In mathematics, in particular in the theory of schemes in algebraic geometry, a flat morphismf from a scheme X to a scheme Y is a morphism such that the induced map on every stalk is a flat map of rings, i.e.,
is a flat map for all P in X.[1] A map of rings is called flat if it is a homomorphism that makes B a flatA-module. A morphism of schemes is called faithfully flat if it is both surjective and flat.[2]
Two basic intuitions regarding flat morphisms are:
For the second, the idea is that morphisms in algebraic geometry can exhibit discontinuities of a kind that are detected by flatness. For instance, the operation of blowing down in the birational geometry of an algebraic surface can give a single fiber that is of dimension 1 when all the others have dimension 0. It turns out (retrospectively) that flatness in morphisms is directly related to controlling this sort of semicontinuity, or one-sided jumping.
Flat morphisms are used to define (more than one version of) the flat topos, and flat cohomology of sheaves from it. This is a deep-lying theory, and has not been found easy to handle. The concept of étale morphism (and so étale cohomology) depends on the flat morphism concept: an étale morphism being flat, of finite type, and unramified.
Examples/non-examples
Consider the affine scheme morphism
induced from the morphism of algebras
Since proving flatness for this morphism amounts to computing[3]
we resolve the complex numbers
and tensor by the module representing our scheme giving the sequence of -modules
Because t is not a zero divisor we have a trivial kernel, hence the homology group vanishes.
Miracle flatness
Other examples of flat morphisms can be found using "miracle flatness"[4] which states that if you have a morphism between a Cohen–Macaulay scheme to a regular scheme with equidimensional fibers, then it is flat. Easy examples of this are elliptic fibrations, smooth morphisms, and morphisms to stratified varieties which satisfy miracle flatness on each of the strata.
Hilbert schemes
The universal examples of flat morphisms of schemes are given by Hilbert schemes. This is because Hilbert schemes parameterize universal classes of flat morphisms, and every flat morphism is the pullback from some Hilbert scheme. I.e., if is flat, there exists a commutative diagram
for the Hilbert scheme of all flat morphisms to . Since is flat, the fibers all have the same Hilbert polynomial , hence we could have similarly written for the Hilbert scheme above.
Non-examples
Blowup
One class of non-examples are given by blowup maps
One easy example is the blowup of a point in . If we take the origin, this is given by the morphism
sending
where the fiber over a point is a copy of , i.e.,
which follows from
But for , we get the isomorphism
The reason this fails to be flat is because of the Miracle flatness lemma, which can be checked locally.
Infinite resolution
A simple non-example of a flat morphism is This is because
is an infinite complex, which we can find by taking a flat resolution of k,
and tensor the resolution with k, we find that
showing that the morphism cannot be flat. Another non-example of a flat morphism is a blowup since a flat morphism necessarily has equi-dimensional fibers.
Properties of flat morphisms
Let be a morphism of schemes. For a morphism , let and The morphism f is flat if and only if for every g, the pullback is an exact functor from the category of quasi-coherent -modules to the category of quasi-coherent -modules.[5]
Assume and are morphisms of schemes and f is flat at x in X. Then g is flat at if and only if gf is flat at x.[6] In particular, if f is faithfully flat, then g is flat or faithfully flat if and only if gf is flat or faithfully flat, respectively.[7]
The fiber product of two flat or faithfully flat morphisms is a flat or faithfully flat morphism, respectively.[9]
Flatness and faithful flatness is preserved by base change: If f is flat or faithfully flat and , then the fiber product is flat or faithfully flat, respectively.[10]
The set of points where a morphism (locally of finite presentation) is flat is open.[11]
If f is faithfully flat and of finite presentation, and if gf is finite type or finite presentation, then g is of finite type or finite presentation, respectively.[12]
Suppose is a flat morphism of schemes.
If F is a quasi-coherent sheaf of finite presentation on Y (in particular, if F is coherent), and if J is the annihilator of F on Y, then , the pullback of the inclusion map, is an injection, and the image of in is the annihilator of on X.[13]
If f is faithfully flat and if G is a quasi-coherent -module, then the pullback map on global sections is injective.[14]
Suppose is flat. Let X and Y be S-schemes, and let and be their base change by h.
If is quasi-compact and dominant, then its base change is quasi-compact and dominant.[15]
If h is faithfully flat, then the pullback map is injective.[16]
Assume is quasi-compact and quasi-separated. Let Z be the closed image of X, and let be the canonical injection. Then the closed subscheme determined by the base change is the closed image of .[17]
Topological properties
If is flat, then it possesses all of the following properties:
For every point x of X and every generization y′ of y = f(x), there is a generization x′ of x such that y′ = f(x′).[18]
For every irreducible closed subset Y′ of Y, every irreducible component of f−1(Y′) dominates Y′.[20]
If Z and Z′ are two irreducible closed subsets of Y with Z contained in Z′, then for every irreducible component T of f−1(Z), there is an irreducible component T′ of f−1(Z′) containing T.[21]
For every irreducible component T of X, the closure of f(T) is an irreducible component of Y.[22]
If Y is irreducible with generic point y, and if f−1(y) is irreducible, then X is irreducible.[23]
If f is also closed, the image of every connected component of X is a connected component of Y.[24]
If f is flat and locally of finite presentation, then f is universally open.[26] However, if f is faithfully flat and quasi-compact, it is not in general true that f is open, even if X and Y are noetherian.[27] Furthermore, no converse to this statement holds: If f is the canonical map from the reduced scheme Xred to X, then f is a universal homeomorphism, but for X non-reduced and noetherian, f is never flat.[28]
If f is also quasi-compact, and if Z is a subset of Y, then Z is a locally closed pro-constructible subset of Y if and only if f−1(Z) is a locally closed pro-constructible subset of X.[30]
If f is flat and locally of finite presentation, then for each of the following properties P, the set of points where f has P is open:[31]
Serre's condition Sk (for any fixed k).
Geometrically regular.
Geometrically normal.
If in addition f is proper, then the same is true for each of the following properties:[32]
Geometrically reduced.
Geometrically reduced and having k geometric connected components (for any fixed k).
Geometrically integral.
Flatness and dimension
Assume and are locally noetherian, and let .
Let x be a point of X and y = f(x). If f is flat, then dimxX = dimyY + dimxf−1(y).[33] Conversely, if this equality holds for all x, X is Cohen–Macaulay, and Y is regular, and furthermore f maps closed points to closed points, then f is flat.[34]
If f is faithfully flat, then for each closed subset Z of Y, codimY(Z) = codimX(f−1(Z)).[35]
Suppose f is flat and F is a quasi-coherent module over Y. If F has projective dimension at most n, then has projective dimension at most n.[36]
Descent properties
Assume f is flat at x in X. If X is reduced or normal at x, then Y is reduced or normal, respectively, at f(x).[37] Conversely, if f is also of finite presentation and f−1(y) is reduced or normal, respectively, at x, then X is reduced or normal, respectively, at x.[38]
In particular, if f is faithfully flat, then X reduced or normal implies that Y is reduced or normal, respectively. If f is faithfully flat and of finite presentation, then all the fibers of f reduced or normal implies that X is reduced or normal, respectively.
If f is flat at x in X, and if X is integral or integrally closed at x, then Y is integral or integrally closed, respectively, at f(x).[39]
If f is faithfully flat, X is locally integral, and the topological space of Y is locally noetherian, then Y is locally integral.[40]
If f is faithfully flat and quasi-compact, and if X is locally noetherian, then Y is also locally noetherian.[41]
Assume f is flat and X and Y are locally noetherian. If X is regular at x, then Y is regular at f(x). Conversely, if Y is regular at f(x) and f−1(f(x)) is regular at x, then X is regular at x.[42]
Assume f is flat and X and Y are locally noetherian. If X is normal at x, then Y is normal at f(x). Conversely, if Y is normal at f(x) and f−1(f(x)) is normal at x, then X is normal at x.[43]
Let g : Y′ → Y be faithfully flat. Let F be a quasi-coherent sheaf on Y, and let F′ be the pullback of F to Y′. Then F is flat over Y if and only if F′ is flat over Y′.[44]
Assume f is faithfully flat and quasi-compact. Let G be a quasi-coherent sheaf on Y, and let F denote its pullback to X. Then F is finite type, finite presentation, or locally free of rank n if and only if G has the corresponding property.[45]
Suppose f : X → Y is an S-morphism of S-schemes. Let g : S′ → S be faithfully flat and quasi-compact, and let X′, Y′, and f′ denote the base changes by g. Then for each of the following properties P, if f′ has P, then f has P.[46]
Open.
Closed.
Quasi-compact and a homeomorphism onto its image.
A homeomorphism.
Additionally, for each of the following properties P, f has P if and only if f′ has P.[47]
Universally open.
Universally closed.
A universal homeomorphism.
Quasi-compact.
Quasi-compact and dominant.
Quasi-compact and universally bicontinuous.
Separated.
Quasi-separated.
Locally of finite type.
Locally of finite presentation.
Finite type.
Finite presentation.
Proper.
An isomorphism.
A monomorphism.
An open immersion.
A quasi-compact immersion.
A closed immersion.
Affine.
Quasi-affine.
Finite.
Quasi-finite.
Integral.
It is possible for f′ to be a local isomorphism without f being even a local immersion.[48]
If f is quasi-compact and L is an invertible sheaf on X, then L is f-ample or f-very ample if and only if its pullback L′ is f′-ample or f′-very ample, respectively.[49] However, it is not true that f is projective if and only if f′ is projective. It is not even true that if f is proper and f′ is projective, then f is quasi-projective, because it is possible to have an f′-ample sheaf on X′ which does not descend to X.[50]
^EGA IV2, Proposition 6.1.5. Note that the regularity assumption on Y is important here. The extension gives a counterexample with X regular, Y normal, f finite surjective but not flat.
أوليغ سينتسوف (بالأوكرانية: Олег Геннадiйович Сенцов) معلومات شخصية الميلاد 13 يوليو 1976 (48 سنة) سيمفروبول مكان الاعتقال سجن ليفورتوفو (2014–سبتمبر 2019) مواطنة الاتحاد السوفيتي (13 يوليو 1976–1991) أوكرانيا (1991–) الحياة العملية المدرسة الأم جامعة كييف الوطنية �...
Untuk kegunaan lain, lihat Kilas Balik. Kilas BalikAlbum kompilasi karya La LunaDirilis10 Oktober 2007Direkam25 Mei 2007GenrePopDurasi50 MenitLabelBulletin MusikProduserWirjonoKronologi La Luna Indah Pada Waktunya(2005)Indah Pada Waktunya2005 Kilas Balik (2007) Berbunga Bunga(2011)Berbunga Bunga2011 Kilas Balik merupakan sebuah album kompilasi karya La Luna. Dirilis pada tahun 2007 yang merupakan album kumpulan lagu terbaik dari La Luna. Terdapat dua lagu sebagai (New Song) di track 1 Tet...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Asimov's Guide to the Bible – news · newspapers · books · scholar · JSTOR (August 2014) (Learn how and when to remove this template message) First combined edition (publ. Wings) Asimov's Guide to the Bible is a work by Isaac Asimov that was first published in t...
هذه مقالة غير مراجعة. ينبغي أن يزال هذا القالب بعد أن يراجعها محرر؛ إذا لزم الأمر فيجب أن توسم المقالة بقوالب الصيانة المناسبة. يمكن أيضاً تقديم طلب لمراجعة المقالة في الصفحة المخصصة لذلك. (أكتوبر 2020) هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة �...
Huruf KirilYu dengan makron Alfabet KirilHuruf SlaviaАА́А̀А̂А̄ӒБВГҐДЂЃЕЕ́ÈЕ̂ЁЄЖЗЗ́ЅИИ́ЍИ̂ЙІЇЈКЛЉМНЊОŌПРСС́ТЋЌУУ́ У̀У̂ӮЎФХЦЧЏШЩЪЫЬЭЮЯHuruf non-SlaviaӐА̊А̃Ӓ̄ӔӘӘ́Ә̃ӚВ̌ҒГ̑Г̣Г̌ҔӺҒ̌ӶД̌Д̣Д̆ӖЕ̄Е̃Ё̄Є̈ӁҖӜҘӞЗ̌З̱З̣ԐԐ̈ӠӢИ̃ҊӤҚӃҠҞҜК̣ԚӅԮԒӍӉҢԨӇҤО́О̀О̆О̂О̃ӦӦ̄ӨӨ̄Ө́Ө̆ӪҨԤР̌ҎҪС̣С̱Т̌Т̣ҬУ̃Ӱ Ӱ́Ӱ̄ӲҮҮ́ҰХ̣Х̱Х̮�...
Paraguayan football club Football clubRecoletaFull nameClub Deportivo RecoletaNickname(s)Los Canarios, Los FunebrerosFoundedFebruary 12, 1931GroundEstadio Roque Battilana,Asunción, ParaguayCapacity6,000ChairmanJuan Alberto JaquetManagerDario FerreiraLeagueDivisión Intermedia2023División Intermedia, 4th of 16 Home colours Away colours Current season Deportivo Recoleta, or simply known as Recoleta, is a Paraguayan association football club from the neighbourhood of the same name, in Asunció...
Laura IngrahamIngraham pada 2018LahirLaura Anne Ingraham19 Juni 1963 (umur 60)Glastonbury, Connecticut, Amerika SerikatPendidikanDartmouth College (BA)Universitas Virginia (JD)Partai politikPartai RepublikAnak3Situs webSitus web resmi Laura Anne Ingraham adalah seorang penyiar televisi sayap kanan Amerika Serikat.[1] Ingraham dulunya memandu acara radio tersindikasi nasional The Laura Ingraham Show selama nyaris dua dasawarsa. Ia juga merupakan kepala penyunting LifeZette. Pada ...
العنخ العنخ أو مفتاح الحياة هو رمز هيروغليفي مصري قديم كان يستخدم في الكتابة والفن لتمثيل كلمة «الحياة»، وبالتالي، يعد كرمز للحياة نفسها. استمر استخدامه من خلال المصريين الأقباط الذين قاموا بتكييفه كصليب crux ansata وهو نسخة من الصليب المسيحي مع حلقة دائرية مماثلة لحلقة العنخ....
Women's ice hockey tournament 2020 IIHF World Women's U18 Championship Division IITournament detailsHost countries Netherlands MexicoVenue(s)2 (in 2 host cities)Dates25–28 January 202028 January – 2 February 2020Teams82022 → See also: 2020 IIHF World Women's U18 Championship The 2020 IIHF World Women's U18 Championship Division II was two international under-18 women's ice hockey tournaments organized by the International Ice Hockey Federation (IIHF). Divisions I...
2009 European Parliament election in Austria ← 2004 4 June 2009 2014 → 17 seats to the European ParliamentTurnout45.97% ( 3.54 pp) First party Second party Third party Leader Ernst Strasser Hannes Swoboda Hans-Peter Martin Party ÖVP SPÖ Hans-Peter Martin's List Alliance EPP PES Last election 32.70%, 6 seats 33.33%, 7 seats 13.98%, 2 seats Seats won 6 4 (5 post-Lisbon) 3 Seat change 0 3 ( 2) 1 Popular vote 858,921 680,041 506,092 Perce...
Canadian TV series or program Net WorthPromotional posterBased onNet Worth: Exploding the Myths of Pro Hockeyby David CruiseAlison GriffithsScreenplay by Don Truckey Phil Savath David Cruise Allison Griffiths Directed byJerry CiccorittiStarring Aidan Devine Kevin Conway R. H. Thomson Al Waxman ComposerJohn McCarthyCountry of originCanadaOriginal languageEnglishProductionProducerBernie ZuckermanCinematographyBarry StoneEditorGeorge RoulstonRunning time92 minutesProduction companyMorningstar E...
1814 battle during the War of the Sixth Coalition Battle of Arcis-sur-AubePart of the Campaign of France of the Sixth CoalitionNapoleon at the bridge of Arcis-sur-Aube by Jean-Adolphe BeaucéDate20–21 March 1814LocationArcis-sur-Aube, France48°32′17″N 04°08′31″E / 48.53806°N 4.14194°E / 48.53806; 4.14194Result Coalition victory[1][2]Belligerents Austria Bavaria Russia Württemberg Prussia FranceCommanders and leaders Alexander I Karl von S...
Основные статьи: Ислам в СССР и Исламофобия в России § СССР Плакат «Я сейчас тоже свободна!». Москва, 1921 год, неизвестный художник Антиисла́мская пропага́нда в СССР — часть антирелигиозной государственной пропаганды, которая проводилась на протяжении всего сущест�...
Touhou ProjectGenrePermainan video tembak-menembak, PertarunganPengembangTeam Shanghai Alice (sebelumnya ZUN Soft)PenerbitTeam Shanghai Alice (sebelumnya Amusement Makers)PembuatZUN, Twilight FrontierPlatformNEC PC-9801, WindowsAsal platformNEC PC-9801Rilis pertamaHighly Responsive to Prayers1996Rilis terakhir100th Black Market2022Situs webWebsite pengembang Touhou Project (東方Projectcode: ja is deprecated , Tōhō Purojekuto, harfiah: Proyek Ketimuran) juga dikenal sebagai Toho Project at...
Bagian dari seri artikel mengenaiSejarah Thailand Prasejarah Sejarah awal Negara awalLegendaris Suvarnabhumi Thailand Tengah Dwarawati Lavo Supannabhum Thailand Utara Singhanavati Ngoenyang Hariphunchai Thailand Selatan Pan Pan Raktamaritika Langkasuka Srivijaya Tambralinga Nakhon Si Thammarat Kesultanan Pattani Kesultanan Kedah Sejarah Kerajaan Sukhothai Kerajaan Ayutthaya Kerajaan Thonburi Kerajaan Rattanakosin Periode militer Periode demokratis Sejarah regionalIsan Lanna Phitsanulok Bangko...
Alat penyiksaan the rack di kastil Rothschildschloss, Austria The rack adalah alat penyiksaan yang terdiri dari bingkai persegi panjang, biasanya berbahan kayu, dengan posisi sedikit terangkat dari tanah,[1] dengan rol di salah satu atau kedua ujungnya. Pergelangan kaki korban diikat ke salah satu gelinding dan pergelangan tangan dirantai ke gelinding lainnya. Saat interogasi berlangsung, mekanisme pegangan dan ratchet yang dipasang pada gelinding atas digunakan untuk menarik rantai s...
Disambiguazione – Ungaretti rimanda qui. Se stai cercando il cognome italiano, vedi Ongaro (cognome). Giuseppe Ungaretti nel 1967Firma di Giuseppe UngarettiGiuseppe Ungaretti (Alessandria d'Egitto, 8 febbraio 1888[1] – Milano, 1º giugno 1970) è stato un poeta, scrittore, traduttore e giornalista italiano. È stato uno dei principali poeti della letteratura italiana del XX secolo. La sua poesia, inizialmente influenzata dal simbolismo francese, fu caratterizzata nei prim...
Canadian daily newspaper This article is about the Canadian newspaper. For the Australian newspaper, see Hamilton Spectator (Australia). The Hamilton SpectatorFront page of the June 1, 2020 editionTypeDaily newspaperFormatBroadsheetOwner(s)Metroland Media Group (Torstar Corporation)PublisherNeil OliverEditorPaul BertonFounded1846Headquarters211 Pritchard Road, Unit #4 Hamilton, OntarioL8J 0G5Circulation99,391 weekdays103,109 Saturdays (as of 2010)[1]ISSN1189-9417Websitewww.thespec...
منتخب مصر لكرة القدم معلومات عامة اللقب الفَراعنة بلد الرياضة مصر الفئة كرة القدم للرجال رمز الفيفا EGY تاريخ التأسيس 1920 الاتحاد الاتحاد المصري لكرة القدم كونفدرالية الاتحاد الإفريقي لكرة القدم كونفدرالية فرعية اتحاد شمال إفريقيا لكرة القدم انتماءات أخرى ال�...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Max Planck Institute for the Study of Religious and Ethnic Diversity – news · newspapers · books · scholar · JSTOR (December 2021) (Learn how and when to remove this message) Max Planck Institute for the Study of Religious and Ethnic DiversityAbbreviationMPI-MM...