Square pyramid

Square pyramid
TypePyramid,
Johnson
J92J1J2
Faces4 triangles
1 square
Edges8
Vertices5
Vertex configuration[1]
Symmetry group
Volume
Dihedral angle (degrees)Equilateral square pyramid:[1]
  • triangle-to-triangle: 109.47°
  • square-to-triangle: 54.74°
Dual polyhedronself-dual
Propertiesconvex,
elementary (equilateral square pyramid)
Net

In geometry, a square pyramid is a pyramid with a square base, having a total of five faces. If the apex of the pyramid is directly above the center of the square, it is a right square pyramid with four isosceles triangles; otherwise, it is an oblique square pyramid. When all of the pyramid's edges are equal in length, its triangles are all equilateral. It is called an equilateral square pyramid, an example of a Johnson solid.

Square pyramids have appeared throughout the history of architecture, with examples being Egyptian pyramids and many other similar buildings. They also occur in chemistry in square pyramidal molecular structures. Square pyramids are often used in the construction of other polyhedra. Many mathematicians in ancient times discovered the formula for the volume of a square pyramid with different approaches.

Special cases

Right square pyramid

A square pyramid has five vertices, eight edges, and five faces. One face, called the base of the pyramid, is a square; the four other faces are triangles.[2] Four of the edges make up the square by connecting its four vertices. The other four edges are known as the lateral edges of the pyramid; they meet at the fifth vertex, called the apex.[3] If the pyramid's apex lies on a line erected perpendicularly from the center of the square, it is called a right square pyramid, and the four triangular faces are isosceles triangles. Otherwise, the pyramid has two or more non-isosceles triangular faces and is called an oblique square pyramid.[4]

The slant height of a right square pyramid is defined as the height of one of its isosceles triangles. It can be obtained via the Pythagorean theorem: where is the length of the triangle's base, also one of the square's edges, and is the length of the triangle's legs, which are lateral edges of the pyramid.[5] The height of a right square pyramid can be similarly obtained, with a substitution of the slant height formula giving:[6] A polyhedron's surface area is the sum of the areas of its faces. The surface area of a right square pyramid can be expressed as , where and are the areas of one of its triangles and its base, respectively. The area of a triangle is half of the product of its base and side, with the area of a square being the length of the side squared. This gives the expression:[7] In general, the volume of a pyramid is equal to one-third of the area of its base multiplied by its height.[8] Expressed in a formula for a square pyramid, this is:[9]

Many mathematicians have discovered the formula for calculating the volume of a square pyramid in ancient times. In the Moscow Mathematical Papyrus, Egyptian mathematicians demonstrated knowledge of the formula for calculating the volume of a truncated square pyramid, suggesting that they were also acquainted with the volume of a square pyramid, but it is unknown how the formula was derived. Beyond the discovery of the volume of a square pyramid, the problem of finding the slope and height of a square pyramid can be found in the Rhind Mathematical Papyrus.[10] The Babylonian mathematicians also considered the volume of a frustum, but gave an incorrect formula for it.[11] One Chinese mathematician Liu Hui also discovered the volume by the method of dissecting a rectangular solid into pieces.[12]

Equilateral square pyramid

3D model of an equilateral square pyramid

If all triangular edges are of equal length, the four triangles are equilateral, and the pyramid's faces are all regular polygons, it is an equilateral square pyramid.[13] The dihedral angles between adjacent triangular faces are , and that between the base and each triangular face being half of that, .[1] A convex polyhedron in which all of the faces are regular polygons is called a Johnson solid. The equilateral square pyramid is among them, enumerated as the first Johnson solid .[14]

Because its edges are all equal in length (that is, ), its slant, height, surface area, and volume can be derived by substituting the formulas of a right square pyramid:[15]

Like other right pyramids with a regular polygon as a base, a right square pyramid has pyramidal symmetry. For the square pyramid, this is the symmetry of cyclic group : the pyramid is left invariant by rotations of one-, two-, and three-quarters of a full turn around its axis of symmetry, the line connecting the apex to the center of the base; and is also mirror symmetric relative to any perpendicular plane passing through a bisector of the base.[1] It can be represented as the wheel graph , meaning its skeleton can be interpreted as a square in which its four vertices connects a vertex in the center called the universal vertex.[16] It is self-dual, meaning its dual polyhedron is the square pyramid itself.[17]

An equilateral square pyramid is an elementary polyhedron. This means it cannot be separated by a plane to create two small convex polyhedrons with regular faces.[18]

Applications

The Egyptian pyramids are examples of square pyramidal buildings in architecture.
One of the Mesoamerican pyramids, a similar building to the Egyptian, has flat tops and stairs at the faces

In architecture, the pyramids built in ancient Egypt are examples of buildings shaped like square pyramids.[19] Pyramidologists have put forward various suggestions for the design of the Great Pyramid of Giza, including a theory based on the Kepler triangle and the golden ratio. However, modern scholars favor descriptions using integer ratios, as being more consistent with the knowledge of Egyptian mathematics and proportion.[20] The Mesoamerican pyramids are also ancient pyramidal buildings similar to the Egyptian; they differ in having flat tops and stairs ascending their faces.[21] Modern buildings whose designs imitate the Egyptian pyramids include the Louvre Pyramid and the casino hotel Luxor Las Vegas.[22]

In stereochemistry, an atom cluster can have a square pyramidal geometry. A square pyramidal molecule has a main-group element with one active lone pair, which can be described by a model that predicts the geometry of molecules known as VSEPR theory.[23] Examples of molecules with this structure include chlorine pentafluoride, bromine pentafluoride, and iodine pentafluoride.[24]

Tetrakis hexahedra, a construction of polyhedra by augmentation involving square pyramids

The base of a square pyramid can be attached to a square face of another polyhedron to construct new polyhedra, an example of augmentation. For example, a tetrakis hexahedron can be constructed by attaching the base of an equilateral square pyramid onto each face of a cube.[25] Attaching prisms or antiprisms to pyramids is known as elongation or gyroelongation, respectively.[26] Some of the other Johnson solids can be constructed by either augmenting square pyramids or augmenting other shapes with square pyramids: elongated square pyramid , gyroelongated square pyramid , elongated square bipyramid , gyroelongated square bipyramid , augmented triangular prism , biaugmented triangular prism , triaugmented triangular prism , augmented pentagonal prism , biaugmented pentagonal prism , augmented hexagonal prism , parabiaugmented hexagonal prism , metabiaugmented hexagonal prism , triaugmented hexagonal prism , and augmented sphenocorona .[27]

See also

References

Notes

  1. ^ a b c d Johnson (1966).
  2. ^ Clissold (2020), p. 180.
  3. ^ O'Keeffe & Hyde (2020), p. 141; Smith (2000), p. 98.
  4. ^ Freitag (2014), p. 598.
  5. ^ Larcombe (1929), p. 177; Perry & Perry (1981), pp. 145–146.
  6. ^ Larcombe (1929), p. 177.
  7. ^ Freitag (2014), p. 798.
  8. ^ Alexander & Koeberlin (2014), p. 403.
  9. ^ Larcombe (1929), p. 178.
  10. ^ Cromwell (1997), pp. 20–22.
  11. ^ Eves (1997), p. 2.
  12. ^ Wagner (1979).
  13. ^ Hocevar (1903), p. 44.
  14. ^ Uehara (2020), p. 62.
  15. ^ Simonson (2011), p. 123; Berman (1971), see table IV, line 21.
  16. ^ Pisanski & Servatius (2013), p. 21.
  17. ^ Wohlleben (2019), p. 485–486.
  18. ^ Hartshorne (2000), p. 464; Johnson (1966).
  19. ^ Kinsey, Moore & Prassidis (2011), p. 371.
  20. ^ Herz-Fischler (2000) surveys many alternative theories for this pyramid's shape. See Chapter 11, "Kepler triangle theory", pp. 80–91, for material specific to the Kepler triangle, and p. 166 for the conclusion that the Kepler triangle theory can be eliminated by the principle that "A theory must correspond to a level of mathematics consistent with what was known to the ancient Egyptians." See note 3, p. 229, for the history of Kepler's work with this triangle. See Rossi (2004), pp. 67–68, quoting that "there is no direct evidence in any ancient Egyptian written mathematical source of any arithmetic calculation or geometrical construction which could be classified as the Golden Section ... convergence to , and itself as a number, do not fit with the extant Middle Kingdom mathematical sources"; see also extensive discussion of multiple alternative theories for the shape of the pyramid and other Egyptian architecture, pp. 7–56. See also Rossi & Tout (2002) and Markowsky (1992).
  21. ^ Feder (2010), p. 34; Takacs & Cline (2015), p. 16.
  22. ^ Jarvis & Naested (2012), p. 172; Simonson (2011), p. 122.
  23. ^ Petrucci, Harwood & Herring (2002), p. 414.
  24. ^ Emeléus (1969), p. 13.
  25. ^ Demey & Smessaert (2017).
  26. ^ Slobodan, Obradović & Ðukanović (2015).
  27. ^ Rajwade (2001), pp. 84–89. See Table 12.3, where denotes the -sided prism and denotes the -sided antiprism.

Works cited

Read other articles:

Perbandingan ukuran planet dengan komposisi berbeda Sebuah planet besi adalah sejenis planet yang terdiri dari inti kaya besi dengan sedikit atau tanpa mantel. Merkurius adalah benda angkasa terbesar dari jenis tersebut di Tata Surya. Lihat pula Planet kerdil Planet ekstrasurya Planet kebumian Referensi lbsEksoplanetologi Planet Pengertian IAU Ilmu keplanetan Topik utama Eksoplanet Metode pendeteksian eksoplanet Sistem keplanetan Ukurandan jenisKebumian Planet karbon Planet tanpa inti Planet ...

 

American politician (1912–1994) Milton ShappShapp in 197640th Governor of PennsylvaniaIn officeJanuary 19, 1971 – January 16, 1979LieutenantErnest P. KlinePreceded byRaymond P. ShaferSucceeded byDick Thornburgh Personal detailsBornMilton Jerrold Shapiro(1912-06-25)June 25, 1912Cleveland, Ohio, U.S.DiedNovember 24, 1994(1994-11-24) (aged 82)Merion, Pennsylvania, U.S.Political partyDemocraticSpouses Harriet Nolte ​ ​(m. 1939; div. 1947)...

 

Dirk Lives in Holland AuthorAstrid LindgrenOriginal titleJackie bor i HollandIllustratorAnna Riwkin-BrickCountrySwedenLanguageSwedishSeriesChildren's EverywhereGenreChildren's literaturePublisherRabén & SjögrenPublication date1963Published in English1964Preceded byMarko Lives in Yugoslavia Followed byRandi Lives in Norway  Dirk Lives in Holland (original title: Jackie bor i Holland) is the title of a book by the Swedish writer Astrid Lindgren, with photos b...

Pertanian Umum Agribisnis Agroindustri Agronomi Ilmu pertanian Jelajah bebas Kebijakan pertanian Lahan usaha tani Mekanisasi pertanian Menteri Pertanian Perguruan tinggi pertanian Perguruan tinggi pertanian di Indonesia Permakultur Pertanian bebas ternak Pertanian berkelanjutan Pertanian ekstensif Pertanian intensif Pertanian organik Pertanian urban Peternakan Peternakan pabrik Wanatani Sejarah Sejarah pertanian Sejarah pertanian organik Revolusi pertanian Arab Revolusi pertanian Inggris Revo...

 

The extent of the Indus Valley Civilisation This list of inventions and discoveries of the Indus Valley Civilisation lists the technological and civilisational achievements of the Indus Valley Civilisation, an ancient civilisation which flourished in the Bronze Age around the general region of the Indus River and Ghaggar-Hakra River in what is today Pakistan, and parts of India. Inventions Computer-aided reconstruction of Harappan coastal settlement in Pakistan on the westernmost outreaches ...

 

Cet article est une ébauche concernant une unité ou formation militaire américaine. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. 4th Fighter Wing Blason du 4th Fighter Wing Création 28 juillet 1947 - Aujourd'hui Pays États-Unis Fait partie de USAF Garnison Seymour Johnson AFB Devise Fourth But First Équipement F-15E Commandant historique Chuck Yeager modifier  Le 4th Fighter Wing (4th FW, 4e e...

Model anion sianat. Ion sianat adalah anion dengan rumus kimia [OCN]− or [NCO]−. Pada larutan ion ini berperan sebagai basa membentuk asam isosianat, HNCO. Ion sianat membentuk kompleks dengan ion logam di mana atom nitrogen atau oksigen berperan sebagai donor pasangan elektron. Ion sianat Tiga atom-atom pada ion sianat berada pada satu garis lurus sehingga strukturnya linear. Struktur elektroniknya dapat dituliskan sebagai Ö:-C≡N: Dengan ikatan tunggal C-O dan ikatan C-N rangkap tiga....

 

2005 UNCAF Nations CupTournament detailsHost countryGuatemalaTeams7 (from 1 sub-confederation)Final positionsChampions Costa Rica (5th title)Runners-up HondurasThird place GuatemalaFourth place PanamaTournament statisticsMatches played13Goals scored34 (2.62 per match)Top scorer(s) Wilmer Velásquez(6 goals)← 2003 2007 → International football competition The eighth edition of the bi-annual UNCAF Nations Cup was held in Guatemala, from February 19...

 

Wine packaged in a bag-in-box arrangement This article's tone or style may not reflect the encyclopedic tone used on Wikipedia. See Wikipedia's guide to writing better articles for suggestions. (December 2016) (Learn how and when to remove this message) A 4-litre cask of Australian white wine Boxed wine (cask wine) is a wine sold in bag-in-box packaging. Traditionally, this consists of a cardboard box containing a wine filled plastic reservoir. The flow of the wine from the box is controlled ...

Build God, Then We'll TalkLagu oleh Panic! at the Discodari album A Fever You Can't Sweat OutSisi-BBuild God, Then We'll Talk (Live in Denver)[1]Dirilis26 Maret 2007FormatUnduhan digitalDirekam2005GenreBaroque pop, pop punkDurasi3:40LabelDecaydancePenciptaRyan Ross, Brendon Urie, Spencer SmithLirikus Ryan Ross Brendon Urie Spencer Smith ProduserMatt Squire Build God, Then We'll Talk adalah singel kelima sekaligus terakhir dari album debut grup musik Panic! at the Disco, A Fever You Ca...

 

Voce principale: Unione Sportiva Sanremese Calcio 1904. Unione Sportiva SanremeseStagione 1979-1980Sport calcio Squadra Sanremese Allenatore Ezio Caboni Presidente Gianni Borra Serie C14º posto nel girone A. Maggiori presenzeCampionato: Vella (34) Miglior marcatoreCampionato: Vella (10) 1978-1979 1980-1981 Si invita a seguire il modello di voce Indice 1 Divise 2 Rosa 3 Risultati 3.1 Campionato 3.1.1 Girone di andata 3.1.2 Girone di ritorno 4 Bibliografia Divise 1ª divisa 2ª divisa Ro...

 

Pour les articles homonymes, voir Gray. Loren GrayBiographieNaissance 19 avril 2002 (22 ans)PottstownNom de naissance AchonchonNationalité américaineActivités Chanteuse, youtubeuse, productrice de télévisionPériode d'activité depuis 2015Autres informationsLabel Virgin MusicDistinction Forbes 30 Under 30 (2021)modifier - modifier le code - modifier Wikidata Loren Gray Beech, née le 19 avril 2002, est une influenceuse, chanteuse, vidéaste et femme d'affaires américaine. Biograph...

English women's association football club Chelsea Women redirects here. For various subjects titled Chelsea Girls, see Chelsea Girl (disambiguation). Football clubChelsea WomenFull nameChelsea Football Club WomenNickname(s)The BluesFounded1992; 32 years ago (1992)[1]GroundKingsmeadowStamford Bridge (select home games)Capacity4,850 (Kingsmeadow)40,173 (Stamford Bridge)OwnerBlueCo[2]ChairmanAdrian Jacob[3]ManagerEmma HayesLeagueWomen's Super League2022�...

 

哈比卜·布尔吉巴الحبيب بورقيبة‎第1任突尼斯总统任期1957年7月25日—1987年11月7日(30年105天)总理巴希·拉德加姆(英语:Bahi Ladgham)(1969年-1970年)赫迪·努伊拉(英语:Hedi Nouira)(1970年-1980年)穆罕默德·姆扎利(英语:Mohammed Mzali)(1980年-1986年)拉希德·斯法尔(英语:Rachid Sfar)(1986年-1987年)宰因·阿比丁·本·阿里(1987年)继任宰因·阿比丁·本·...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Hankai Uemachi Line – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this message) Uemachi LineUemachi Line tramOverviewLocaleOsakaTerminiTennoji-ekimaeSumiyoshiStations10ServiceTypetramServices2Operator(s)Hankai Tramw...

「アプリケーション」はこの項目へ転送されています。英語の意味については「wikt:応用」、「wikt:application」をご覧ください。 この記事には複数の問題があります。改善やノートページでの議論にご協力ください。 出典がまったく示されていないか不十分です。内容に関する文献や情報源が必要です。(2018年4月) 古い情報を更新する必要があります。(2021年3月)出...

 

This article may require copy editing for grammar, style, cohesion, tone, or spelling. You can assist by editing it. (December 2023) (Learn how and when to remove this message) American HindusHoli celebration at Sri Sri Radha Krishna Temple in Spanish Fork, UtahTotal population3,369,976 (2021) [1][2]1% of U.S. Population[3](2016 Public Religion Research Institute data) 0.7% of the U.S. Population (2015 Pew Research Center data)[4]Regions with significant popul...

 

American politician and businessman (1945–2019) Bob HannerMember of the Georgia House of RepresentativesIn officeSeptember 18, 1975 – January 14, 2013Preceded byJohn R. Irwin IIISucceeded byDistrict abolishedConstituency130th district (1975–1983)131st district (1983–1993)159th district (1993–2003)133rd district (2003–2005)148th district (2005–2013) Personal detailsBornRobert Paul Hanner(1945-04-19)April 19, 1945Americus, Georgia, U.S.DiedJanuary 2, 2019(2019-01-02) (age...

Запрос «Украинец» перенаправляется сюда; см. также другие значения. У этого термина существуют и другие значения, см. Украинцы (значения). Украинцы Современное самоназвание українці[1] Численность и ареал Всего: ок. 45 млн чел.  Украина: 37 541 693 (перепись 2001)[2][3&#...

 

Climate change in the US state of South Dakota Köppen climate types in South Dakota showing the state to be largely hot-summer humid continental. Climate change in South Dakota encompasses the effects of climate change, attributed to man-made increases in atmospheric carbon dioxide, in the U.S. state of South Dakota. Due to South Dakota's location in the Northern Great Plains, the effects of climate change will vary from eastern South Dakota to western South Dakota. Eastern South Dakota can ...