; 12.4649 Informazioni generaliCondizioniIn uso RealizzazioneProprietarioDemanio Modifica dati su Wikidata · Manuale Villa...

 

Charlotte-Jeanne Béraud de la Haye de Riou, Marquise de Montesson, as painted by Vigée-Lebrun, ca. 1780–90.Hôtel de Montesson at 40, rue de la Chaussée-d'Antin was destroyed after a fire in 1810 Charlotte-Jeanne Béraud de La Haye de Riou (4 October 1738[1] – 6 February 1806) was a mistress to Louis Philippe d'Orléans, Duke of Orléans, and ultimately, his wife; however, Louis XV would not allow her to become the Duchess. She wrote and acted in several plays. She is known...

Aimi EguchiTokoh Promosi perusahaanAimi Eguchi ketika tampil di iklan Ezaki GlicoPenampilanperdanaJuni 2011PenciptaEzaki GlicoPengisi suaraYukari SasakiInformasiJenis kelaminPerempuanPekerjaanIdola Jepang Aimi Eguchi (江口 愛実code: ja is deprecated , Eguchi Aimi) adalah sebuah idola Jepang fiksi. Ia adalah sebuah CGI dari hasil perpaduan karakteristik fisik enam anggota kelompok teater/idola AKB48.[1] Eguchi diumumkan sebagai anggota baru grup tersebut pada Juni 2011. Menurut pro...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: 2000 WNBA All-Star Game – news · newspapers · books · scholar · JSTOR (February 2024) (Learn how and when to remove this message) 2000 WNBA All-Star Game 12 Total East 3328 61 West 4033 73 DateJuly 17, 2000ArenaAmerica West ArenaCityPhoenix, ArizonaMVPTina Tho...

 

Not to be confused with Fuun Lion-Maru. Japanese TV series or program Kaiketsu Lion-MaruLion-MaruGenreTokusatsuSuperhero fiction Action/AdventureFantasyCreated byKoji Bessho Tomio SagisuComposerAsei KobayashiCountry of originJapanNo. of episodes54ProductionProducersKoji Bessho Tomio Sagisu Shigeru ShinoharaRunning time25 minutesProduction companyP ProductionsOriginal releaseNetworkFuji Television NetworkReleaseApril 1, 1972 (1972-04-01) –April 7, 1973 (1973-04-07)RelatedFuun ...

Zoologi Cabang Antropologi · Antrozoologi · ApiologiAraknologi · Artropodologi · CetologiConchologi · Entomologi · EtologiHelminthologi · Herpetologi · IktiologiMalacologi · Mammalogi · MyrmecologiNematologi · Neuroetologi · OrnitologiPaleozoologi · Planktologi · PrimatologiZoosemiotik Zoologis terkemuka Karl Ernst von Baer · Geor...

 

Technology company For the wrestler, see Aéreo. Aereo, Inc.Company typePrivateFoundedFebruary 2012; 12 years ago (2012-02)DefunctNovember 21, 2014; 9 years ago (2014-11-21)FateBankruptcy, assets and intellectual property later acquired by TiVoHeadquartersNew York City, United StatesArea servedVarious US citiesKey peopleChet Kanojia (Founder and CEO)ProductsOver-the-air television on Internet-connected devicesWebsiteOfficial website Aereo was a technol...

 

La Región de Murcia en España. La historia de la Región de Murcia es común al desarrollo histórico del sureste de la península ibérica. Se trata de un territorio poblado desde muy antiguo debido a su situación mediterránea que le hizo testigo del paso de numerosas culturas y civilizaciones. Conserva importantes yacimientos prehistóricos, como los segundos restos humanos más antiguos de la península en la Sima de las Palomas, o la presencia de una de las culturas más desarrolladas...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. Everyone Poops Sampul tebal edisi bahasa Inggris pertamaPengarangTarō GomiJudul asliMinna Unchi (みんなうんち)PenerjemahAmanda Mayer StinchecumIlustratorTarō GomiPerancang sampulTarō GomiNegaraJepangBahasaJepangSeriKagaku no Tomo Ke...

 

Penisola di Kola(Кольский полуостров - Kol'skij poluostrov) La penisola di Kola in Russia, sita tra il Mare di Barents a nord e il Mar Bianco a sud Stati Russia (Oblast' di Murmansk) TerritorioRussia nord-occidentale CapoluogoMurmansk[1] Superficie100 000 km² Linguerusso, finlandese, norvegese, careliano Fusi orariUTC+3 Focus sulla penisola di Kola La penisola di Kola[2][3] o penisola di Cola[4][3][5] (in...