Bernoulli scheme

In mathematics, the Bernoulli scheme or Bernoulli shift is a generalization of the Bernoulli process to more than two possible outcomes.[1][2] Bernoulli schemes appear naturally in symbolic dynamics, and are thus important in the study of dynamical systems. Many important dynamical systems (such as Axiom A systems) exhibit a repellor that is the product of the Cantor set and a smooth manifold, and the dynamics on the Cantor set are isomorphic to that of the Bernoulli shift.[3] This is essentially the Markov partition. The term shift is in reference to the shift operator, which may be used to study Bernoulli schemes. The Ornstein isomorphism theorem[4][5] shows that Bernoulli shifts are isomorphic when their entropy is equal.

Definition

A Bernoulli scheme is a discrete-time stochastic process where each independent random variable may take on one of N distinct possible values, with the outcome i occurring with probability , with i = 1, ..., N, and

The sample space is usually denoted as

as a shorthand for

The associated measure is called the Bernoulli measure[6]

The σ-algebra on X is the product sigma algebra; that is, it is the (countable) direct product of the σ-algebras of the finite set {1, ..., N}. Thus, the triplet

is a measure space. A basis of is the cylinder sets. Given a cylinder set , its measure is

The equivalent expression, using the notation of probability theory, is

for the random variables

The Bernoulli scheme, as any stochastic process, may be viewed as a dynamical system by endowing it with the shift operator T where

Since the outcomes are independent, the shift preserves the measure, and thus T is a measure-preserving transformation. The quadruplet

is a measure-preserving dynamical system, and is called a Bernoulli scheme or a Bernoulli shift. It is often denoted by

The N = 2 Bernoulli scheme is called a Bernoulli process. The Bernoulli shift can be understood as a special case of the Markov shift, where all entries in the adjacency matrix are one, the corresponding graph thus being a clique.

Matches and metrics

The Hamming distance provides a natural metric on a Bernoulli scheme. Another important metric is the so-called metric, defined via a supremum over string matches.[7]

Let and be two strings of symbols. A match is a sequence M of pairs of indexes into the string, i.e. pairs such that understood to be totally ordered. That is, each individual subsequence and are ordered: and likewise

The -distance between and is

where the supremum is being taken over all matches between and . This satisfies the triangle inequality only when and so is not quite a true metric; despite this, it is commonly called a "distance" in the literature.

Generalizations

Most of the properties of the Bernoulli scheme follow from the countable direct product, rather than from the finite base space. Thus, one may take the base space to be any standard probability space , and define the Bernoulli scheme as

This works because the countable direct product of a standard probability space is again a standard probability space.

As a further generalization, one may replace the integers by a countable discrete group , so that

For this last case, the shift operator is replaced by the group action

for group elements and understood as a function (any direct product can be understood to be the set of functions , as this is the exponential object). The measure is taken as the Haar measure, which is invariant under the group action:

These generalizations are also commonly called Bernoulli schemes, as they still share most properties with the finite case.

Properties

Ya. Sinai demonstrated that the Kolmogorov entropy of a Bernoulli scheme is given by[8][9]

This may be seen as resulting from the general definition of the entropy of a Cartesian product of probability spaces, which follows from the asymptotic equipartition property. For the case of a general base space (i.e. a base space which is not countable), one typically considers the relative entropy. So, for example, if one has a countable partition of the base Y, such that , one may define the entropy as

In general, this entropy will depend on the partition; however, for many dynamical systems, it is the case that the symbolic dynamics is independent of the partition (or rather, there are isomorphisms connecting the symbolic dynamics of different partitions, leaving the measure invariant), and so such systems can have a well-defined entropy independent of the partition.

Ornstein isomorphism theorem

The Ornstein isomorphism theorem states that two Bernoulli schemes with the same entropy are isomorphic.[4] The result is sharp,[10] in that very similar, non-scheme systems, such as Kolmogorov automorphisms, do not have this property.

The Ornstein isomorphism theorem is in fact considerably deeper: it provides a simple criterion by which many different measure-preserving dynamical systems can be judged to be isomorphic to Bernoulli schemes. The result was surprising, as many systems previously believed to be unrelated proved to be isomorphic. These include all finite[clarification needed] stationary stochastic processes, subshifts of finite type, finite Markov chains, Anosov flows, and Sinai's billiards: these are all isomorphic to Bernoulli schemes.

For the generalized case, the Ornstein isomorphism theorem still holds if the group G is a countably infinite amenable group. [11][12]

Bernoulli automorphism

An invertible, measure-preserving transformation of a standard probability space (Lebesgue space) is called a Bernoulli automorphism if it is isomorphic to a Bernoulli shift.[13]

Loosely Bernoulli

A system is termed "loosely Bernoulli" if it is Kakutani-equivalent to a Bernoulli shift; in the case of zero entropy, if it is Kakutani-equivalent to an irrational rotation of a circle.

See also

References

  1. ^ P. Shields, The theory of Bernoulli shifts, Univ. Chicago Press (1973)
  2. ^ Michael S. Keane, "Ergodic theory and subshifts of finite type", (1991), appearing as Chapter 2 in Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces, Tim Bedford, Michael Keane and Caroline Series, Eds. Oxford University Press, Oxford (1991). ISBN 0-19-853390-X
  3. ^ Pierre Gaspard, Chaos, scattering and statistical mechanics (1998), Cambridge University press
  4. ^ a b Ornstein, Donald (1970). "Bernoulli shifts with the same entropy are isomorphic". Advances in Mathematics. 4: 337–352. doi:10.1016/0001-8708(70)90029-0.
  5. ^ D.S. Ornstein (2001) [1994], "Ornstein isomorphism theorem", Encyclopedia of Mathematics, EMS Press
  6. ^ Klenke, Achim (2006). Probability Theory. Springer-Verlag. ISBN 978-1-84800-047-6.
  7. ^ Feldman, Jacob (1976). "New -automorphisms and a problem of Kakutani". Israel Journal of Mathematics. 24 (1): 16–38. doi:10.1007/BF02761426.
  8. ^ Ya.G. Sinai, (1959) "On the Notion of Entropy of a Dynamical System", Doklady of Russian Academy of Sciences 124, pp. 768–771.
  9. ^ Ya. G. Sinai, (2007) "Metric Entropy of Dynamical System"
  10. ^ Hoffman, Christopher (1999). "A Counterexample Machine". Transactions of the American Mathematical Society. 351: 4263–4280.
  11. ^ Ornstein, Donald S.; Weiss, Benjamin (1987). "Entropy and isomorphism theorems for actions of amenable groups". Journal d'Analyse Mathématique. 48: 1–141. doi:10.1007/BF02790325.
  12. ^ Bowen, Lewis (2012). "Every countably infinite group is almost Ornstein". Contemporary Mathematics. 567: 67–78. arXiv:1103.4424.
  13. ^ Peter Walters (1982) An Introduction to Ergodic Theory, Springer-Verlag, ISBN 0-387-90599-5

Read other articles:

Tari kuda Gipang di Banjar Kuda Gipang atau Kuda Gepang merupakan salah satu kesenian Kuda Lumping yang berupa tarian berbaris menggunakan Eblek anayaman bambu berbentuk hewan kuda berkembang di lingkungan masyarakat Banjar, Kalimantan Selatan. Asal mula Bermula ketika Kerajaan Daha di Banjar dibantu oleh kesultanan Demak dalam kemelut perang perebutan tahta, yang dimana pihak Kesultan Demak memberikan syarat kepada Pangeran Samudera sebagai pewaris tahta kerajaan Daha penerus yang sah untuk ...

 

Alexander HerrmannHerrmann AgungLahir(1844-02-10)10 Februari 1844Paris, PrancisMeninggal17 Desember 1896(1896-12-17) (umur 52)Ellicottville, New York, ASPekerjaanpesulap, ilusionis Alexander Herrmann (10 Februari 1844 – 17 Desember 1896)[1] adalah seorang pesulap asal Prancis, yang lebih dikenal sebagai Herrmann Agung. Ia menikahi Adelaide Herrmann, pesulap lain yang dikenal sebagai Ratu Sulap. Referensi ^ Magician Herrmann Dead (PDF). The New York Times. Decembe...

 

Constituency of Bangladesh's Jatiya Sangsad Brahmanbaria-1Constituencyfor the Jatiya SangsadDistrictBrahmanbaria DistrictDivisionChittagong DivisionElectorate214,039 (2018)[1]Current constituencyCreated1984PartyindependentMember(s)Syed AK Ekramuzzaman Brahmanbaria-1 is a constituency represented in the Jatiya Sangsad (National Parliament) of Bangladesh since January 2024 by Syed A.K. Ekramuzzaman of the independent politician . Boundaries The constituency encompasses Nasirnagar Upazil...

Quodlibet dari buku lagu Hieronymus Lauweryn Watervliet Quodlibet adalah nama yang pertama kali diberikan oleh Wolfgang Schmeltzl pada tahun 1554 kepada komposisi yang terdiri dari banyak suara, sering kali vokal, dipadu dari berbagai fragmen nyanyian atau lagu yang saat itu dikenal.[1] Disusun agar terdengar kocak, bisa dinyanyikan serempak, sambung menyambung atau berganti-ganti.[1] Quodlibet terutama populer pada abad ke-15 dan ke-16.[2] Quodlibet yang terkenal adal...

 

العلاقات الدومينيكانية الكوستاريكية جمهورية الدومينيكان كوستاريكا   جمهورية الدومينيكان   كوستاريكا تعديل مصدري - تعديل   العلاقات الدومينيكانية الكوستاريكية هي العلاقات الثنائية التي تجمع بين جمهورية الدومينيكان وكوستاريكا.[1][2][3][4][5]...

 

Species of plant Not to be confused with Mrs. Burns' Lemon basil, a cultivar of Ocimum basilicum. Lemon basil Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Eudicots Clade: Asterids Order: Lamiales Family: Lamiaceae Genus: Ocimum Species: O. × africanum Binomial name Ocimum × africanumLour. Synonyms[1] Ocimum americanum var. pilosum (Willd.) A.J.Paton Ocimum basilicum var. anisatum Benth. Ocimum basilicum var. pilosum (Willd.) ...

This article is about the municipality in Åland. For the district of Helsinki, see Kulosaari. Municipality in Åland, FinlandBrändöMunicipalityBrändö kommun Coat of armsLocation of Brändö in FinlandBrändöLocation in ÅlandCoordinates: 60°24′42″N 21°2′42″E / 60.41167°N 21.04500°E / 60.41167; 21.04500Country FinlandRegionÅlandSub-regionArchipelago sub-regionCharter1866Government • Municipal managerJohn WredeArea (2018-01-01) ...

 

الألعاب الأولمبية الشتوية 2022 بكين، الصين الدول المشاركة 91 الرياضيون المشاركون 2786 [1]،  و91 [1]  المسابقات 109، في 7 رياضة انطلاق الألعاب 4 فبراير المفتتح الرسمي الرئيس شي جين بينغ (متوقع) الملعب ملعب بكين الوطني الاختتام 20 فبراير الموقع الرسمي الموقع الرسمي  بيو�...

 

Ethnic group in Sudan Ethnic group Sudanese GreeksΈλληνες του ΣουδάνThe ceremony hall of the Hellenic Community in Khartoum (2015)Regions with significant populationsSudanLanguagesGreek · Sudanese Arabic · EnglishReligionGreek Orthodox ChurchRelated ethnic groupsAfrican Greeks · Egyptian Greeks · Ethiopian Greeks The Sudanese Greeks, or Greeks in Sudan, are ethnic Greeks from modern-day Sudan; they are small in number (es...

Interdisciplinary area of study For the academic journal, see Human Biology (journal). For the textbook, see Human Biology (textbook). Human biology is an interdisciplinary area of academic study that examines humans through the influences and interplay of many diverse fields such as genetics, evolution, physiology, anatomy, epidemiology, anthropology, ecology, nutrition, population genetics, and sociocultural influences.[1] It is closely related to the biomedical sciences, biological...

 

هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. بيث شيلاني مملكة بيث - شيلاني أو بيث شعلاني : Beth-Shilani عاصمتُها ( سَر أنابا Sar-Anaba ) في سنة 732 ق . م قاد الملكُ الآشوري ( تكلتبيلاصر الثالث 745 - 727 ق . م ) حملةً عسكرية على عاصمتِها سر أ...

 

Village in Dorset, England Human settlement in EnglandPiddletrenthidePiddletrenthidePiddletrenthideLocation within DorsetArea25.54 km2 (9.86 sq mi)Population647 (Parish, 2011)[1]• Density25/km2 (65/sq mi)OS grid referenceST703000Unitary authorityDorsetShire countyDorsetRegionSouth WestCountryEnglandSovereign stateUnited KingdomPost townDorchesterPostcode districtDT2PoliceDorsetFireDorset and WiltshireAmbulanceSouth Western ...

Polissena SforzaSignora consorte di RiminiStemma In carica1442-1449 PredecessoreGinevra d'Este SuccessoreIsotta degli Atti NascitaMortara, 1428 MorteRimini, 1º giugno 1449 SepolturaRimini Luogo di sepolturaTempio malatestiano DinastiaSforza PadreFrancesco Sforza MadreGiovanna d'Acquapendente ConsorteSigismondo Pandolfo Malatesta FigliGaleotto, Giovanna Ducato di MilanoCasato degli Sforza Francesco I Figli Galeazzo Maria Ippolita Maria Filippo Maria Sforza Maria Ludovico Maria Elisabett...

 

United Nations resolution adopted in 1998 UN Security CouncilResolution 1178Ayia Napa beach in southern CyprusDate29 June 1998Meeting no.3,898CodeS/RES/1178 (Document)SubjectThe situation in CyprusVoting summary15 voted forNone voted againstNone abstainedResultAdoptedSecurity Council compositionPermanent members China France Russia United Kingdom United StatesNon-permanent members Bahrain Brazil Costa Rica Gabon Gambia Japan Ke...

 

Spanish novelist, poet, and playwright (1547–1616) Cervantes redirects here. For other uses, see Cervantes (disambiguation). Miguel Cervantes redirects here. For the American actor and singer, see Miguel Cervantes (actor). Miguel de CervantesThis portrait, attributed to Juan de Jáuregui,[a] is unauthenticated. No authenticated image of Cervantes exists.[1][2]Born(1547-09-29)September 29, 1547Alcalá de Henares, SpainDied22 April 1616(1616-04-22) (aged 68)[3...

Movistar Open 1995Sport Tennis Data23 ottobre – 30 ottobre Edizione3a SuperficieTerra rossa CampioniSingolare Sláva Doseděl Doppio Jiří Novák / David Rikl 1994 1996 Il Movistar Open 1995 è stato un torneo di tennis giocato sulla terra rossa. È stata la 3ª edizione del torneo, che fa parte della categoria ATP World Series nell'ambito dell'ATP Tour 1995.Si è giocato a Santiago in Cile dal 23 al 30 ottobre 1995. Indice 1 Campioni 1.1 Singolare maschile 1.2 Doppio maschile 2 Collegamen...

 

「浜松医科大学」あるいは「浜松学院大学」とは異なります。 浜松大学 キャンパス(2009年7月)大学設置/創立 1988年廃止 2016年学校種別 私立設置者 学校法人常葉学園本部所在地 静岡県浜松市北区都田町1230北緯34度48分52.85秒 東経137度42分31.88秒 / 北緯34.8146806度 東経137.7088556度 / 34.8146806; 137.7088556座標: 北緯34度48分52.85秒 東経137度42分31.88秒 / ...

 

Novembre 1869 Nombre de jours 30 Premier jour Lundi 1er novembre 18691er jour de la semaine 44 Dernier jour Mardi 30 novembre 18692e jour de la semaine 48 Calendrier novembre 1869 Sem Lu Ma Me Je Ve Sa Di 44 1er 2 3 4 5 6 7 45 8 9 10 11 12 13 14 46 15 16 17 18 19 20 21 47 22 23 24 25 26 27 28  48 29 30 1869 • Années 1860 • XIXe siècle Mois précédent et suivant Octobre 1869 Décembre 1869 Novembre précédent et suivant Novembre 1868 Novembre 1870 Chronologies...

Scottish industrialist George LauderBornNovember 11, 1837 (1837-11-11)Dunfermline, Fife, ScotlandDiedAugust 24, 1924(1924-08-24) (aged 86)Greenwich, Connecticut, United StatesResting placePutnam CemeteryOther namesDodAlma materUniversity of GlasgowOccupation(s)IndustrialistMechanical EngineerKnown forRevolutionizing the steel industry as a partner at Carnegie SteelSpouseAnna Maria Romeyn VarickChildren3ParentsGeorge Lauder, Sr. (father)Seaton Morrison (mother)FamilyLa...

 

Pour les articles homonymes, voir Yellowknife (homonymie). Yellowknife (dgr) Sǫ̀mbak’è Administration Pays Canada Province Territoires du Nord-Ouest Région Slave Nord Subdivision régionale 6 Statut municipal Ville Mairesse Mandat Rebecca Alty 2018 - Constitution 1936 et 1er janvier 1970 Démographie Gentilé Yellowknifien, Yellowknifienne Population 20 340 hab. (2021 ) Densité 193 hab./km2 Géographie Coordonnées 62° 27′ nord, 114° 24′ ouest ...