Relative effective Cartier divisor

In algebraic geometry, a relative effective Cartier divisor is roughly a family of effective Cartier divisors. Precisely, an effective Cartier divisor in a scheme X over a ring R is a closed subscheme D of X that (1) is flat over R and (2) the ideal sheaf of D is locally free of rank one (i.e., invertible sheaf). Equivalently, a closed subscheme D of X is an effective Cartier divisor if there is an open affine cover of X and nonzerodivisors such that the intersection is given by the equation (called local equations) and is flat over R and such that they are compatible.

An effective Cartier divisor as the zero-locus of a section of a line bundle

Let L be a line bundle on X and s a section of it such that (in other words, s is a -regular element for any open subset U.)

Choose some open cover of X such that . For each i, through the isomorphisms, the restriction corresponds to a nonzerodivisor of . Now, define the closed subscheme of X (called the zero-locus of the section s) by

where the right-hand side means the closed subscheme of given by the ideal sheaf generated by . This is well-defined (i.e., they agree on the overlaps) since is a unit element. For the same reason, the closed subscheme is independent of the choice of local trivializations.

Equivalently, the zero locus of s can be constructed as a fiber of a morphism; namely, viewing L as the total space of it, the section s is a X-morphism of L: a morphism such that s followed by is the identity. Then may be constructed as the fiber product of s and the zero-section embedding .

Finally, when is flat over the base scheme S, it is an effective Cartier divisor on X over S. Furthermore, this construction exhausts all effective Cartier divisors on X as follows. Let D be an effective Cartier divisor and denote the ideal sheaf of D. Because of locally-freeness, taking of gives the exact sequence

In particular, 1 in can be identified with a section in , which we denote by .

Now we can repeat the early argument with . Since D is an effective Cartier divisor, D is locally of the form on for some nonzerodivisor f in A. The trivialization is given by multiplication by f; in particular, 1 corresponds to f. Hence, the zero-locus of is D.

Properties

  • If D and D' are effective Cartier divisors, then the sum is the effective Cartier divisor defined locally as if f, g give local equations for D and D' .
  • If D is an effective Cartier divisor and is a ring homomorphism, then is an effective Cartier divisor in .
  • If D is an effective Cartier divisor and a flat morphism over R, then is an effective Cartier divisor in X' with the ideal sheaf .

Examples

Hyperplane bundle

Effective Cartier divisors on a relative curve

From now on suppose X is a smooth curve (still over R). Let D be an effective Cartier divisor in X and assume it is proper over R (which is immediate if X is proper.) Then is a locally free R-module of finite rank. This rank is called the degree of D and is denoted by . It is a locally constant function on . If D and D' are proper effective Cartier divisors, then is proper over R and . Let be a finite flat morphism. Then .[1] On the other hand, a base change does not change degree: .[2]

A closed subscheme D of X is finite, flat and of finite presentation if and only if it is an effective Cartier divisor that is proper over R.[3]

Weil divisors associated to effective Cartier divisors

Given an effective Cartier divisor D, there are two equivalent ways to associate Weil divisor to it.

Notes

  1. ^ Katz & Mazur 1985, Lemma 1.2.8.
  2. ^ Katz & Mazur 1985, Lemma 1.2.9.
  3. ^ Katz & Mazur 1985, Lemma 1.2.3.

References

  • Katz, Nicholas M; Mazur, Barry (1985). Arithmetic Moduli of Elliptic Curves. Princeton University Press. ISBN 0-691-08352-5.

Read other articles:

Part of a series onBritish law Acts of Parliament of the United Kingdom Year      1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 ...

 

The Best of Both WorldsSingel oleh Miley Cyrusdari album Hannah MontanaSisi-BIf We Were a MovieDirilis28 Maret 2006 (2006-03-28)Direkam2005GenrePop rockpop remajaDurasi2:54LabelWalt DisneyPenciptaMatthew GerrardRobbie NevilProduserMatthew GerrardKronologi singel Miley Cyrus The Best of Both Worlds (2006) Who Said (2006) The Best of Both Worlds adalah lagu pop-rock yang dibawakan oleh penyanyi dan aktris asal Amerika Serikat Miley Cyrus untuk serial televisi Disney Channel, Hannah Montana...

 

Microcomputer designed in 1974 MITS Altair 8800Altair 8800 Computer with 8-inch floppy disk systemDeveloperMITSManufacturerMITSRelease dateJanuary 1975; 49 years ago (1975-01)Introductory priceKit: US $439 ($2500 in 2023)Assembled: US $621 ($3500 in 2023)Units sold25,000[1]CPUIntel 8080 @ 2 MHz The Altair 8800 is a microcomputer designed in 1974 by MITS and based on the Intel 8080 CPU.[2] Interest grew quickly after it was featured on the cover of t...

Pour les articles homonymes, voir Tim Johnson et Johnson. Tim P. Johnson Portrait officiel de Tim P. Johnson (2009). Fonctions Sénateur des États-Unis 3 janvier 1997 – 3 janvier 2015(18 ans) Élection 5 novembre 1996 Réélection 5 novembre 20024 novembre 2008 Circonscription Dakota du Sud Législature 105e, 106e, 107e, 108e, 109e, 110e, 111e, 112e et 113e Groupe politique Démocrate Prédécesseur Larry Pressler Successeur Mike Rounds Représentant des États-Unis 3 janvier 1987 �...

 

Protovangelo di GiacomoGiotto, la Natività di Gesù della Cappella degli Scrovegni. La presenza del bue e dell'asinello è testimoniata dal Protovangelo di Giacomo (18).[1]Datazione140-170 AttribuzioneGiacomo il Giusto FontiVangeli di Matteo e Luca, Septuaginta, tradizioni extracanoniche ManoscrittiPapiro Bodmer V (III secolo) Temanascita, educazione, verginità di Maria e nascita di Gesù Il Protovangelo di Giacomo – noto anche come Vangelo dell'Infanzia di Giacomo o come Vangelo ...

 

追晉陸軍二級上將趙家驤將軍个人资料出生1910年 大清河南省衛輝府汲縣逝世1958年8月23日(1958歲—08—23)(47—48歲) † 中華民國福建省金門縣国籍 中華民國政党 中國國民黨获奖 青天白日勳章(追贈)军事背景效忠 中華民國服役 國民革命軍 中華民國陸軍服役时间1924年-1958年军衔 二級上將 (追晉)部队四十七師指挥東北剿匪總司令部參謀長陸軍�...

Ratio of concentrations in a mixture at equilibrium Not to be confused with distribution constant. In the physical sciences, a partition coefficient (P) or distribution coefficient (D) is the ratio of concentrations of a compound in a mixture of two immiscible solvents at equilibrium. This ratio is therefore a comparison of the solubilities of the solute in these two liquids. The partition coefficient generally refers to the concentration ratio of un-ionized species of compound, whereas the d...

 

Sir Tom Finney Patung The Splash terletak di luar Musium Nasional Sepak bola di PrestonInformasi pribadiNama lengkap Thomas FinneyTanggal lahir (1922-04-05)5 April 1922Tempat lahir Preston, Lancashire, InggrisTanggal meninggal 14 Februari 2014(2014-02-14) (umur 91)Posisi bermain ForwardKarier senior*Tahun Tim Tampil (Gol)1946–1960 Preston North End 433 (187)1963 Distillery 0 (0)Tim nasional1946–1958 Inggris 76 (30) * Penampilan dan gol di klub senior hanya dihitung dari liga domesti...

 

Madonna d'OrleansAutoreRaffaello Sanzio Data1506 circa TecnicaOlio su tavola Dimensioni29×21 cm UbicazioneMuseo Condé, Chantilly La Madonna d'Orleans è un dipinto a olio su tavola (29x21 cm) di Raffaello Sanzio, databile al 1506 circa e conservato nel Museo Condé di Chantilly. Indice 1 Storia 2 Descrizione e stile 3 Bibliografia 4 Voci correlate 5 Altri progetti 6 Collegamenti esterni Storia L'opera è di solito identificata con una delle due piccole Madonne che Vasari vide a Urbino ...

Questa voce o sezione sull'argomento attori non cita le fonti necessarie o quelle presenti sono insufficienti. Commento: Fonti insufficienti. Molte informazioni biografiche sono completamente prive di fonti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Michelle Yeoh al Festival di Cannes 2017 Oscar alla miglior attrice 2023 Michelle Yeoh Choo Kheng, nota anche con lo ...

 

L'attore scomparsofilm perdutoVivi Gioi e Giulio Donadio in una scena del primo film diretto da Luigi ZampaLingua originaleitaliano Paese di produzioneItalia Anno1941 Durata78 min Dati tecniciB/Nrapporto: 1,37 : 1 Generepoliziesco RegiaLuigi Zampa (con la supervisione di Gennaro Righelli) SoggettoTheo Lingen SceneggiaturaGuglielmo Usellini, Luigi Zampa ProduttoreRaimondo Perretta Produttore esecutivoGiacomo Giannuzzi Casa di produzioneImperial Film Distribuzione in italianoI.C.I. Fotogra...

 

Державний комітет телебачення і радіомовлення України (Держкомтелерадіо) Приміщення комітетуЗагальна інформаціяКраїна  УкраїнаДата створення 2003Керівне відомство Кабінет Міністрів УкраїниРічний бюджет 1 964 898 500 ₴[1]Голова Олег НаливайкоПідвідомчі ор...

土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) ...

 

Palestinian military commander This article is about Palestinian field commander. For the Palestinian intelligence chief and senior official also known as Abu Iyad, see Salah Khalaf. Abu Ali Iyad وليد أحمد نمرPortrait of Abu Ali Iyad, published by PLO in 1971Birth nameWalid Ahmad NimrNickname(s)Abu Ali IyadBorn1934Qalqilyah, Mandatory PalestineDied(1971-07-23)July 23, 1971Ajlun-Jerash, JordanAllegianceFatah/Palestine Liberation OrganizationService/branchAl-AssifaRankCommanderBattle...

 

Cherrytree RecordsPerusahaan indukUniversal Music GroupDidirikan2005PendiriMartin KierszenbaumDistributorInterscope Records(in the US)Polydor Records(in the UK)GenrePop, Alternative, DanceAsal negaraUnited StatesLokasiSanta Monica, CaliforniaSitus webCherrytree Records website Cherrytree Records adalah label rekaman Amerika dan sebuah cabang dari Interscope Records. Sejarah Cherrytree Records didirikan pada 2005 oleh Martin Kierszenbaum, (Kirs zen baum) adalah jerman dari pohon ceri. Label in...

Banana CultureNama asli바나나컬쳐 엔터테인먼트SebelumnyaYedang Planning (1984–1992)Yedang Sound (1992–2000) Yedang Entertainment (2000–2010)Yedang Company (2010–2016)JenisSubsidierIndustriHiburanDidirikan1992PendiriWang Sicong (Banana Culture Music) (2015)Ditutup2020KantorpusatSeoul, Korea SelatanTokohkunciYoo Jae Woong (CEO)PemilikBanana Culture Music (Shanghai) Banana Culture Entertainment (바나나컬쳐 엔터테인먼트) atau disingkat Banana Culture, adalah sebuah p...

 

布埃诺波利斯Buenópolis市镇布埃诺波利斯在巴西的位置坐标:17°52′27″S 44°10′36″W / 17.8742°S 44.1767°W / -17.8742; -44.1767国家巴西州米纳斯吉拉斯州面积 • 总计1,610.959 平方公里(621.995 平方英里)海拔700 公尺(2,300 英尺)人口 • 總計9,522人 • 密度5.91人/平方公里(15.3人/平方英里) 布埃诺波利斯(葡萄牙语:Buenópolis�...

 

Style of karate For the airline, see Kyokushin Air. This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Kyokushin – news · newspapers · books · scholar · JSTOR...

この記事には複数の問題があります。改善やノートページでの議論にご協力ください。 出典が不足しています。存命人物の記事は特に、検証可能性を満たしている必要があります。(2020年9月) 一次資料や記事主題の関係者による情報源に頼って書かれています。(2020年9月) 古い情報を更新する必要があります。(2021年2月) 雑多な内容を羅列した節があります。(2...

 

この記事には参考文献や外部リンクの一覧が含まれていますが、脚注による参照が不十分であるため、情報源が依然不明確です。 適切な位置に脚注を追加して、記事の信頼性向上にご協力ください。(2016年9月) この記事の項目名には以下のような表記揺れがあります。 渡辺竜聖 渡辺龍聖 渡邊龍聖 渡辺 龍聖 誕生 (1865-10-17) 1865年10月17日(慶応元年8月28日)越後国古志...