Truncated octahedron

Truncated octahedron
TypeArchimedean solid,
Parallelohedron,
Permutohedron,
Plesiohedron,
Zonohedron
Faces14
Edges36
Vertices24
Symmetry groupoctahedral symmetry
Dual polyhedrontetrakis hexahedron
Vertex figure
Net

In geometry, the truncated octahedron is the Archimedean solid that arises from a regular octahedron by removing six pyramids, one at each of the octahedron's vertices. The truncated octahedron has 14 faces (8 regular hexagons and 6 squares), 36 edges, and 24 vertices. Since each of its faces has point symmetry the truncated octahedron is a 6-zonohedron. It is also the Goldberg polyhedron GIV(1,1), containing square and hexagonal faces. Like the cube, it can tessellate (or "pack") 3-dimensional space, as a permutohedron.

The truncated octahedron was called the "mecon" by Buckminster Fuller.[1]

Its dual polyhedron is the tetrakis hexahedron. If the original truncated octahedron has unit edge length, its dual tetrakis hexahedron has edge lengths 9/82 and 3/22.

Classifications

As an Archimedean solid

A truncated octahedron is constructed from a regular octahedron by cutting off all vertices. This resulting polyhedron has six squares and eight hexagons, leaving out six square pyramids. Considering that each length of the regular octahedron is , and the edge length of a square pyramid is (the square pyramid is an equilateral, the first Johnson solid). From the equilateral square pyramid's property, its volume is . Because six equilateral square pyramids are removed by truncation, the volume of a truncated octahedron is obtained by subtracting the volume of a regular octahedron from those six:[2] The surface area of a truncated octahedron can be obtained by summing all polygonals' area, six squares and eight hexagons. Considering the edge length , this is:[2]

3D model of a truncated octahedron

The truncated octahedron is one of the thirteen Archimedean solids. In other words, it has a highly symmetric and semi-regular polyhedron with two or more different regular polygonal faces that meet in a vertex.[3] The dual polyhedron of a truncated octahedron is the tetrakis hexahedron. They both have the same three-dimensional symmetry group as the regular octahedron does, the octahedral symmetry .[4] A square and two hexagons surround each of its vertex, denoting its vertex figure as .[5]

The dihedral angle of a truncated octahedron between square-to-hexagon is , and that between adjacent hexagonal faces is .[6]

The Cartesian coordinates of the vertices of a truncated octahedron with edge length 1 are all permutations of[citation needed]

As a space-filling polyhedron

Truncated octahedron as a permutahedron of order 4
Truncated octahedra tiling space

The truncated octahedron can be described as a permutohedron of order 4 or 4-permutohedron, meaning it can be represented with even more symmetric coordinates in four dimensions: all permutations of form the vertices of a truncated octahedron in the three-dimensional subspace .[7] Therefore, each vertex corresponds to a permutation of and each edge represents a single pairwise swap of two elements. It has the symmetric group .[8]

The truncated octahedron can tile space. It is classified as plesiohedron, meaning it can be defined as the Voronoi cell of a symmetric Delone set.[9] Plesiohedra, translated without rotating, can be repeated to fill space. There are five three-dimensional primary parallelohedrons, one of which is the truncated octahedron.[10] More generally, every permutohedron and parallelohedron is a zonohedron, a polyhedron that is centrally symmetric and can be defined by a Minkowski sum.[11]

Applications

The structure of the faujasite framework
First Brillouin zone of FCC lattice, showing symmetry labels for high symmetry lines and points.

In chemistry, the truncated octahedron is the sodalite cage structure in the framework of a faujasite-type of zeolite crystals.[12]

In solid-state physics, the first Brillouin zone of the face-centered cubic lattice is a truncated octahedron.[13]

The truncated octahedron (in fact, the generalized truncated octahedron) appears in the error analysis of quantization index modulation (QIM) in conjunction with repetition coding.[14]

Dissection

The truncated octahedron can be dissected into a central octahedron, surrounded by 8 triangular cupolae on each face, and 6 square pyramids above the vertices.[15]

Second and third genus toroids

Removing the central octahedron and 2 or 4 triangular cupolae creates two Stewart toroids, with dihedral and tetrahedral symmetry:

It is possible to slice a tesseract by a hyperplane so that its sliced cross-section is a truncated octahedron.[16]

The cell-transitive bitruncated cubic honeycomb can also be seen as the Voronoi tessellation of the body-centered cubic lattice. The truncated octahedron is one of five three-dimensional primary parallelohedra.

Objects

Jungle gym nets often include truncated octahedra.

Truncated octahedral graph

Truncated octahedral graph
3-fold symmetric Schlegel diagram
Vertices24
Edges36
Automorphisms48
Chromatic number2
Book thickness3
Queue number2
PropertiesCubic, Hamiltonian, regular, zero-symmetric
Table of graphs and parameters

In the mathematical field of graph theory, a truncated octahedral graph is the graph of vertices and edges of the truncated octahedron. It has 24 vertices and 36 edges, and is a cubic Archimedean graph.[17] It has book thickness 3 and queue number 2.[18]

As a Hamiltonian cubic graph, it can be represented by LCF notation in multiple ways: [3, −7, 7, −3]6, [5, −11, 11, 7, 5, −5, −7, −11, 11, −5, −7, 7]2, and [−11, 5, −3, −7, −9, 3, −5, 5, −3, 9, 7, 3, −5, 11, −3, 7, 5, −7, −9, 9, 7, −5, −7, 3].[19]

Three different Hamiltonian cycles described by the three different LCF notations for the truncated octahedral graph

References

  1. ^ "Truncated Octahedron". Wolfram Mathworld.
  2. ^ a b Berman, Martin (1971). "Regular-faced convex polyhedra". Journal of the Franklin Institute. 291 (5): 329–352. doi:10.1016/0016-0032(71)90071-8. MR 0290245.
  3. ^ Diudea, M. V. (2018). Multi-shell Polyhedral Clusters. Carbon Materials: Chemistry and Physics. Vol. 10. Springer. p. 39. doi:10.1007/978-3-319-64123-2. ISBN 978-3-319-64123-2.
  4. ^ Koca, M.; Koca, N. O. (2013). "Coxeter groups, quaternions, symmetries of polyhedra and 4D polytopes". Mathematical Physics: Proceedings of the 13th Regional Conference, Antalya, Turkey, 27–31 October 2010. World Scientific. p. 48.
  5. ^ Williams, Robert (1979). The Geometrical Foundation of Natural Structure: A Source Book of Design. Dover Publications, Inc. p. 78. ISBN 978-0-486-23729-9.
  6. ^ Johnson, Norman W. (1966). "Convex polyhedra with regular faces". Canadian Journal of Mathematics. 18: 169–200. doi:10.4153/cjm-1966-021-8. MR 0185507. S2CID 122006114. Zbl 0132.14603.
  7. ^ Johnson, Tom; Jedrzejewski, Franck (2014). Looking at Numbers. Springer. p. 15. doi:10.1007/978-3-0348-0554-4. ISBN 978-3-0348-0554-4.
  8. ^ Crisman, Karl-Dieter (2011). "The Symmetry Group of the Permutahedron". The College Mathematics Journal. 42 (2): 135–139. doi:10.4169/college.math.j.42.2.135. JSTOR college.math.j.42.2.135.
  9. ^ Erdahl, R. M. (1999). "Zonotopes, dicings, and Voronoi's conjecture on parallelohedra". European Journal of Combinatorics. 20 (6): 527–549. doi:10.1006/eujc.1999.0294. MR 1703597.. Voronoi conjectured that all tilings of higher dimensional spaces by translates of a single convex polytope are combinatorially equivalent to Voronoi tilings, and Erdahl proves this in the special case of zonotopes. But as he writes (p. 429), Voronoi's conjecture for dimensions at most four was already proven by Delaunay. For the classification of three-dimensional parallelohedra into these five types, see Grünbaum, Branko; Shephard, G. C. (1980). "Tilings with congruent tiles". Bulletin of the American Mathematical Society. New Series. 3 (3): 951–973. doi:10.1090/S0273-0979-1980-14827-2. MR 0585178.
  10. ^ Alexandrov, A. D. (2005). "8.1 Parallelohedra". Convex Polyhedra. Springer. pp. 349–359.
  11. ^ Jensen, Patrick M.; Trinderup, Camilia H.; Dahl, Anders B.; Dahl, Vedrana A. (2019). "Zonohedral Approximation of Spherical Structuring Element for Volumetric Morphology". In Felsberg, Michael; Forssén, Per-Erik; Sintorn, Ida-Maria; Unger, Jonas (eds.). Image Analysis: 21st Scandinavian Conference, SCIA 2019, Norrköping, Sweden, June 11–13, 2019, Proceedings. Springer. p. 131–132. doi:10.1007/978-3-030-20205-7. ISBN 978-3-030-20205-7.
  12. ^ Yen, Teh F. (2007). Chemical Processes for Environmental Engineering. Imperial College Press. p. 338. ISBN 978-1-86094-759-9.
  13. ^ Mizutani, Uichiro (2001). Introduction to the Electron Theory of Metals. Cambridge University Press. p. 112. ISBN 978-0-521-58709-9.
  14. ^ Perez-Gonzalez, F.; Balado, F.; Martin, J.R.H. (2003). "Performance analysis of existing and new methods for data hiding with known-host information in additive channels". IEEE Transactions on Signal Processing. 51 (4): 960–980. Bibcode:2003ITSP...51..960P. doi:10.1109/TSP.2003.809368.
  15. ^ Doskey, Alex. "Adventures Among the Toroids – Chapter 5 – Simplest (R)(A)(Q)(T) Toroids of genus p=1". www.doskey.com.
  16. ^ Borovik, Alexandre V.; Borovik, Anna (2010), "Exercise 14.4", Mirrors and Reflections, Universitext, New York: Springer, p. 109, doi:10.1007/978-0-387-79066-4, ISBN 978-0-387-79065-7, MR 2561378
  17. ^ Read, R. C.; Wilson, R. J. (1998), An Atlas of Graphs, Oxford University Press, p. 269
  18. ^ Wolz, Jessica; Engineering Linear Layouts with SAT. Master Thesis, University of Tübingen, 2018
  19. ^ Weisstein, Eric W. "Truncated octahedral graph". MathWorld.

Read other articles:

Questa voce sull'argomento strumenti musicali è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Un basso elettrico fretless Sandberg Guitars Fretless (dall'inglese senza tasti) indica ogni cordofono sprovvisto di tasti (le traversine metalliche che dividono secondo rapporti costanti la tastiera). Mentre il violino e gli altri strumenti ad arco sono sempre fretless (eccezion fatta per la famiglia della vi...

 

 

Cinema ofthe Soviet Union Russian Empire 1908–1917 Lists of Soviet films 1917–1929 1922 1923 1924 19251926 1927 1928 1929 1930s 1930 1931 1932 1933 19341935 1936 1937 1938 1939 1940s 1940 1941 1942 1943 19441945 1946 1947 1948 1949 1950s 1950 1951 1952 1953 19541955 1956 1957 1958 1959 1960s 1960 1961 1962 1963 19641965 1966 1967 1968 1969 1970s 1970 1971 1972 1973 19741975 1976 1977 1978 1979 1980–1991 1980 1981 1982 1983 19841985 1986 1987 1988 1989 19901991 Russian films 1992–vte ...

 

 

Pembaringan kenegaraan Philip IV dari Prancis Pembaringan kenegaraan Mahatma Gandhi Pembaringan kenegaraan adalah sebuah tradisi dimana jasad orang mati ditempatkan di sebuah bangunan kenegaraan, di luar atau di dalam peti mati agar khalayak umum dapat memberikan penghormatan mereka. Kegiatan tersebut biasanya dilakukan di bangunan pemerintahan utama dari sebuah negara, daerah atau kota. Meskipun praktiknya berbeda di tiap negara, jika kegiatannya dilakukan di sebuah lokasi selain gedung peme...

Ongoing COVID-19 viral pandemic in New Hampshire, United States COVID-19 pandemic in New HampshireThe NH National Guard loading boxes of personal protective equipment in Concord DiseaseCOVID-19Virus strainSARS-CoV-2LocationNew Hampshire, U.S.Index caseGrafton CountyArrival dateMarch 2, 2020Confirmed cases344,823[1]Hospitalized cases849 (cumulative)185 (current)Recovered19,864[1]Deaths2,662[1]Government websitewww.nh.gov/covid19 The COVID-19 pandemic in New Hampshire is...

 

 

José Manuel Balmaceda Presiden Chili ke-11Masa jabatan18 September 1886 – 29 Agustus 1891 PendahuluDomingo Santa MaríaPenggantiJorge Montt Informasi pribadiLahir(1840-07-19)19 Juli 1840Bucalemu, ChiliMeninggal18 September 1891 (umur 51)Santiago, ChiliPartai politikLiberalSuami/istriEmilia de Toro HerreraTanda tanganSunting kotak info • L • B José Manuel Emiliano Balmaceda Fernández (19 Jul 1840 – 18 September 1891) adalah Presiden Chili ke-11, yang menjabat seja...

 

 

Comptroller General's Departmentกรมบัญชีกลางkrom banchi klangAgency overviewFormed7 October 1890TypeGovernment agencyJurisdictionNationwideHeadquartersPhaya Thai, Bangkok, ThailandAgency executiveComptroller-General Mrs.Patricia MongkhonvanitParent agencyMinistry of FinanceWebsitewww.cgd.go.th The Comptroller General's Department (CGD) (Thai: กรมบัญชีกลาง; RTGS: krom banchi klang) is a Thai government agency under the Ministry of Finance.&#...

Indian classical Bharata Natyam dancer Padma SubrahmanyamBorn4 February 1943 (1943-02-04) (age 81)Madras presidency, British IndiaNationalityIndianAlma materEthiraj College for WomenOccupation(s)Dancer, Choreographer, Teacher and AuthorKnown forBharatanatyamParentKrishnaswami Subrahmanyam (father)RelativesS. Krishnaswamy (brother)Raghuram (nephew)Anirudh Ravichander (grand-nephew)Hrishikesh (grand-nephew)Gayathri Raghuram (grand-niece)AwardsPadma Shri (1981) Padma Bhushan ...

 

 

Financial aid given to support the development of developing countries In some countries there is more development aid than government spending. (Image from World in Data) Development aid is a type of foreign/international/overseas aid given by governments and other agencies to support the economic, environmental, social, and political development of developing countries.[1] Closely related concepts include: developmental aid, development assistance, official development assistance, ...

 

 

Stadion NasionalKokuritsu KyōgijōStadion saat pertandinganJ.League Cup pada 2004Lokasi10-2, Kasumigaoka-machi, Shinjuku, Tokyo, JepangTransportasi umum E25 Kokuritsu-Kyōgijō JB12 SendagayaPemilikDewan Olahraga JepangKapasitas48,000Ukuran lapangan105 m × 68 m (344 ft × 223 ft)PermukaanRumputKonstruksiDibukaMaret 1958; 66 tahun lalu (1958-03)Ditutup31 Mei 2014; 9 tahun lalu (2014-05-31)DihancurkanMei 2015; 9 tahun lalu (2015-05)ArsitekMitsuo Ka...

Agenzia per la sicurezza nucleareStato Italia TipoAutorità per la regolamentazione tecnica, il controllo e l'autorizzazione ai fini della sicurezza di tutte le fasi legate alla realizzazione e gestione delle centrali elettronucleari e alla gestione delle scorie radioattive Istituito2009 daGoverno Berlusconi IV Operativo dal2009 Soppresso2011 daGoverno Monti PresidenteUmberto Veronesi Modifica dati su Wikidata · Manuale L'Agenzia per la sicurezza nucleare è stata, dal 2009 al ...

 

 

جزء من سلسلة مقالات حولعلم الاجتماع تاريخ فهرس المواضيع الرئيسية مجتمع عولمة سلوك الإنسان تأثير الإنسان على البيئة هوية الثورات الصناعية 3 / 4 / 5 تعقيد اجتماعي بنائية اجتماعية الثقافة البيئية مساواة اجتماعية إنصاف اجتماعي نفوذ اجتماعي تدرج اجتماعي بنية اجتماعية وجهات نظر ...

 

 

Evolusi dari angiospermae menurut Kelompok Filogeni Angiospermae (2013) Kelompok Filogeni Angiospermae (Bahasa Inggris: Angiosperm Phylogeny Group, disingkat menjadi APG) adalah kelompok informal internasional yang terdiri dari ahli botani sistematis yang berkolaborasi untuk membangun konsensus mengenai taksonomi tumbuhan berbunga (angiospermae), yang mencerminkan pengetahuan baru tentang hubungan tumbuhan yang ditemukan melalui studi filogenetik. Pada tahun 2016, empat versi tambahan sistem ...

This article needs to be updated. Please help update this to reflect recent events or newly available information. (December 2020)This article is missing information about transfers. Please expand the article to include this information. Further details may exist on the talk page. (December 2020) 2012–13 CA Osasuna SeasonOsasuna 2012–13 football seasonOsasuna2012–13 seasonPresidentMiguel ArchancoHead coachJosé Luis MendilibarStadiumEl SadarLa Liga16thCopa del ReyRound of 16 Home colou...

 

 

Biografi ini tidak memiliki referensi atau sumber sehingga isinya tidak dapat dipastikan. Bantu memperbaiki artikel ini dengan menambahkan sumber tepercaya. Materi kontroversial atau trivial yang sumbernya tidak memadai atau tidak bisa dipercaya harus segera dihapus.Cari sumber: Cristiano Lucarelli – berita · surat kabar · buku · cendekiawan · JSTOR (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Cristiano Lucarelli Lucarelli pada t...

 

 

Inflammation of the lungs and pleura Medical conditionPleuropneumoniaLung pleuraSpecialtyPulmonology  Pleuropneumonia is inflammation of the lungs and pleura, pleurisy being the inflammation of the pleura alone.[1] See also Contagious bovine pleuropneumonia – a disease in cattle Contagious caprine pleuropneumonia – a disease in goats References ^ Wood, James, ed. (1907). Pleura-pneumonia . The Nuttall Encyclopædia. London and New York: Frederick Warne. Authority control...

Stasiun Yasuushi (安牛駅 Yasuushi-eki) adalah sebuah stasiun kereta api yang berada di Jalur Utama Sōya terletak di Horonobe, Distrik Teshio, Subprefektur Soya, Hokkaido, Jepang, yang dioperasikan oleh JR Hokkaido. Stasiun ini diberi nomor W69. Stasiun Yasuushi安牛駅Bangunan Stasiun YasuushiLokasiKaishin, Horonobe, Distrik Teshio, Prefektur Hokkaido 098-3226, JepangJepangKoordinat44°56′58.5″N 141°53′39″E / 44.949583°N 141.89417°E / 44.949583; 141.894...

 

 

Ruler of a Mesoamerican āltepētl (city-state) This article is about tlahtohqueh in general. For the rulers of Tenochtitlan, see List of tlatoque of Tenochtitlan. 17th-century depiction of tlahtoāni Nezahualpiltzintli of Texcoco from the Codex Ixtlilxochitl. Tlahtoāni of Aztec EmpireSacred war emblemDetailsStyleHuēyi tlahtoāniFirst monarchAcamapichtliLast monarchCuauhtémocFormationc. 1376Abolition1521ResidenceTenochtitlanAppointerCouncil of Elders Tlahtoāni[1] (...

 

 

1988 NCAA Division IIImen's basketball tournamentFinals siteGrand Rapids, MichiganChampionsOhio Wesleyan Battling Bishops (1st title)Runner-upScranton Royals (3rd title game)SemifinalistsHartwick Hawks (1st Final Four)Nebraska Wesleyan Prairie Wolves (3rd Final Four)Winning coachGene Mehaffey (OWU)MOPScott Tedder (OWU)Attendance34,373 NCAA Division III men's tournaments «1987 1989» The 1988 NCAA Division III men's basketball tournament was the 14th annual single-elimination tournam...

Cet article est une ébauche concernant une localité de l'Alaska. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Fort Yukon La région de Fort Yukon Administration Pays États-Unis État Alaska Borough Région de recensement de Yukon-Koyukuk Code FIPS 02-26760 Démographie Population 583 hab. (2010) Densité 30 hab./km2 Géographie Coordonnées 66° 34′ 03″ nord, 145° 15′&#...

 

 

Sheep and fields in Bekaa Valley (2021) Economy of Lebanon Overview Agriculture Banque du Liban Beirut Stock Exchange (listings) Companies Labour movement Shipping Tourism Other topics Culture Environment Geography History People Politics vte Agriculture in Lebanon is the third most productive sector in the country after the tertiary and industrial sectors. It contributes 3.1% of GDP[1] and 8 percent of the effective labor force.[2] The sector includes an informal Syrian labo...