Permutohedron

The permutohedron of order 4

In mathematics, the permutohedron (also spelled permutahedron) of order n is an (n − 1)-dimensional polytope embedded in an n-dimensional space. Its vertex coordinates (labels) are the permutations of the first n natural numbers. The edges identify the shortest possible paths (sets of transpositions) that connect two vertices (permutations). Two permutations connected by an edge differ in only two places (one transposition), and the numbers on these places are neighbors (differ in value by 1).

The image on the right shows the permutohedron of order 4, which is the truncated octahedron. Its vertices are the 24 permutations of (1, 2, 3, 4). Parallel edges have the same edge color. The 6 edge colors correspond to the 6 possible transpositions of 4 elements, i.e. they indicate in which two places the connected permutations differ. (E.g. red edges connect permutations that differ in the last two places.)

History

According to Günter M. Ziegler (1995), permutohedra were first studied by Pieter Hendrik Schoute (1911). The name permutoèdre was coined by Georges Th. Guilbaud and Pierre Rosenstiehl (1963). They describe the word as barbaric, but easy to remember, and submit it to the criticism of their readers.[1]

The alternative spelling permutahedron is sometimes also used.[2] Permutohedra are sometimes called permutation polytopes, but this terminology is also used for the related Birkhoff polytope, defined as the convex hull of permutation matrices. More generally, V. Joseph Bowman (1972) uses that term for any polytope whose vertices have a bijection with the permutations of some set.

Vertices, edges, and facets

vertices, edges, facets, faces
Face dimension d = nk.
   k = 1    2    3    4    5
n
1      1                               1
2      1    2                          3
3      1    6    6                    13
4      1   14   36   24               75
5      1   30  150  240  120         541

The permutohedron of order n has n! vertices, each of which is adjacent to n − 1 others. The number of edges is (n − 1) n!/2, and their length is 2.

Two connected vertices differ by swapping two coordinates, whose values differ by 1.[3] The pair of swapped places corresponds to the direction of the edge. (In the example image the vertices (3, 2, 1, 4) and (2, 3, 1, 4) are connected by a blue edge and differ by swapping 2 and 3 on the first two places. The values 2 and 3 differ by 1. All blue edges correspond to swaps of coordinates on the first two places.)

The number of facets is 2n − 2, because they correspond to non-empty proper subsets S of {1 ... n}. The vertices of a facet corresponding to subset S have in common, that their coordinates on places in S are smaller than the rest.[4]

More generally, the faces of dimensions 0 (vertices) to n − 1 (the permutohedron itself) correspond to the strict weak orderings of the set {1 ... n}. So the number of all faces is the n-th ordered Bell number.[5] A face of dimension d corresponds to an ordering with k = nd equivalence classes.

The number of faces of dimension d = nk in the permutohedron of order n is given by the triangle T (sequence A019538 in the OEIS): with representing the Stirling numbers of the second kind.

It is shown on the right together with its row sums, the ordered Bell numbers.

Other properties

The permutohedron-like Cayley graph of S4 (see here for a comparison with the permutohedron)

The permutohedron is vertex-transitive: the symmetric group Sn acts on the permutohedron by permutation of coordinates.

The permutohedron is a zonotope; a translated copy of the permutohedron can be generated as the Minkowski sum of the n(n − 1)/2 line segments that connect the pairs of the standard basis vectors.[6]

The vertices and edges of the permutohedron are isomorphic to one of the Cayley graphs of the symmetric group, namely the one generated by the transpositions that swap consecutive elements. The vertices of the Cayley graph are the inverse permutations of those in the permutohedron.[7] The image on the right shows the Cayley graph of S4. Its edge colors represent the 3 generating transpositions: (1, 2), (2, 3), (3, 4).

This Cayley graph is Hamiltonian; a Hamiltonian cycle may be found by the Steinhaus–Johnson–Trotter algorithm.

Tessellation of the space

Tesselation of space by permutohedra of orders 3 and 4

The permutohedron of order n lies entirely in the (n − 1)-dimensional hyperplane consisting of all points whose coordinates sum to the number:

Moreover, this hyperplane can be tiled by infinitely many translated copies of the permutohedron. Each of them differs from the basic permutohedron by an element of a certain (n − 1)-dimensional lattice, which consists of the n-tuples of integers that sum to zero and whose residues (modulo n) are all equal:

This is the lattice , the dual lattice of the root lattice . In other words, the permutohedron is the Voronoi cell for . Accordingly, this lattice is sometimes called the permutohedral lattice.[8]

Thus, the permutohedron of order 4 shown above tiles the 3-dimensional space by translation. Here the 3-dimensional space is the affine subspace of the 4-dimensional space with coordinates x, y, z, w that consists of the 4-tuples of real numbers whose sum is 10,

One easily checks that for each of the following four vectors,

the sum of the coordinates is zero and all coordinates are congruent to 1 (mod 4). Any three of these vectors generate the translation lattice.

The tessellations formed in this way from the order-2, order-3, and order-4 permutohedra, respectively, are the apeirogon, the regular hexagonal tiling, and the bitruncated cubic honeycomb. The dual tessellations contain all simplex facets, although they are not regular polytopes beyond order-3.

Examples

Order 2 Order 3 Order 4 Order 5 Order 6
2 vertices 6 vertices 24 vertices 120 vertices 720 vertices
line segment hexagon truncated octahedron omnitruncated 5-cell omnitruncated 5-simplex

See also

Notes

  1. ^ Original French: "le mot permutoèdre est barbare, mais il est facile à retenir; soumettons-le aux critiques des lecteurs."
  2. ^ Thomas (2006).
  3. ^ Gaiha & Gupta (1977).
  4. ^ Lancia (2018), p. 105 (see chapter The Permutahedron).
  5. ^ See, e.g., Ziegler (1995), p. 18.
  6. ^ Ziegler (1995), p. 200.
  7. ^ This Cayley graph labeling is shown, e.g., by Ziegler (1995).
  8. ^ Baek, Adams & Dolson (2013).

References

  • Baek, Jongmin; Adams, Andrew; Dolson, Jennifer (2013), "Lattice-based high-dimensional Gaussian filtering and the permutohedral lattice", Journal of Mathematical Imaging and Vision, 46 (2): 211–237, doi:10.1007/s10851-012-0379-2, hdl:1721.1/105344, MR 3061550
  • Bowman, V. Joseph (1972), "Permutation polyhedra", SIAM Journal on Applied Mathematics, 22 (4): 580–589, doi:10.1137/0122054, JSTOR 2099695, MR 0305800.
  • Gaiha, Prabha; Gupta, S. K. (1977), "Adjacent vertices on a permutohedron", SIAM Journal on Applied Mathematics, 32 (2): 323–327, doi:10.1137/0132025, JSTOR 2100417, MR 0427102.
  • Guilbaud, Georges Th.; Rosenstiehl, Pierre (1963), "Analyse algébrique d'un scrutin", Mathématiques et Sciences Humaines, 4: 9–33.
  • Lancia, Giuseppe (2018), Compact extended linear programming models, Cham, Switzerland: Springer, ISBN 978-3-319-63975-8.
  • Schoute, Pieter Hendrik (1911), "Analytic treatment of the polytopes regularly derived from the regular polytopes", Verhandelingen der Koninklijke Akademie van Wetenschappen te Amsterdam, 11 (3): 87 pp Googlebook, 370–381 Also online on the KNAW Digital Library at http://www.dwc.knaw.nl/toegangen/digital-library-knaw/?pagetype=publDetail&pId=PU00011495
  • Thomas, Rekha R. (2006), "Chapter 9. The Permutahedron", Lectures in Geometric Combinatorics, Student Mathematical Library: IAS/Park City Mathematical Subseries, vol. 33, American Mathematical Society, pp. 85–92, ISBN 978-0-8218-4140-2.
  • Ziegler, Günter M. (1995), Lectures on Polytopes, Springer-Verlag, Graduate Texts in Mathematics 152.

Further reading

  • Le Conte de Poly-Barbut, Cl. (1990), "Le diagramme du treillis permutoèdre est intersection des diagrammes de deux produits directs d'ordres totaux", Mathématiques, Informatique et Sciences Humaines, 112: 49–53.
  • Postnikov, Alexander (2009), "Permutohedra, associahedra, and beyond", International Mathematics Research Notices, 2009 (6): 1026–1106, arXiv:math.CO/0507163, doi:10.1093/imrn/rnn153, MR 2487491
  • Santmyer, Joe (2007), "For all possible distances look to the permutohedron", Mathematics Magazine, 80 (2): 120–125, doi:10.1080/0025570X.2007.11953465

Read other articles:

Wernher von BraunLahirWernher Magnus Maximilian, Freiherr von Braun(1912-03-23)23 Maret 1912Wirsitz, Kekaisaran JermanMeninggal16 Juni 1977(1977-06-16) (umur 65)Alexandria, Virginia, Amerika SerikatSebab meninggalKanker pankreasMakamAlexandria, Virginia, Amerika SerikatKebangsaanJerman, AmerikaAlmamaterUniversitas Teknologi BerlinETH ZurichPekerjaanInsinyur roket dan perancangSuami/istriMaria Luise von Quistorp ​ ​(m. 1947⁠–⁠1977)...

 

 

Hybrid photovoltaic-thermal solar panels of a SAHP in an experimental installation at Department of Energy at Polytechnic of Milan A solar-assisted heat pump (SAHP) is a machine that combines a heat pump and thermal solar panels and/or PV solar panels in a single integrated system.[1] Typically these two technologies are used separately (or only placing them in parallel) to produce hot water.[2] In this system the solar thermal panel performs the function of the low temperatur...

 

 

21st Mechanized CorpsA T-34 burns in Russia in 1941ActiveMarch–August 1941CountrySoviet UnionBranchArmoured ForcesTypeMechanized CorpsEngagementsBaltic Operation (1941)CommandersNotablecommandersMajor General LelyushenkoMilitary unit The 21st Mechanized Corps was a formation in the Soviet Red Army during the Second World War. Initially formed in March 1941, in response to the German victories in the West it was attached to the newly forming 27th Army, and held in reserve near Opochka in So...

Untuk genus laba-laba, lihat Muziris (laba-laba). Muziris ditampilkan dalam Tabula Peutingeriana pada abad ke-4 Muziris (bahasa Yunani Kuno: Μουζιρὶς,[1] Malayalam: Muchiri[2] yang mungkin identik dengan istilah abad pertengahan Muyirikode[2]) adalah sebuah pelabuhan kuno[3] dan pusat perkotaan di Pesisir Malabar (kini negara bagian Kerala, India) yang bermula dari setidaknya abad ke-1 SM. Berada di sekitaran wilayah saat ini dari Kodungallur, loka...

 

 

Questa voce sull'argomento calciatori ivoriani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Koffi Ndri Romaric Nazionalità  Costa d'Avorio Altezza 187 cm Peso 88 kg Calcio Ruolo Centrocampista Termine carriera 1º gennaio 2017 Carriera Squadre di club1 2001-2003 ASEC Mimosas? (?)2003-2005 Beveren44 (18)2005-2008 Le Mans89 (7)2008-2011 Siviglia81 (3)2011-2012→  Espany...

 

 

† Человек прямоходящий Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапсиды�...

Pour les articles homonymes, voir Safdie. Moshe SafdieMoshe Safdie en 2004.FonctionChef de département (d)Université Ben Gourion du Néguevdepuis 1972BiographieNaissance 14 juillet 1938 (85 ans)HaïfaNationalités israéliennecanadienneaméricaineFormation Université McGillÉcole secondaire de WestmountActivités Architecte, urbaniste, professeur d'universitéPériode d'activité depuis 1967Enfant Oren Safdie (en)Autres informationsA travaillé pour Université Harvard (depuis 1978)U...

 

 

The Most HonourableThe Marchioness of HastingsPortrait published in 1828BornBarbara Yelverton20 May 1810Brandon, Warwickshire, EnglandDied18 November 1858(1858-11-18) (aged 48)Occupation(s)Fossil collector, geological authorSpouses George Rawdon-Hastings, 2nd Marquess of Hastings ​ ​(m. 1831; died 1844)​ Hastings Reginald Henry ​ ​(m. 1845)​ Children Paulyn Rawdon-Hastings, 3rd Marquess of Hastings Edith ...

 

 

ISG15 التراكيب المتوفرة بنك بيانات البروتينOrtholog search: PDBe RCSB قائمة رموز معرفات بنك بيانات البروتين 1Z2M, 2HJ8, 3PHX, 3PSE, 3R66, 3RT3, 3SDL المعرفات الأسماء المستعارة ISG15, G1P2, IFI15, IP17, UCRP, hUCRP, IMD38, ubiquitin-like modifier, ubiquitin like modifier معرفات خارجية الوراثة المندلية البشرية عبر الإنترنت 147571 MGI: MGI:1855694 HomoloGene: 483...

Alfredo Gravina Información personalNacimiento 31 de octubre de 1913 Tacuarembó (Uruguay) Fallecimiento 1995 Nacionalidad UruguayaInformación profesionalOcupación Escritor y periodista [editar datos en Wikidata] Alfredo Dante Gravina (Tacuarembó, 31 de octubre de 1913 - Montevideo, 1995) fue un escritor, hombre de teatro y periodista uruguayo. Biografía Al terminar la secundaria, Gravina se traslada a Montevideo para iniciar estudios de abogacía que luego abandonó. Empleado ...

 

 

2nd President of Mexico in 1829This article is about the Mexican president. For other uses, see Vicente Guerrero (disambiguation). In this Spanish name, the first or paternal surname is Guerrero and the second or maternal family name is Saldaña. Vicente GuerreroA half-length, posthumous portrait by Anacleto Escutia (1850), Museo Nacional de Historia. An inscription on the reverse side of the painting claims it is a copy of an original which belongs to the Excellent Ayuntamiento of Me...

 

 

Accidents and incidents involving the Westland Sea King Royal Air Force Sea King HAR3A This is a list of accidents and incidents involving the Westland Sea King helicopter, a British license-built and developed version of the American Sikorsky Sea King anti-submarine and utility helicopter,[1] As of 2012[update], Westland Sea Kings have been involved in forty-six significant accidents and incidents, involving forty-eight aircraft, during their service career. This total inclu...

1973 soundtrack album by Neil DiamondJonathan Livingston SeagullSoundtrack album by Neil DiamondReleasedOctober 19, 1973Recorded1973GenreFilm soundtrackLength43:29LabelColumbiaProducerTom CatalanoNeil Diamond chronology Rainbow(1972) Jonathan Livingston Seagull(1973) His 12 Greatest Hits(1974) Professional ratingsReview scoresSourceRatingAllMusic[2]Rolling Stone(mixed)[1] Jonathan Livingston Seagull is the soundtrack album to the 1973 American film Jonathan Livingston ...

 

 

Film festival 64th Cannes Film FestivalOfficial poster of the 64th Cannes Film Festival featuring a 1970 photo of American actress Faye DunawayOpening filmMidnight in ParisClosing filmBelovedLocationCannes, FranceFounded1946AwardsPalme d'Or: The Tree of LifeHosted byMélanie LaurentNo. of films20 (In Competition)[1]21 (Un Certain Regard)9 (Short Film)Festival date11 – 22 May 2011WebsiteWebsiteCannes Film Festival2012 2010 The 64th Cannes Film Festival was held from 11 to 22 May 2011...

 

 

Illustrazione che raffigura il Sole al centro di un universo circolare, dal Dizionario Enciclopedico Brockhaus ed Efron (1890-1907) L'eliocentrismo (dal greco antico ἥλιος?, hḕlios, sole e κέντρον, kèntron, centro) è una teoria astronomica che pone il Sole al centro del sistema solare, con i pianeti che gli girano intorno. Storicamente, nell'eliocentrismo il Sole era ritenuto centro del cosmo, termine con cui si designava l'insieme degli astri noti, prima dell'introd...

Election for the 6th Parliament of Australia 1914 Australian federal election ← 1913 5 September 1914 (1914-09-05) 1917 → ← outgoing memberselected members →All 75 seats in the House of Representatives38 seats were needed for a majority in the House All 36 seats in the SenateRegistered2,811,515 1.86%Turnout1,726,906 (73.53%)[a](0.04 pp)   First party Second party   Leader Andrew Fisher Joseph Cook Party Labor Liberal...

 

 

Australian media news website 10 dailyType of siteMedia newsDissolvedMay 22, 2020; 4 years ago (2020-05-22)OwnerTen Network HoldingsEditorChris HarrisonCommercialYesRegistrationFreeLaunchedMay 14, 2018; 6 years ago (2018-05-14)Current statusClosed 10 daily was a news and entertainment website. Part of the Ten Network Holdings, it was launched in May 2018 as Ten daily,[1] and rebranded as 10 daily that October as part of an overall rebranding of...

 

 

 除特別註明外,此条目或章節的時間均以韓國時間(UTC+9:00)為準。 2019年韓國羽毛球大師賽賽事資料日期2019年11月19日-11月24日屆次第10屆級別世界巡迴賽超級300賽總獎金20萬美元舉辦地點 韩国光州廣域市比賽場地光州女子大學體育館← 上一屆 下一屆 → 2019年韓國羽毛球大師賽為第10屆韓國羽毛球大師賽,是2019年世界羽聯世界巡迴賽的其中一站,屬於第五級�...

Claude SautetLahir(1924-02-23)23 Februari 1924Montrouge, Hauts-de-Seine, PrancisMeninggal22 Juli 2000(2000-07-22) (umur 76)Paris, PrancisSebab meninggalKankerKebangsaanPrancisPekerjaansutradara Makam Claude Sautet di Pemakaman Montparnasse: Garder le calme devant la dissonance (Beristirahat dengan tenang di depan disonansi) Claude Sautet (23 Februari 1924 – 22 Juli 2000) adalah seorang pengarang dan sutradara asal Prancis. Biografi Lahir di Montrouge, Hauts-de-Seine...

 

 

Village in Uttar Pradesh, IndiaJohwa Sharki Johwa SharqiVillageMap showing Johwa Sharki (#199) in Harchandpur CD blockJohwa SharkiLocation in Uttar Pradesh, IndiaCoordinates: 26°22′48″N 81°05′42″E / 26.379908°N 81.095082°E / 26.379908; 81.095082[1]Country India IndiaStateUttar PradeshDistrictRaebareliArea[2] • Total19.349 km2 (7.471 sq mi)Population (2011)[2] • Total10,657 •...