Surface area

A sphere of radius r has surface area 4πr2.

The surface area (symbol A) of a solid object is a measure of the total area that the surface of the object occupies.[1] The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the definition of arc length of one-dimensional curves, or of the surface area for polyhedra (i.e., objects with flat polygonal faces), for which the surface area is the sum of the areas of its faces. Smooth surfaces, such as a sphere, are assigned surface area using their representation as parametric surfaces. This definition of surface area is based on methods of infinitesimal calculus and involves partial derivatives and double integration.

A general definition of surface area was sought by Henri Lebesgue and Hermann Minkowski at the turn of the twentieth century. Their work led to the development of geometric measure theory, which studies various notions of surface area for irregular objects of any dimension. An important example is the Minkowski content of a surface.

Definition

While the areas of many simple surfaces have been known since antiquity, a rigorous mathematical definition of area requires a great deal of care. This should provide a function

which assigns a positive real number to a certain class of surfaces that satisfies several natural requirements. The most fundamental property of the surface area is its additivity: the area of the whole is the sum of the areas of the parts. More rigorously, if a surface S is a union of finitely many pieces S1, …, Sr which do not overlap except at their boundaries, then

Surface areas of flat polygonal shapes must agree with their geometrically defined area. Since surface area is a geometric notion, areas of congruent surfaces must be the same and the area must depend only on the shape of the surface, but not on its position and orientation in space. This means that surface area is invariant under the group of Euclidean motions. These properties uniquely characterize surface area for a wide class of geometric surfaces called piecewise smooth. Such surfaces consist of finitely many pieces that can be represented in the parametric form

with a continuously differentiable function The area of an individual piece is defined by the formula

Thus the area of SD is obtained by integrating the length of the normal vector to the surface over the appropriate region D in the parametric uv plane. The area of the whole surface is then obtained by adding together the areas of the pieces, using additivity of surface area. The main formula can be specialized to different classes of surfaces, giving, in particular, formulas for areas of graphs z = f(x,y) and surfaces of revolution.

Schwarz lantern with axial slices and radial vertices. The limit of the area as and tend to infinity doesn't converge. In particular it doesn't converge to the area of the cylinder.

One of the subtleties of surface area, as compared to arc length of curves, is that surface area cannot be defined simply as the limit of areas of polyhedral shapes approximating a given smooth surface. It was demonstrated by Hermann Schwarz that already for the cylinder, different choices of approximating flat surfaces can lead to different limiting values of the area; this example is known as the Schwarz lantern.[2][3]

Various approaches to a general definition of surface area were developed in the late nineteenth and the early twentieth century by Henri Lebesgue and Hermann Minkowski. While for piecewise smooth surfaces there is a unique natural notion of surface area, if a surface is very irregular, or rough, then it may not be possible to assign an area to it at all. A typical example is given by a surface with spikes spread throughout in a dense fashion. Many surfaces of this type occur in the study of fractals. Extensions of the notion of area which partially fulfill its function and may be defined even for very badly irregular surfaces are studied in geometric measure theory. A specific example of such an extension is the Minkowski content of the surface.

Common formulas

Surface areas of common solids
Shape Formula/Equation Variables
Cube a = side length
Cuboid l = length, b = breadth, h = height
Triangular prism b = base length of triangle, h = height of triangle, l = distance between triangular bases, p, q, r = sides of triangle
All prisms B = the area of one base, P = the perimeter of one base, h = height
Sphere r = radius of sphere, d = diameter
Hemisphere r = radius of the hemisphere
Hemispherical shell R = external radius of hemisphere, r = internal radius of hemisphere
Spherical lune r = radius of sphere, θ = dihedral angle
Torus r = minor radius (radius of the tube), R = major radius (distance from center of tube to center of torus)
Closed cylinder r = radius of the circular base, h = height of the cylinder
Cylindrical annulus R = External radius

r = Internal radius, h = height

Capsule r = radius of the hemispheres and cylinder, h = height of the cylinder
Curved surface area of a cone

s = slant height of the cone, r = radius of the circular base, h = height of the cone

Full surface area of a cone s = slant height of the cone, r = radius of the circular base, h = height of the cone
Regular Pyramid B = area of base, P = perimeter of base, s = slant height
Square pyramid b = base length, s = slant height, h = vertical height
Rectangular pyramid l = length, b = breadth, h = height
Tetrahedron a = side length
Surface of revolution
Parametric surface = parametric vector equation of surface,

= partial derivative of with respect to ,
= partial derivative of with respect to ,
= shadow region

Ratio of surface areas of a sphere and cylinder of the same radius and height

A cone, sphere and cylinder of radius r and height h.

The below given formulas can be used to show that the surface area of a sphere and cylinder of the same radius and height are in the ratio 2 : 3, as follows.

Let the radius be r and the height be h (which is 2r for the sphere).

The discovery of this ratio is credited to Archimedes.[4]

In chemistry

Surface area of particles of different sizes.

Surface area is important in chemical kinetics. Increasing the surface area of a substance generally increases the rate of a chemical reaction. For example, iron in a fine powder will combust,[5] while in solid blocks it is stable enough to use in structures. For different applications a minimal or maximal surface area may be desired.

In biology

The inner membrane of the mitochondrion has a large surface area due to infoldings, allowing higher rates of cellular respiration (electron micrograph).[6]

The surface area of an organism is important in several considerations, such as regulation of body temperature and digestion.[7] Animals use their teeth to grind food down into smaller particles, increasing the surface area available for digestion.[8] The epithelial tissue lining the digestive tract contains microvilli, greatly increasing the area available for absorption.[9] Elephants have large ears, allowing them to regulate their own body temperature.[10] In other instances, animals will need to minimize surface area;[11] for example, people will fold their arms over their chest when cold to minimize heat loss.

The surface area to volume ratio (SA:V) of a cell imposes upper limits on size, as the volume increases much faster than does the surface area, thus limiting the rate at which substances diffuse from the interior across the cell membrane to interstitial spaces or to other cells.[12] Indeed, representing a cell as an idealized sphere of radius r, the volume and surface area are, respectively, V = (4/3)πr3 and SA = 4πr2. The resulting surface area to volume ratio is therefore 3/r. Thus, if a cell has a radius of 1 μm, the SA:V ratio is 3; whereas if the radius of the cell is instead 10 μm, then the SA:V ratio becomes 0.3. With a cell radius of 100, SA:V ratio is 0.03. Thus, the surface area falls off steeply with increasing volume.

See also

References

  1. ^ Weisstein, Eric W. "Surface Area". MathWorld.
  2. ^ "Schwarz's Paradox" (PDF). Archived (PDF) from the original on 4 March 2016. Retrieved 21 March 2017.
  3. ^ "Archived copy" (PDF). Archived from the original (PDF) on 15 December 2011. Retrieved 24 July 2012.{{cite web}}: CS1 maint: archived copy as title (link)
  4. ^ Rorres, Chris. "Tomb of Archimedes: Sources". Courant Institute of Mathematical Sciences. Archived from the original on 9 December 2006. Retrieved 2 January 2007.
  5. ^ Nasr, Somaye; Plucknett, Kevin P. (20 February 2014). "Kinetics of Iron Ore Reduction by Methane for Chemical Looping Combustion". Energy & Fuels. 28 (2): 1387–1395. doi:10.1021/ef402142q. ISSN 0887-0624.
  6. ^ Paumard, Patrick; Vaillier, Jacques; Coulary, Bénédicte; Schaeffer, Jacques; Soubannier, Vincent; Mueller, David M.; Brèthes, Daniel; di Rago, Jean-Paul; Velours, Jean (1 February 2002). "The ATP synthase is involved in generating mitochondrial cristae morphology". The EMBO Journal. 21 (3): 221–230. doi:10.1093/emboj/21.3.221. PMC 125827. PMID 11823415.
  7. ^ Narasimhan, Arunn (1 July 2008). "Why do elephants have big ear flaps?". Resonance. 13 (7): 638–647. doi:10.1007/s12045-008-0070-5. ISSN 0973-712X.
  8. ^ Feher, Joseph (2012), "Mouth and Esophagus", Quantitative Human Physiology, Elsevier, pp. 689–700, doi:10.1016/b978-0-12-382163-8.00077-3, ISBN 978-0-12-382163-8, retrieved 30 March 2024
  9. ^ "Microvillus | Description, Anatomy, & Function | Britannica". www.britannica.com. Retrieved 30 March 2024.
  10. ^ Wright, P. G. (1984). "Why do elephants flap their ears?". African Zoology. 19 (4): 266–269. ISSN 2224-073X.
  11. ^ Stocks, Jodie M.; Taylor, Nigel A.S.; Tipton, Michael J.; Greenleaf, John E. (1 May 2004). "Human Physiological Responses to Cold Exposure". Aviation, Space, and Environmental Medicine. 75 (5): 444–457. PMID 15152898.
  12. ^ Deaver, James R. (1 November 1978). "Modeling Limits to Cell Size". The American Biology Teacher. 40 (8): 502–504. doi:10.2307/4446369. ISSN 0002-7685. JSTOR 4446369.

Read other articles:

Stasiun Shiogama塩釜駅Stasiun Shiogama, April 2009Lokasi 5-1 Higashi-Tamagawa-cho, Shiogama-shi, Miyagi-ken 985-0042JepangKoordinat38°18′33″N 141°00′33″E / 38.3092°N 141.0092°E / 38.3092; 141.0092Koordinat: 38°18′33″N 141°00′33″E / 38.3092°N 141.0092°E / 38.3092; 141.0092Operator JR EastJalur ■ Jalur Utama Tōhoku ■ Jalur Senseki-Tōhoku Letak365.2 km dari TokyoJumlah peron1 peron pulauJumlah jalur2Informasi lain...

 

 

صربيا والجبل الأسود Državna Zajednica Srbija i Crna Gora Државна Заједница Србија и Црна Гора جمهورية يوغوسلافيا الاتحادية اتحادا في جمهورية 1992 – 2006   صربيا والجبل الأسودعلم صربيا والجبل الأسودشعار موقع الجمهورية في أوروبا عاصمة بلغراد نظام الحكم جمهورية اشتراكية اللغة الرسمي�...

 

 

Sporetus colobotheides Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Insecta Ordo: Coleoptera Famili: Cerambycidae Subfamili: Lamiinae Tribus: Acanthocinini Genus: Sporetus Spesies: Sporetus colobotheides Sporetus colobotheides adalah spesies kumbang tanduk panjang yang tergolong famili Cerambycidae. Spesies ini juga merupakan bagian dari genus Sporetus, ordo Coleoptera, kelas Insecta, filum Arthropoda, dan kingdom Animalia. Larva kumbang ini biasanya mengebor ke dalam kayu ...

Disambiguazione – Renato Rossini rimanda qui. Se stai cercando il calciatore, vedi Renato Rossini (calciatore). Questa voce sugli argomenti attori italiani e sceneggiatori italiani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Ross nel film 5 bambole per la luna d'agosto (1970) Renato Rossini, noto come Howard Ross, o Red Ross (Roma, 10 gennaio 1941), è un attore e sceneggiatore italiano. ...

 

 

2019 Référendum cubain de 2022 25 septembre 2022 Corps électoral et résultats Inscrits 8 457 978 Votants 6 269 427   74,12 % Blancs et nuls 360 042 Nouveau code de la famille Pour   66,85 % Contre   33,15 % modifier - modifier le code - voir Wikidata  Le référendum cubain de 2022 a lieu le 25 septembre 2022 afin de permettre à la population de Cuba de se prononcer sur un nouveau code de la famille légalisant notamment ...

 

 

UFC mixed martial arts event in 2019 UFC Fight Night: Assunção vs. Moraes 2The poster for UFC Fight Night: Assunção vs. Moraes 2InformationPromotionUltimate Fighting ChampionshipDateFebruary 2, 2019 (2019-02-02)VenueCentro de Formação Olímpica do NordesteCityFortaleza, BrazilAttendance10,040[1]Event chronology UFC 233 (cancelled) UFC Fight Night: Assunção vs. Moraes 2 UFC 234: Adesanya vs. Silva UFC Fight Night: Assunção vs. Moraes 2 (also known as UFC Fight ...

English philosopher and Christian apologist Richard SwinburneProfessorSwinburne in 2009BornRichard Granville Swinburne (1934-12-26) 26 December 1934 (age 89)Smethwick, EnglandAcademic backgroundAlma materExeter College, OxfordInfluences Plato Aristotle René Descartes Thomas Aquinas Rudolf Carnap Carl Hempel Academic workDisciplinePhilosophytheologySub-disciplinePhilosophical theologyphilosophy of religionphilosophy of scienceSchool or traditionAnalytic philosophyInstitutionsUniversity o...

 

 

Didone abbandonata, act 1, scene 5; Francesco Battaglioli (1754) Didone abbandonata is an opera libretto in three acts by Pietro Metastasio. It was his first original work and was set to music by Domenico Sarro in 1724. The opera was accompanied by the intermezzo L'impresario delle Isole Canarie, also by Metastasio. During the century that followed, it was set more than 50 times by other composers such as Nicola Porpora (1725), Leonardo Vinci (1726), Baldassare Galuppi (1740), Johann Adolph H...

 

 

American singer and songwriter For technical reasons, Judy Collins #3 redirects here. For the album, see Judy Collins 3. Judy CollinsCollins at the Cambridge Folk Festival, 2008Background informationBirth nameJudith Marjorie CollinsBorn (1939-05-01) May 1, 1939 (age 85)Seattle, Washington, U.S.OriginDenver, Colorado, U.S.GenresFolkAmericanacountryrock and rollpopOccupation(s)SingersongwritermusicianInstrument(s)VocalspianoguitarYears active1959–presentLabelsElektraGeffenMCAMesa Bluemoo...

Small nucleolar RNA psi28S-1192Predicted secondary structure and sequence conservation of snopsi28S-1192IdentifiersSymbolsnopsi28S-1192RfamRF00542Other dataRNA typeGene; snRNA; snoRNA; HACA-boxDomain(s)EukaryotaGOGO:0006396 GO:0005730SOSO:0000594PDB structuresPDBe In molecular biology, Small nucleolar RNA psi28S-1192 (also known as snoRNA psi28S-1192) is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modify...

 

 

Il piccolo Nicolas e i suoi genitoriGli alunni si mettono in posa per la foto di classe, Nicolas è al centro con indosso un maglioncino rosso.Titolo originaleLe Petit Nicolas Lingua originalefrancese Paese di produzioneFrancia Anno2009 Durata91 min e 90 min Rapporto1,85:1 Generecommedia RegiaLaurent Tirard SoggettoJean-Jacques Sempé, René Goscinny SceneggiaturaLaurent Tirard, Grégoire Vigneron, Alain Chabat ProduttoreEric Jehelmann Casa di produzioneFidélité Productions Distribuzione in...

 

 

此條目可参照英語維基百科相應條目来扩充。 (2021年5月6日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 约翰斯顿环礁Kalama Atoll 美國本土外小島嶼 Johnston Atoll 旗幟颂歌:《星條旗》The Star-Spangled Banner約翰斯頓環礁�...

Пушка — негеральдическая искусственная гербовая фигура, возникшая изначально в шведской и русской геральдике в Новое время с XVII века. В геральдике почти без исключений артиллерийское орудие этого типа представляется на раннем этапе своего развития — не казнозар...

 

 

U.S. Navy sailors exercising in the presence of a female fitness instructor, 2010 A professional fitness coach is a professional in the field of fitness and exercise, most often instruction (fitness instructor), including professional sports club's fitness trainers and aerobics and yoga instructors and authors of fitness instruction books or manuals. Overview Fitness topics may also include nutrition, weight-loss, and self-help. Fitness careers are distinguished from exercise science careers ...

 

 

Die-in by I BIKE Dublin at Dublin City Council, 2019, in Dublin Czech poster 1902 Activities promoting cycling Cycling advocacy consists of activities that call for, promote or enable increased adoption and support for cycling and improved safety and convenience for cyclists, usually within urbanized areas or semi-urban regions. Issues of concern typically include policy, administrative and legal changes (the consideration of cycling in all governance); advocating and establishing better cycl...

حرب البوير الثانية جزء من حروب البوير جنود بريطانيون على أعتاب مدينة ليديسميث، 1900. معلومات عامة التاريخ وسيط property غير متوفر. بداية 11 أكتوبر 1899  نهاية 31 مايو 1902  البلد مدينية ليدي سمث في جنوب افريقيا الموقع جنوب أفريقيا، سوازيلاند[1] المتحاربون الإمبراطورية البريط�...

 

 

Bataillon envoyé au front sur la route de la gare de Biləcəri en 1942. La République socialiste soviétique d'Azerbaïdjan entre dans la Seconde Guerre mondiale après l'invasion allemande de l'Union soviétique le 22 juin 1941. Les champs pétrolifères azerbaïdjanais attiraient les Allemands en raison de la forte dépendance de l'URSS vis-à-vis du pétrole du Caucase – préparant le terrain pour les campagnes allemandes tentant de capturer et de s'emparer des champs pétrolifères d...

 

 

1916 battle on the Eastern Front of WWI Battle of KostiuchnówkaPart of the Brusilov Offensive during the First World WarPolish Legionnaires at KostiuchnówkaDateJuly 4–7, 1916LocationKostiuchnówka (Kostyukhnivka)51°20′35″N 25°45′35″E / 51.34306°N 25.75972°E / 51.34306; 25.75972Result InconclusiveBelligerents  Austria-Hungary(Polish Legions) Russian EmpireCommanders and leaders Józef Piłsudski Alexey KaledinStrength 5,500[1]–7,300[2&...

A large artificial harbour of Ancient Rome For other uses, see Portus (disambiguation) and Porto (disambiguation). PortusThe mouth of the Tiber, with the hexagonal harbour of Portus at upper middle (modern day Lago Traiano).Click on the map to see markerRegionLazioCoordinates41°46′44″N 12°15′32″E / 41.779°N 12.259°E / 41.779; 12.259TypeSettlement, PortHistoryPeriodsRoman RepublicRoman EmpireCulturesAncient RomeSite notesExcavation datesyesArchaeologist...

 

 

See also: Invasion of Jersey (1779) Franco-Spanish naval enterprise against Britain Armada of 1779Part of the American Revolutionary WarDateJune to September 1779LocationEnglish ChannelResult British victory[1][2]Belligerents  France Spain  Great BritainCommanders and leaders Comte d'Orvilliers Comte de Vaux Luis de Córdova y Córdova Sir Charles Hardy Lord AmherstStrength 66 ships of the line30,000 troops[3] 38 ships of the line20,000 troops39,000 militia&#...