Zero divisor

In abstract algebra, an element a of a ring R is called a left zero divisor if there exists a nonzero x in R such that ax = 0,[1] or equivalently if the map from R to R that sends x to ax is not injective.[a] Similarly, an element a of a ring is called a right zero divisor if there exists a nonzero y in R such that ya = 0. This is a partial case of divisibility in rings. An element that is a left or a right zero divisor is simply called a zero divisor.[2] An element a that is both a left and a right zero divisor is called a two-sided zero divisor (the nonzero x such that ax = 0 may be different from the nonzero y such that ya = 0). If the ring is commutative, then the left and right zero divisors are the same.

An element of a ring that is not a left zero divisor (respectively, not a right zero divisor) is called left regular or left cancellable (respectively, right regular or right cancellable). An element of a ring that is left and right cancellable, and is hence not a zero divisor, is called regular or cancellable,[3] or a non-zero-divisor. A zero divisor that is nonzero is called a nonzero zero divisor or a nontrivial zero divisor. A non-zero ring with no nontrivial zero divisors is called a domain.

Examples

  • In the ring , the residue class is a zero divisor since .
  • The only zero divisor of the ring of integers is .
  • A nilpotent element of a nonzero ring is always a two-sided zero divisor.
  • An idempotent element of a ring is always a two-sided zero divisor, since .
  • The ring of n × n matrices over a field has nonzero zero divisors if n ≥ 2. Examples of zero divisors in the ring of 2 × 2 matrices (over any nonzero ring) are shown here:

  • A direct product of two or more nonzero rings always has nonzero zero divisors. For example, in with each nonzero, , so is a zero divisor.
  • Let be a field and be a group. Suppose that has an element of finite order . Then in the group ring one has , with neither factor being zero, so is a nonzero zero divisor in .

One-sided zero-divisor

  • Consider the ring of (formal) matrices with and . Then and . If , then is a left zero divisor if and only if is even, since , and it is a right zero divisor if and only if is even for similar reasons. If either of is , then it is a two-sided zero-divisor.
  • Here is another example of a ring with an element that is a zero divisor on one side only. Let be the set of all sequences of integers . Take for the ring all additive maps from to , with pointwise addition and composition as the ring operations. (That is, our ring is , the endomorphism ring of the additive group .) Three examples of elements of this ring are the right shift , the left shift , and the projection map onto the first factor . All three of these additive maps are not zero, and the composites and are both zero, so is a left zero divisor and is a right zero divisor in the ring of additive maps from to . However, is not a right zero divisor and is not a left zero divisor: the composite is the identity. is a two-sided zero-divisor since , while is not in any direction.

Non-examples

Properties

  • In the ring of n × n matrices over a field, the left and right zero divisors coincide; they are precisely the singular matrices. In the ring of n × n matrices over an integral domain, the zero divisors are precisely the matrices with determinant zero.
  • Left or right zero divisors can never be units, because if a is invertible and ax = 0 for some nonzero x, then 0 = a−10 = a−1ax = x, a contradiction.
  • An element is cancellable on the side on which it is regular. That is, if a is a left regular, ax = ay implies that x = y, and similarly for right regular.

Zero as a zero divisor

There is no need for a separate convention for the case a = 0, because the definition applies also in this case:

  • If R is a ring other than the zero ring, then 0 is a (two-sided) zero divisor, because any nonzero element x satisfies 0x = 0 = x 0.
  • If R is the zero ring, in which 0 = 1, then 0 is not a zero divisor, because there is no nonzero element that when multiplied by 0 yields 0.

Some references include or exclude 0 as a zero divisor in all rings by convention, but they then suffer from having to introduce exceptions in statements such as the following:

  • In a commutative ring R, the set of non-zero-divisors is a multiplicative set in R. (This, in turn, is important for the definition of the total quotient ring.) The same is true of the set of non-left-zero-divisors and the set of non-right-zero-divisors in an arbitrary ring, commutative or not.
  • In a commutative noetherian ring R, the set of zero divisors is the union of the associated prime ideals of R.

Zero divisor on a module

Let R be a commutative ring, let M be an R-module, and let a be an element of R. One says that a is M-regular if the "multiplication by a" map is injective, and that a is a zero divisor on M otherwise.[4] The set of M-regular elements is a multiplicative set in R.[4]

Specializing the definitions of "M-regular" and "zero divisor on M" to the case M = R recovers the definitions of "regular" and "zero divisor" given earlier in this article.

See also

Notes

  1. ^ Since the map is not injective, we have ax = ay, in which x differs from y, and thus a(xy) = 0.

References

  1. ^ N. Bourbaki (1989), Algebra I, Chapters 1–3, Springer-Verlag, p. 98
  2. ^ Charles Lanski (2005), Concepts in Abstract Algebra, American Mathematical Soc., p. 342
  3. ^ Nicolas Bourbaki (1998). Algebra I. Springer Science+Business Media. p. 15.
  4. ^ a b Hideyuki Matsumura (1980), Commutative algebra, 2nd edition, The Benjamin/Cummings Publishing Company, Inc., p. 12

Further reading

Read other articles:

Matthew BomerLahirMatthew Staton BomerPekerjaanAktorTahun aktif2001–kini Matthew Staton Bomer (lahir 11 Oktober 1977) adalah Aktor film dan TV Amerika Seikat. Dia membintangi seri di USA Network bernama White Collar. Ia mulai dikenal di serial Chuck sebagai Bryce Larkin. Karier Film Tahun Film Peran 2005 Flightplan Eric 2006 The Texas Chainsaw Massacre: The Beginning Eric Televisi Tahun Judul Peran Jaringan Catatan 2001–2003 Guiding Light Ben Reade CBS Peran utama 2003–2004 Tru Ca...

 

 

Ludo Coeck Coeck nel ritiro della Nazionale nel 1980. Nazionalità  Belgio Altezza 184 cm Calcio Ruolo Centrocampista Termine carriera 1985 Carriera Giovanili 1965-1972 Berchem Squadre di club1 1971-1972 Berchem7 (7)1972-1983 Anderlecht292 (54)1983-1984 Inter9 (0)1984 Ascoli0 (0)1985 RWD Molenbeek0 (0) Nazionale 1974-1984 Belgio46 (4) 1 I due numeri indicano le presenze e le reti segnate, per le sole partite di campionato.Il simbolo → indica un trasferime...

 

 

Hanoi Hà NộiIbu kota dan munisipalitasSearah jarum jam dari kiri: Menara Kura-kura di Danau Hoan Kiem, di pusat kota Hanoi; Mausoleum Ho Chi Minh; Rumah Opera Hanoi; senja hari di Sungai Merah dari Jembatan Long Bien; Kuil Sastra; Pagoda Satu Pilar LambangLetak provinsi di VietnamNegara VietnamKota utamaHanoiDibentuk, Ibu kota Kerajaan Đại Việt1010Ibu kota Vietnam2 September 1945Distrik29Pemerintahan • Sekretaris PartaiĐinh Tiến Dũng • Presiden Konsil ...

Bridge in Freiburg im Breisgau, GermanyWiwilíbrückeWiwilíbrücke in 1980 while still open for carsCoordinates47°59′45.77″N 7°50′23.6″E / 47.9960472°N 7.839889°E / 47.9960472; 7.839889CarriesBicicles, pedestriansLocaleFreiburg im Breisgau, GermanyOfficial nameWiwilíbrückeCharacteristicsDesignTruss BridgeMaterialIronTotal length161.8 m (530.8 ft)Width10.3 m (33.8 ft)HistoryEngineering design byMax MeckelConstruction start1885 (18...

 

 

Academy Awards ke-47TanggalSelasa, 8 April 1975TempatDorothy Chandler Pavilion, Los AngelesPembawa acaraSammy Davis, Jr., Bob Hope, Shirley MacLaine, Frank SinatraProduserHoward W. KochPengarah acaraMarty PasettaSorotanFilm TerbaikThe Godfather Part IIPenghargaan terbanyakThe Godfather Part II (6)Nominasi terbanyakChinatown dan The Godfather Part II (11)Liputan televisiJaringanNBC ← ke-46 Academy Awards ke-48 → Academy Awards ke-47 diadakan pada 8 April 1975 di Dorothy C...

 

 

المثالية المطلقة هي أفكار هيغل وفريدريش شيلينغ، وهما فلاسفة ألمان من رواد الفلسفة المثالية من القرن 19، وجوزايا رويس، وهو فيلسوف أمريكي، وآخرون لكن في الأساس هي من بنات أفكار هيغل.[1][2] أطلق هيغل في نهاية المطاف مفهوم أنه يمكن فهم الوجود ككل شمولي مطلق. أكد...

1964 single by Bonnie Jo MasonRingo, I Love YouSingle by Bonnie Jo MasonB-sideBeatle Blues (Instrumental)ReleasedMarch 4, 1964Recorded1964GenrePop rockLength1:50LabelAnnette RecordsSongwriter(s)Phil SpectorPaul CaseVini PonciaPeter AndreoliProducer(s)Phil SpectorBonnie Jo Mason singles chronology Ringo, I Love You (1964) Dream Baby (1964) Ringo, I Love You is a rock song performed by American singer-actress Cher released under the pseudonym Bonnie Jo Mason, the name she used at the start of h...

 

 

Japanese reality television show &Audition – The HowlingOfficial posterOpening themeThe Final CountdownCountry of originSouth KoreaJapanOriginal languagesJapaneseKoreanNo. of seasons1No. of episodes8ProductionRunning time60 minutes (Youtube, Hulu)30 minutes (Nippon TV)Production companiesHulu JapanHybe Labels JapanOriginal releaseNetworkHulu Japan and Nippon TV (Japan)YouTube (all other regions)ReleaseJuly 9 (2022-07-09) –September 3, 2022 (2022-09-03)RelatedI-Land &...

 

 

The map of Democratic Republic of Congo from the CIA World Factbook Rape Types Acquaintance rape Campus rape Child sexual abuse Corrective rape LGBT victims Cybersex trafficking Drug-facilitated rape Date rape Gang rape Genocidal rape Gray rape Live streaming rape Marital rape Prison rape Rape chant Serial rape Sexual abuse Sexual assault Statutory rape Unacknowledged rape Rape by deception Effects and motivations Effects and aftermath Factors involved Pregnancy from rape Rape crisis movemen...

Black Mass - L'ultimo gangsterJohnny Depp nei panni di James Bulger in una scena del filmTitolo originaleBlack Mass Lingua originaleinglese Paese di produzioneStati Uniti d'America Anno2015 Durata122 min Rapporto2,35:1 Generebiografico, drammatico, gangster RegiaScott Cooper Soggettodal libro di Dick Lehr e Gerard O'Neill SceneggiaturaJez Butterworth, Mark Mallouk ProduttoreScott Cooper, John Lesher, Brian Oliver, Patrick McCormick, Tyler Thompson Produttore esecutivoBrett Ratner, Jam...

 

 

  提示:此条目页的主题不是中國—瑞士關係。   關於中華民國與「瑞」字國家的外交關係,詳見中瑞關係 (消歧義)。 中華民國—瑞士關係 中華民國 瑞士 代表機構駐瑞士台北文化經濟代表團瑞士商務辦事處代表代表 黃偉峰 大使[註 1][4]處長 陶方婭[5]Mrs. Claudia Fontana Tobiassen 中華民國—瑞士關係(德語:Schweizerische–republik china Beziehungen、法�...

 

 

Walther von LüttwitzIl generale von Lüttwitz nel 1918NascitaKreuzburg, 2 febbraio 1859 MorteBreslavia, 20 settembre 1942 Dati militariPaese servito Impero tedesco Repubblica di Weimar Forza armata Heer Reichswehr ArmaFanteria GradoGenerale di Fanteria GuerrePrima guerra mondiale voci di militari presenti su Wikipedia Manuale Walther Freiherr von Lüttwitz (Kreuzburg, 2 febbraio 1859 – Breslavia, 20 settembre 1942) è stato un militare tedesco, generale di fanteria. Indice 1 B...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. Wild Bloom adalah sebuah seri drama Tiongkok tahun 2022 yang tayang di iQiyi. Seri tersebut bercerita tentang seorang wanita kuat yang mampu melalui banyak rintangan di industri yang didominasi oleh pria. Seri tersebut menampilkan Zhao Li Ying (Xu Ban...

 

 

الحزب الاشتراكي المغربي البلد المغرب  التأسيس تاريخ التأسيس 2006 تاريخ الحل 24 يوليو 2013  الشخصيات قبله المؤثمر الوطني الاتحادي القادة عبد المجيد بوزوبع (الأمين العام) المقر الرئيسي الرباط  الأفكار الأيديولوجيا اشتراكية المشاركة في الحكم عدد النواب 0 / 395 عدد المستشار�...

 

 

См. также: Присоединение Прибалтики к СССР Присоединение Литвы к СССР — политический процесс в истории Литвы, приведший Литовскую Республику к включению её в состав СССР. Период нахождения республики в составе СССР самой Литвой, странами Балтии и многими другими стра...

Featherweight at the 2021 AIBA World Boxing ChampionshipsVenueŠtark ArenaLocationBelgrade, SerbiaDates25 October – 6 NovemberCompetitors44 from 44 nationsMedalists  Jahmal Harvey   United States Serik Temirzhanov   Kazakhstan Samuel Kistohurry   France Osvel Caballero   Cuba← 20192023 → 2021 AIBA WorldBoxing ChampionshipsMinimumweightFlyweightBantamweightFeatherweightLightweightLight welt...

 

 

Head of state of the Portuguese Republic For a list, see List of presidents of Portugal. President of the Portuguese RepublicPresidente da República PortuguesaCoat of arms of the PresidencyPresidential StandardIncumbentMarcelo Rebelo de Sousasince 9 March 2016Presidential Office of the Portuguese RepublicStyleMr President (informal)His Excellency (diplomatic)TypeHead of stateMember ofCouncil of StateSuperior Council of National DefenseResidenceBelém PalaceSeatLisbon, PortugalAppointerD...

 

 

Not to be confused with Theodore Roosevelt Memorial Bridge. Bridge in D.C. and the Rosslyn section of Arlington, VirginiaTheodore Roosevelt BridgeTheodore Roosevelt Bridge in 2008Coordinates38°53′33″N 77°03′27″W / 38.8925°N 77.0575°W / 38.8925; -77.0575Carries7 lanes (1 reversible) of I-66 / US 50CrossesPotomac RiverLocaleWashington, D.C. and the Rosslyn section of Arlington, VirginiaOther name(s)Teddy Roosevelt Bridge, Roosevelt BridgeCharacteris...

Nikolai Illarionovich SkrydlovSkrydlov in 1904Born(1844-04-01)April 1, 1844Pskov, Russian EmpireDiedOctober 4, 1918(1918-10-04) (aged 74)Petrograd, Russian SFSRBuriedTver, RussiaAllegiance Russian EmpireService/branchRussian Imperial NavyYears of service1869–1907RankAdmiralBattles/warsRusso-Turkish War, 1877-78Cretan Revolt (1897–1898)Russo-Japanese War Nikolai Illarionovich Skrydlov (Russian: Николай Илларионович Скрыдлов), (1 April 1844 – 4 Oc...

 

 

Dois planos não paralelos no espaço Na matemática, um plano é um ente primitivo geométrico infinito a duas dimensões. Nos Elementos de Euclides, não possui definição enquanto conceito genérico. Mas um plano qualquer é definido, ou determinado, de várias formas equivalentes. Em uma geometria Infinitesimal, é possível definir de forma genérica um plano como um conjunto infinito de retas, onde todas são perpendiculares a um mesmo vetor (vetor normal do plano). Planos no espaço U...