Dihedron

Set of regular n-gonal dihedra
Example hexagonal dihedron on a sphere
Typeregular polyhedron or spherical tiling
Faces2 n-gons
Edgesn
Verticesn
Vertex configurationn.n
Wythoff symbol2 | n 2
Schläfli symbol{n,2}
Coxeter diagram
Symmetry groupDnh, [2,n], (*22n), order 4n
Rotation groupDn, [2,n]+, (22n), order 2n
Dual polyhedronregular n-gonal hosohedron

A dihedron is a type of polyhedron, made of two polygon faces which share the same set of n edges. In three-dimensional Euclidean space, it is degenerate if its faces are flat, while in three-dimensional spherical space, a dihedron with flat faces can be thought of as a lens, an example of which is the fundamental domain of a lens space L(p,q).[1] Dihedra have also been called bihedra,[2] flat polyhedra,[3] or doubly covered polygons.[3]

As a spherical tiling, a dihedron can exist as nondegenerate form, with two n-sided faces covering the sphere, each face being a hemisphere, and vertices on a great circle. It is regular if the vertices are equally spaced.

The dual of an n-gonal dihedron is an n-gonal hosohedron, where n digon faces share two vertices.

As a flat-faced polyhedron

A dihedron can be considered a degenerate prism whose two (planar) n-sided polygon bases are connected "back-to-back", so that the resulting object has no depth. The polygons must be congruent, but glued in such a way that one is the mirror image of the other. This applies only if the distance between the two faces is zero; for a distance larger than zero, the faces are infinite polygons (a bit like the apeirogonal hosohedron's digon faces, having a width larger than zero, are infinite stripes).

Dihedra can arise from Alexandrov's uniqueness theorem, which characterizes the distances on the surface of any convex polyhedron as being locally Euclidean except at a finite number of points with positive angular defect summing to 4π. This characterization holds also for the distances on the surface of a dihedron, so the statement of Alexandrov's theorem requires that dihedra be considered as convex polyhedra.[4]

Some dihedra can arise as lower limit members of other polyhedra families: a prism with digon bases would be a square dihedron, and a pyramid with a digon base would be a triangular dihedron.

A regular dihedron, with Schläfli symbol {n,2}, is made of two regular polygons, each with Schläfli symbol {n}.[5]

As a tiling of the sphere

A spherical dihedron is made of two spherical polygons which share the same set of n vertices, on a great circle equator; each polygon of a spherical dihedron fills a hemisphere.

A regular spherical dihedron is made of two regular spherical polygons which share the same set of n vertices, equally spaced on a great circle equator.

The regular polyhedron {2,2} is self-dual, and is both a hosohedron and a dihedron.

Family of regular dihedra · *n22 symmetry mutations of regular dihedral tilings: nn
Space Spherical Euclidean
Tiling
name
Monogonal
dihedron
Digonal
dihedron
Trigonal
dihedron
Square
dihedron
Pentagonal
dihedron
... Apeirogonal
dihedron
Tiling
image
...
Schläfli
symbol
{1,2} {2,2} {3,2} {4,2} {5,2} ... {∞,2}
Coxeter
diagram
...
Faces 2 {1} 2 {2} 2 {3} 2 {4} 2 {5} ... 2 {∞}
Edges and
vertices
1 2 3 4 5 ...
Vertex
config.
1.1 2.2 3.3 4.4 5.5 ... ∞.∞

Apeirogonal dihedron

As n tends to infinity, an n-gonal dihedron becomes an apeirogonal dihedron as a 2-dimensional tessellation:

Ditopes

A regular ditope is an n-dimensional analogue of a dihedron, with Schläfli symbol {p,...,q,r,2}. It has two facets, {p,...,q,r}, which share all ridges, {p,...,q} in common.[6]

See also

References

  1. ^ Gausmann, Evelise; Roland Lehoucq; Jean-Pierre Luminet; Jean-Philippe Uzan; Jeffrey Weeks (2001). "Topological Lensing in Spherical Spaces". Classical and Quantum Gravity. 18 (23): 5155–5186. arXiv:gr-qc/0106033. Bibcode:2001CQGra..18.5155G. doi:10.1088/0264-9381/18/23/311. S2CID 34259877.
  2. ^ Kántor, S. (2003), "On the volume of unbounded polyhedra in the hyperbolic space" (PDF), Beiträge zur Algebra und Geometrie, 44 (1): 145–154, MR 1990989, archived from the original (PDF) on 2017-02-15, retrieved 2017-02-14.
  3. ^ a b O'Rourke, Joseph (2010), Flat zipper-unfolding pairs for Platonic solids, arXiv:1010.2450, Bibcode:2010arXiv1010.2450O
  4. ^ O'Rourke, Joseph (2010), On flat polyhedra deriving from Alexandrov's theorem, arXiv:1007.2016, Bibcode:2010arXiv1007.2016O
  5. ^ Coxeter, H. S. M. (January 1973), Regular Polytopes (3rd ed.), Dover Publications Inc., p. 12, ISBN 0-486-61480-8
  6. ^ McMullen, Peter; Schulte, Egon (December 2002), Abstract Regular Polytopes (1st ed.), Cambridge University Press, p. 158, ISBN 0-521-81496-0

Read other articles:

Pakuwon MallPakuwon Mall saat renovasi dan perluasan (2016)LokasiSurabaya, IndonesiaKoordinat7°17′22.5″S 112°40′30.4″E / 7.289583°S 112.675111°E / -7.289583; 112.675111Koordinat: 7°17′22.5″S 112°40′30.4″E / 7.289583°S 112.675111°E / -7.289583; 112.675111AlamatJalan Puncak Indah Lontar No.2Kelurahan Babatan, Kecamatan WiyungKota Surabaya, Jawa Timur 60227Tanggal dibuka8 November 2003 (Supermal Pakuwon Indah)13 November 200...

 

 

Species of conifer Juniperus flaccida J. flaccida in Big Bend National Park Conservation status Least Concern (IUCN 3.1)[1] Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Gymnospermae Division: Pinophyta Class: Pinopsida Order: Cupressales Family: Cupressaceae Genus: Juniperus Species: J. flaccida Binomial name Juniperus flaccidaSchltdl. Natural range of Juniperus flaccida Juniperus flaccida (drooping juniper, weeping juniper or Mexican juniper; Nativ...

 

 

Untuk orang lain yang juga bernama William Wallace, lihat William Wallace (disambiguasi).Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: William Wallace – berita · surat kabar · buku · cendekiawan · JSTOR Sir William WallaceLahir1272Elderslie or Eller...

Pour les articles homonymes, voir Gobry. Ivan GobryIvan Gobry lors de sa remise de la Légion d'honneur, en 1997.BiographieNaissance 8 mars 1927Saint-André-les-Vergers (Aube, Grand Est, France)Décès 3 août 2017 (à 90 ans)12e arrondissement de Paris (Paris, Île-de-France, France)Nom de naissance Yvan Louis GobryNationalité françaiseFormation Université de ParisActivités Essayiste, écrivain, professeur d'université, historienEnfant Claire FontanaAutres informationsA travaillé...

 

 

Artikel ini bukan mengenai Tayu. Tayo the Little BusGenreAnimasi, Anak-anak, KomediDitulis olehChoi Jong-IlSutradaraKim Min-sungPengisi suaraRobyn Slade - TayoNolan Balzer - RogiKami Desilets - LaniKerri Salki - GaniLagu pembukaTayo the Little BusLagu penutupVroom, Vroom, Vroom!Negara asal Korea SelatanBahasa asliKoreaInggris (Dubbed)Indonesia (Dubbed)Jmlh. musim5ProduksiDurasi15 menit per episodeRumah produksiIconix EntertainmentEducational Broadcasting SystemDistributorEducational Broa...

 

 

Tanda tempelan beraneka bahasa dalam bahasa Arab, bahasa Ibrani, bahasa Inggris dan bahasa Rusia yang bertempat di kantor Kementerian Dalam Negeri Israel dan Kementerian Penyerapan Penduduk Perantau Israel di kota Haifa. Tanda peringatan beraneka bahasa dalam bahasa Arab, Ibrani, Inggris dan Rusia pada penutup lubang got berserat optik di tempat kedudukan pusat pemerintahan negara Israel, kota Tel Aviv. Papan penunjuk jalan di Israel yang tercantum dalam bahasa Arab, bahasa Ibrani dan bahasa ...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. Protokol Milwaukee, kadang-kadang disebut Protokol Wisconsin,[1][2] adalah metode eksperimental untuk menangani infeksi rabies pada manusia. Metode ini membuat pasien menjadi koma dengan menggunakan obat-obatan. Pasien yang sudah koma ...

 

 

Европейская сардина Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеГруппа:Костные рыбыКласс:Лучепёрые рыбыПодкласс:Новопёры...

 

 

† Человек прямоходящий Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапсиды�...

Pour les articles homonymes, voir Churchill. Ne doit pas être confondu avec Randolph Churchill (1911-1968). Pour les autres membres de la famille, voir Famille Spencer. Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (août 2020). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les ...

 

 

For other uses, see Wadding (disambiguation). This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (April 2023) (Learn how and when to remove this template message) Wadding is a disc of material used in guns to seal gas behind a projectile (a bullet or ball), or to separate the propellant from loosely packed shots.[1] Wadding can be crucial to a gun's effic...

 

 

Term used to critique certain forms of feminist activism Part of a series onFeminism History Feminist history History of feminism Women's history American British Canadian German Waves First Second Third Fourth Timelines Women's suffrage Muslim countries US Other women's rights Women's suffrage by country Austria Australia Canada Colombia India Japan Kuwait Liechtenstein New Zealand Spain Second Republic Francoist Switzerland United Kingdom Cayman Islands Wales United States states Intersecti...

American singer (born 1971) This article is about the lead singer of Korn. For people with similar names, see Jonathan Davis (disambiguation). Jonathan DavisDavis performing with Korn in 2018Background informationBirth nameJonathan Howsmon DavisAlso known as JD JDevil J Devil Born (1971-01-18) January 18, 1971 (age 53)Bakersfield, California, U.S.Genres Nu metal alternative metal industrial metal electronica alternative rock Occupation(s) Singer songwriter musician producer Instrument(s)...

 

 

Torneo di Wimbledon 1932Doppio femminile Sport Tennis Vincitrici Doris Metaxa Josane Sigart Finaliste Elizabeth Ryan Helen Jacobs Punteggio 6-4, 6-3 Tornei Singolare uomini donne   Doppio uomini donne misto 1931 1933 Voce principale: Torneo di Wimbledon 1932. Doris Metaxa e Josane Sigart hanno sconfitto in finale Elizabeth Ryan e Helen Jacobs col punteggio di 6-4, 6-3. Indice 1 Teste di serie 2 Tabellone 2.1 Legenda 2.2 Fase finale 2.3 Parte alta 2.3.1 Sezione 1 2.3.2 Sezione 2 2.4 Part...

 

 

Karl RadekKarl Radek sekitar 1919LahirKarol Sobelsohn(1885-10-31)31 Oktober 1885Lemberg, Austria-Hungaria (sekarang Lviv, Ukraina)Meninggal19 Mei 1939(1939-05-19) (umur 53)Verkhneuralsk, RSFS Rusia, Uni Soviet(sekarang Federasi Rusia)KebangsaanPolandiaNama lainKarl Berngardovich RadekWarga negaraKekaisaran Rusia, Uni SovietPekerjaanRevolusioner, penulis, jurnalis, wartawan, politisi, teoretikusTahun aktif1904–1939OrganisasiKomunis InternasionalDikenal atasAktivisme revolusio...

土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) ...

 

 

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

 

 

Japanese light novel series Asura Cryin'Cover of the first light novel cover featuring Misao Minakami.アスラクライン(Asura Kurain)GenreAction, supernatural[1] Light novelWritten byGakuto MikumoIllustrated byNao WatanukiPublished byASCII Media WorksImprintDengeki BunkoDemographicMaleOriginal runJuly 10, 2005 – February 10, 2010Volumes14 MangaWritten byGakuto MikumoIllustrated byRyō AkizukiPublished byASCII Media WorksMagazineDengeki DaiohDemograp...

Robert Almer Almer dengan Austria Wien pada tahun 2009.Informasi pribadiTanggal lahir 20 Maret 1984 (umur 40)Tempat lahir Bruck an der Mur, AustriaTinggi 1,94 m (6 ft 4+1⁄2 in)Posisi bermain Penjaga gawangInformasi klubKlub saat ini Austria WienNomor 1Karier junior SC UntersiebenbrunnKarier senior*Tahun Tim Tampil (Gol)2002–2003 SC Untersiebenbrunn 10 (0)2004–2005 DSV Leoben 14 (0)2005–2006 FK Austria Wien Amateure 7 (0)2006–2008 SV Mattersburg 20 (0)2008–...

 

 

Provinsi Tango (丹後国code: ja is deprecated , tango no kuni) adalah provinsi lama Jepang dengan wilayah yang berhadapan dengan Laut Jepang dan sekarang menjadi bagian utara prefektur Kyoto. Tango berbatasan dengan provinsi Tajima, Tamba dan Wakasa. Ibu kota berpindah-pindah di antara kedua kota besar di provinsi Tango, Maizuru dan Miyazu. lbsProvinsi lama Jepang Aki Awa (Kanto) Awa (Shikoku) Awaji Bingo Bitchu Bizen Bungo Buzen Chikugo Chikuzen Chishima Dewa Echigo Echizen Etchu Harima H...