Spherical 3-manifold

In mathematics, a spherical 3-manifold M is a 3-manifold of the form

where is a finite subgroup of O(4) acting freely by rotations on the 3-sphere . All such manifolds are prime, orientable, and closed. Spherical 3-manifolds are sometimes called elliptic 3-manifolds.

Properties

A special case of the Bonnet–Myers theorem says that every smooth manifold which has a smooth Riemannian metric which is both geodesically complete and of constant positive curvature must be closed and have finite fundamental group. William Thurston's elliptization conjecture, proven by Grigori Perelman using Richard Hamilton's Ricci flow, states a converse: every closed three-dimensional manifold with finite fundamental group has a smooth Riemannian metric of constant positive curvature. (This converse is special to three dimensions.) As such, the spherical three-manifolds are precisely the closed 3-manifolds with finite fundamental group.

According to Synge's theorem, every spherical 3-manifold is orientable, and in particular must be included in SO(4). The fundamental group is either cyclic, or is a central extension of a dihedral, tetrahedral, octahedral, or icosahedral group by a cyclic group of even order. This divides the set of such manifolds into five classes, described in the following sections.

The spherical manifolds are exactly the manifolds with spherical geometry, one of the eight geometries of Thurston's geometrization conjecture.

Cyclic case (lens spaces)

The manifolds with Γ cyclic are precisely the 3-dimensional lens spaces. A lens space is not determined by its fundamental group (there are non-homeomorphic lens spaces with isomorphic fundamental groups); but any other spherical manifold is.

Three-dimensional lens spaces arise as quotients of by the action of the group that is generated by elements of the form

where . Such a lens space has fundamental group for all , so spaces with different are not homotopy equivalent. Moreover, classifications up to homeomorphism and homotopy equivalence are known, as follows. The three-dimensional spaces and are:

  1. homotopy equivalent if and only if for some
  2. homeomorphic if and only if

In particular, the lens spaces L(7,1) and L(7,2) give examples of two 3-manifolds that are homotopy equivalent but not homeomorphic.

The lens space L(1,0) is the 3-sphere, and the lens space L(2,1) is 3 dimensional real projective space.

Lens spaces can be represented as Seifert fiber spaces in many ways, usually as fiber spaces over the 2-sphere with at most two exceptional fibers, though the lens space with fundamental group of order 4 also has a representation as a Seifert fiber space over the projective plane with no exceptional fibers.

Dihedral case (prism manifolds)

A prism manifold is a closed 3-dimensional manifold M whose fundamental group is a central extension of a dihedral group.

The fundamental group π1(M) of M is a product of a cyclic group of order m with a group having presentation

for integers k, m, n with k ≥ 1, m ≥ 1, n ≥ 2 and m coprime to 2n.

Alternatively, the fundamental group has presentation

for coprime integers m, n with m ≥ 1, n ≥ 2. (The n here equals the previous n, and the m here is 2k-1 times the previous m.)

We continue with the latter presentation. This group is a metacyclic group of order 4mn with abelianization of order 4m (so m and n are both determined by this group). The element y generates a cyclic normal subgroup of order 2n, and the element x has order 4m. The center is cyclic of order 2m and is generated by x2, and the quotient by the center is the dihedral group of order 2n.

When m = 1 this group is a binary dihedral or dicyclic group. The simplest example is m = 1, n = 2, when π1(M) is the quaternion group of order 8.

Prism manifolds are uniquely determined by their fundamental groups: if a closed 3-manifold has the same fundamental group as a prism manifold M, it is homeomorphic to M.

Prism manifolds can be represented as Seifert fiber spaces in two ways.

Tetrahedral case

The fundamental group is a product of a cyclic group of order m with a group having presentation

for integers k, m with k ≥ 1, m ≥ 1 and m coprime to 6.

Alternatively, the fundamental group has presentation

for an odd integer m ≥ 1. (The m here is 3k-1 times the previous m.)

We continue with the latter presentation. This group has order 24m. The elements x and y generate a normal subgroup isomorphic to the quaternion group of order 8. The center is cyclic of order 2m. It is generated by the elements z3 and x2 = y2, and the quotient by the center is the tetrahedral group, equivalently, the alternating group A4.

When m = 1 this group is the binary tetrahedral group.

These manifolds are uniquely determined by their fundamental groups. They can all be represented in an essentially unique way as Seifert fiber spaces: the quotient manifold is a sphere and there are 3 exceptional fibers of orders 2, 3, and 3.

Octahedral case

The fundamental group is a product of a cyclic group of order m coprime to 6 with the binary octahedral group (of order 48) which has the presentation

These manifolds are uniquely determined by their fundamental groups. They can all be represented in an essentially unique way as Seifert fiber spaces: the quotient manifold is a sphere and there are 3 exceptional fibers of orders 2, 3, and 4.

Icosahedral case

The fundamental group is a product of a cyclic group of order m coprime to 30 with the binary icosahedral group (order 120) which has the presentation

When m is 1, the manifold is the Poincaré homology sphere.

These manifolds are uniquely determined by their fundamental groups. They can all be represented in an essentially unique way as Seifert fiber spaces: the quotient manifold is a sphere and there are 3 exceptional fibers of orders 2, 3, and 5.

References

Read other articles:

Ramayya VasthavayyaNama lainరామయ్య వస్తావయ్యాSutradaraHarish ShankarProduserDil RajuSkenarioSatish VegesnaRamesh ReddyCeritaHarish ShankarPemeranN. T. Rama Rao Jr.Samantha Ruth PrabhuShruti HaasanP. RavishankarPenata musikS. ThamanSinematograferChota K. NaiduPenyuntingGautham RajuPerusahaanproduksiSri Venkateswara CreationsTanggal rilis 11 Oktober 2013 (2013-10-11) Durasi159 menitNegaraIndiaBahasaTeluguAnggaran₹45 crore (US$6,3 juta)[...

 

Neverita didyma A live and active individual of Neverita didyma, viewed from above Five views of a shell of Neverita didyma Klasifikasi ilmiah Kerajaan: Animalia Filum: Mollusca Kelas: Gastropoda (tanpa takson): clade Caenogastropodaclade Hypsogastropodaclade Littorinimorpha Superfamili: Naticoidea Famili: Naticidae Genus: Neverita Spesies: N. didyma Nama binomial Neverita didyma(Röding, 1798) Sinonim[1] Albula didyma Röding, 1798 Glossaulax didyma (Röding, 1798) Natica ampla...

 

Distrik Lagunes District des LagunesDistrikNegara Pantai GadingDibentuk2011Ibu kotaDabouLuas • Total20.450 km2 (7,900 sq mi)Populasi (2021)[1] • Total2.042.623 • Kepadatan100/km2 (260/sq mi) Distrik Lagunes (Prancis: District des Lagunescode: fr is deprecated , diucapkan [distʁikt de laɡyn]) adalah salah satu dari empat belas distrik administratif di Pantai Gading. Distrik ini terletak di bagian selatan negara it...

العلاقات الأندورية السورينامية أندورا سورينام   أندورا   سورينام تعديل مصدري - تعديل   العلاقات الأندورية السورينامية هي العلاقات الثنائية التي تجمع بين أندورا وسورينام.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه ا...

 

العلاقات الكويتية الكمبودية الكويت كمبوديا   الكويت   كمبوديا تعديل مصدري - تعديل   العلاقات الكويتية الكمبودية هي العلاقات الثنائية التي تجمع بين الكويت وكمبوديا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارن...

 

American politician Samuel Danford NicholsonUnited States Senatorfrom ColoradoIn officeMarch 4, 1921 – March 24, 1923Preceded byCharles S. ThomasSucceeded byAlva B. Adams Personal detailsBorn(1859-02-22)February 22, 1859Springfield, Prince Edward Island, Province of CanadaDiedMarch 24, 1923(1923-03-24) (aged 64)Denver, Colorado, U.S.Political partyRepublican Leadville mining Articles Leadville Historic District Leadville miners' strike Leadville mining district People James Jo...

Artikel ini bukan mengenai Pos ronda. Koordinat: 36°44′46″N 5°9′40″W / 36.74611°N 5.16111°W / 36.74611; -5.16111 RondaKotamadyaEl Tajo Ronda dan Jembatan Baru Ronda BenderaLambang kebesaranNegara SpanyolKomunitas otonom AndalusiaProvinsiMálagaComarcaSerranía de RondaPemerintahan • AlcaldeAntonio María Marín Lara (PSOE)Luas • Total481,31 km2 (18,583 sq mi)Ketinggian723 m (2,372 ft)Populasi (...

 

Cricket ground Bengal Cricket Academy GroundLocationKalyani, West Bengal, IndiaCoordinates22°58′45.61″N 88°26′27.70″E / 22.9793361°N 88.4410278°E / 22.9793361; 88.4410278Establishment2011/12 (first recorded match)As of 5 September 2016Source: Ground profile Bengal Cricket Academy Ground is a cricket ground in Kalyani, West Bengal, India.[1] The first recorded match on the ground was in 2011/12. It was used as a venue for a first-class match in the 2...

 

Ned Lamont Gubernur Connecticut ke-89PetahanaMulai menjabat 9 Januari 2019WakilSusan BysiewiczPendahuluDan MalloyPenggantiPetahana Informasi pribadiLahirEdward Miner Lamont Jr.3 Januari 1954 (umur 70)Washington, D.C., Amerika SerikatPartai politikPartai DemokratSuami/istriAnn Huntress ​(m. 1983)​Anak3Sunting kotak info • L • B Edward Miner Lamont Jr. (lahir 3 Januari 1954) adalah seorang pengusaha dan politikus Amerika Serikat yang menjabat ...

Savoyard nobleman and antipope (1383–1451) Antipope Felix VPortrait of antipope Felix V in the Nuremberg Chronicle (1493)Count of SavoyReign1391–1416PredecessorAmadeus VIIRegentBonne of Bourbon (1391–1397)Duke of SavoyReign1416–1440SuccessorLouis IRegentLouis I (c. 1434 – 5 February 1440)Spouse Mary of Burgundy ​ ​(m. 1386⁠–⁠1428)​Issue(among others) Marie Louis I Margaret HouseSavoyFatherAmadeus VII, Count of SavoyMother...

 

King of Mercia (died c. 879) Ceolwulf IISilver penny of Ceolwulf.Legend: ciolvvl f rexKing of MerciaReign874–c. 879PredecessorBurgredSuccessorÆthelred(as Lord of the Mercians)HouseC-dynasty Ceolwulf II (died c. 879) was the last king of independent Mercia.[1] He succeeded Burgred of Mercia who was deposed by the Vikings in 874. His reign is generally dated 874 to 879 based on a Mercian regnal list which gives him a reign of five years. However, D. P. Kirby argues that he prob...

 

Oscar I Porträtt av Oscar I från 1858. Kung av Sverige Regeringstid 8 mars 1844–8 juli 1859(15 år och 122 dagar) Kröning 28 september 1844 i Stockholm Företrädare Karl XIV Johan Efterträdare Karl XV Valspråk Rätt och sanning Kung av Norge Regeringstid 8 mars 1844–8 juli 1859(15 år och 122 dagar) Företrädare Karl III Johan Efterträdare Karl IV Valspråk Rätt och sanning Gemål Josefina av Leuchtenberg Barn Karl XVGustafOscar IIEugénieAugust Ätt Bernadotteska ätten Far Kar...

Football match2017 CAF Super Cup2017 Total CAF Super Cup Mamelodi Sundowns TP Mazembe 1 0 Date18 February 2017 (2017-02-18)VenueLoftus Versfeld Stadium, PretoriaRefereeGehad Grisha (Egypt)← 2016 2018 → The 2017 CAF Super Cup (officially the 2017 Total CAF Super Cup for sponsorship reasons)[1] was the 25th CAF Super Cup, an annual football match in Africa organized by the Confederation of African Football (CAF), between the winners of the previous season's t...

 

Overview of the events of 1896 in art Overview of the events of 1896 in art List of years in art (table) … 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 … Art Archaeology Architecture Literature Music Philosophy Science +... The year 1896 in art involved some significant events. Events January 24 – Painter Sir Frederic Leighton is created 1st Baron Leighton in the peerage of the United Kingdom one day before his death in London ...

 

District in Puntland, SomaliaQardhoDistrictCountry SomaliaRegional State PuntlandRegionBariCapitalQardhoTime zoneUTC+3 (EAT) Qardho District (Somali: Degmada Qardho) is a district in the region in Puntland, Somalia. The district had previously been in the northeastern Bari region before this was split into two. Its capital lies at Qardho. References External links Districts of Somalia Administrative map of Qardho District vte Administrative divisions of SomaliaAwdal Region Dilla Dis...

Lokasi kota Ar-Rayyan (bahasa Arab: الريان) ialah sebuah kota/kotamadya dan Kawasan di Qatar. Tim sepak bola Al-Rayyan Club bermarkas di sini. Selain itu, Umm Bab, pemukiman para pekerja pengeboran minyak, didirikan di sini. Ar-Rayyan adalah satu-satunya kotamadya di Qatar yang tidak berbatasan dengan laut. Ar-Rayyan berbatasan dengan kotamadya-kotamadya berikut: Umm Shalal - timur laut Ad-Dauhah - timur Al-Wakrah - tenggara Jariyan al-Bathnah - barat daya Al-Jumailiyah - barat laut lbs...

 

Mythical creature in Japanese folklore This article is about the mythological creature. For Jorō-gumo, the spider, see Joro spider. Jorōgumo from the Gazu Hyakki Yagyō by Toriyama Sekien. Jorōgumo (Japanese: 絡新婦 (kanji), じょろうぐも (hiragana)) is a type of yōkai, a creature of Japanese folklore. It can shapeshift into a beautiful woman, so the kanji that represent its actual meaning are 女郎蜘蛛 (lit. 'woman-spider'); the kanji which are used to write it instead, ...

 

XXXIV Copa do Brasil de Futebol Copa Betano do Brasil de 2023 Dados Participantes 92 Organização CBF Local de disputa Brasil Período 21 de fevereiro – 24 de setembro Gol(o)s 304 Partidas 122 Média 2,49 gol(o)s por partida Campeão São Paulo (1.° título) Vice-campeão Flamengo Melhor marcador 5 gols: Alef Manga (Coritiba) Lorran (Nova Mutum) Pedro (Flamengo) Tiquinho Soares (Botafogo) Maiores goleadas (diferença) Botafogo 7–1 BrasilienseEstádio Kleber Andrade, Cariacica15 de...

Football clubDnyapro MogilevFull nameFootball Club DnyaproFounded2019Dissolved2020GroundSpartak Stadium, MogilevCapacity7,3502019Premier League, 14th (relegated) Home colours Away colours Third colours FC Dnyapro Mogilev (Belarusian: ФК Дняпро Магілёў; Russian: ФК Дняпро Могилёв) was a Belarusian football club from Mogilev. Their home stadium is Spartak Stadium. History Dnyapro Mogilev was founded in early 2019 as a result of merger between Dnepr Mogilev and Luc...

 

Disambiguazione – Se stai cercando altri significati, vedi Hunsrück (disambigua). Hunsrück (o Hunsrueck) è un massiccio della Renania-Palatinato e del Saarland (Germania), facente parte del Massiccio scistoso renano di cui costituisce il confine sudorientale. Indice 1 Geografia e clima 2 Nel cinema 3 Altri progetti 4 Collegamenti esterni Geografia e clima Massiccio dell'Hunsrück L'Hunsrück è delimitato dalle valli fluviali della Mosella a nord, del Reno a est, del Nahe a sud e del Sa...