Clique (graph theory)

A graph with
  • 23 × 1-vertex cliques (the vertices),
  • 42 × 2-vertex cliques (the edges),
  • 19 × 3-vertex cliques (light and dark blue triangles), and
  • 2 × 4-vertex cliques (dark blue areas).
The 11 light blue triangles form maximal cliques. The two dark blue 4-cliques are both maximum and maximal, and the clique number of the graph is 4.

In graph theory, a clique (/ˈklk/ or /ˈklɪk/) is a subset of vertices of an undirected graph such that every two distinct vertices in the clique are adjacent. That is, a clique of a graph is an induced subgraph of that is complete. Cliques are one of the basic concepts of graph theory and are used in many other mathematical problems and constructions on graphs. Cliques have also been studied in computer science: the task of finding whether there is a clique of a given size in a graph (the clique problem) is NP-complete, but despite this hardness result, many algorithms for finding cliques have been studied.

Although the study of complete subgraphs goes back at least to the graph-theoretic reformulation of Ramsey theory by Erdős & Szekeres (1935),[1] the term clique comes from Luce & Perry (1949), who used complete subgraphs in social networks to model cliques of people; that is, groups of people all of whom know each other. Cliques have many other applications in the sciences and particularly in bioinformatics.

Definitions

A clique, C, in an undirected graph G = (V, E) is a subset of the vertices, CV, such that every two distinct vertices are adjacent. This is equivalent to the condition that the induced subgraph of G induced by C is a complete graph. In some cases, the term clique may also refer to the subgraph directly.

A maximal clique is a clique that cannot be extended by including one more adjacent vertex, that is, a clique which does not exist exclusively within the vertex set of a larger clique. Some authors define cliques in a way that requires them to be maximal, and use other terminology for complete subgraphs that are not maximal.

A maximum clique of a graph, G, is a clique, such that there is no clique with more vertices. Moreover, the clique number ω(G) of a graph G is the number of vertices in a maximum clique in G.

The intersection number of G is the smallest number of cliques that together cover all edges of G.

The clique cover number of a graph G is the smallest number of cliques of G whose union covers the set of vertices V of the graph.

A maximum clique transversal of a graph is a subset of vertices with the property that each maximum clique of the graph contains at least one vertex in the subset.[2]

The opposite of a clique is an independent set, in the sense that every clique corresponds to an independent set in the complement graph. The clique cover problem concerns finding as few cliques as possible that include every vertex in the graph.

A related concept is a biclique, a complete bipartite subgraph. The bipartite dimension of a graph is the minimum number of bicliques needed to cover all the edges of the graph.

Mathematics

Mathematical results concerning cliques include the following.

Several important classes of graphs may be defined or characterized by their cliques:

  • A cluster graph is a graph whose connected components are cliques.
  • A block graph is a graph whose biconnected components are cliques.
  • A chordal graph is a graph whose vertices can be ordered into a perfect elimination ordering, an ordering such that the neighbors of each vertex v that come later than v in the ordering form a clique.
  • A cograph is a graph all of whose induced subgraphs have the property that any maximal clique intersects any maximal independent set in a single vertex.
  • An interval graph is a graph whose maximal cliques can be ordered in such a way that, for each vertex v, the cliques containing v are consecutive in the ordering.
  • A line graph is a graph whose edges can be covered by edge-disjoint cliques in such a way that each vertex belongs to exactly two of the cliques in the cover.
  • A perfect graph is a graph in which the clique number equals the chromatic number in every induced subgraph.
  • A split graph is a graph in which some clique contains at least one endpoint of every edge.
  • A triangle-free graph is a graph that has no cliques other than its vertices and edges.

Additionally, many other mathematical constructions involve cliques in graphs. Among them,

  • The clique complex of a graph G is an abstract simplicial complex X(G) with a simplex for every clique in G
  • A simplex graph is an undirected graph κ(G) with a vertex for every clique in a graph G and an edge connecting two cliques that differ by a single vertex. It is an example of median graph, and is associated with a median algebra on the cliques of a graph: the median m(A,B,C) of three cliques A, B, and C is the clique whose vertices belong to at least two of the cliques A, B, and C.[5]
  • The clique-sum is a method for combining two graphs by merging them along a shared clique.
  • Clique-width is a notion of the complexity of a graph in terms of the minimum number of distinct vertex labels needed to build up the graph from disjoint unions, relabeling operations, and operations that connect all pairs of vertices with given labels. The graphs with clique-width one are exactly the disjoint unions of cliques.
  • The intersection number of a graph is the minimum number of cliques needed to cover all the graph's edges.
  • The clique graph of a graph is the intersection graph of its maximal cliques.

Closely related concepts to complete subgraphs are subdivisions of complete graphs and complete graph minors. In particular, Kuratowski's theorem and Wagner's theorem characterize planar graphs by forbidden complete and complete bipartite subdivisions and minors, respectively.

Computer science

In computer science, the clique problem is the computational problem of finding a maximum clique, or all cliques, in a given graph. It is NP-complete, one of Karp's 21 NP-complete problems.[6] It is also fixed-parameter intractable, and hard to approximate. Nevertheless, many algorithms for computing cliques have been developed, either running in exponential time (such as the Bron–Kerbosch algorithm) or specialized to graph families such as planar graphs or perfect graphs for which the problem can be solved in polynomial time.

Applications

The word "clique", in its graph-theoretic usage, arose from the work of Luce & Perry (1949), who used complete subgraphs to model cliques (groups of people who all know each other) in social networks. The same definition was used by Festinger (1949) in an article using less technical terms. Both works deal with uncovering cliques in a social network using matrices. For continued efforts to model social cliques graph-theoretically, see e.g. Alba (1973), Peay (1974), and Doreian & Woodard (1994).

Many different problems from bioinformatics have been modeled using cliques. For instance, Ben-Dor, Shamir & Yakhini (1999) model the problem of clustering gene expression data as one of finding the minimum number of changes needed to transform a graph describing the data into a graph formed as the disjoint union of cliques; Tanay, Sharan & Shamir (2002) discuss a similar biclustering problem for expression data in which the clusters are required to be cliques. Sugihara (1984) uses cliques to model ecological niches in food webs. Day & Sankoff (1986) describe the problem of inferring evolutionary trees as one of finding maximum cliques in a graph that has as its vertices characteristics of the species, where two vertices share an edge if there exists a perfect phylogeny combining those two characters. Samudrala & Moult (1998) model protein structure prediction as a problem of finding cliques in a graph whose vertices represent positions of subunits of the protein. And by searching for cliques in a protein–protein interaction network, Spirin & Mirny (2003) found clusters of proteins that interact closely with each other and have few interactions with proteins outside the cluster. Power graph analysis is a method for simplifying complex biological networks by finding cliques and related structures in these networks.

In electrical engineering, Prihar (1956) uses cliques to analyze communications networks, and Paull & Unger (1959) use them to design efficient circuits for computing partially specified Boolean functions. Cliques have also been used in automatic test pattern generation: a large clique in an incompatibility graph of possible faults provides a lower bound on the size of a test set.[7] Cong & Smith (1993) describe an application of cliques in finding a hierarchical partition of an electronic circuit into smaller subunits.

In chemistry, Rhodes et al. (2003) use cliques to describe chemicals in a chemical database that have a high degree of similarity with a target structure. Kuhl, Crippen & Friesen (1983) use cliques to model the positions in which two chemicals will bind to each other.

See also

Notes

  1. ^ The earlier work by Kuratowski (1930) characterizing planar graphs by forbidden complete and complete bipartite subgraphs was originally phrased in topological rather than graph-theoretic terms.
  2. ^ Chang, Kloks & Lee (2001).
  3. ^ Turán (1941).
  4. ^ Graham, Rothschild & Spencer (1990).
  5. ^ Barthélemy, Leclerc & Monjardet (1986), page 200.
  6. ^ Karp (1972).
  7. ^ Hamzaoglu & Patel (1998).

References

  • Alba, Richard D. (1973), "A graph-theoretic definition of a sociometric clique" (PDF), Journal of Mathematical Sociology, 3 (1): 113–126, doi:10.1080/0022250X.1973.9989826, archived (PDF) from the original on 2011-05-03, retrieved 2009-12-14.
  • Barthélemy, J.-P.; Leclerc, B.; Monjardet, B. (1986), "On the use of ordered sets in problems of comparison and consensus of classifications", Journal of Classification, 3 (2): 187–224, doi:10.1007/BF01894188, S2CID 6092438.
  • Ben-Dor, Amir; Shamir, Ron; Yakhini, Zohar (1999), "Clustering gene expression patterns.", Journal of Computational Biology, 6 (3–4): 281–297, CiteSeerX 10.1.1.34.5341, doi:10.1089/106652799318274, PMID 10582567.
  • Chang, Maw-Shang; Kloks, Ton; Lee, Chuan-Min (2001), "Maximum clique transversals", Graph-theoretic concepts in computer science (Boltenhagen, 2001), Lecture Notes in Comput. Sci., vol. 2204, Springer, Berlin, pp. 32–43, doi:10.1007/3-540-45477-2_5, ISBN 978-3-540-42707-0, MR 1905299.
  • Cong, J.; Smith, M. (1993), "A parallel bottom-up clustering algorithm with applications to circuit partitioning in VLSI design", Proc. 30th International Design Automation Conference, pp. 755–760, CiteSeerX 10.1.1.32.735, doi:10.1145/157485.165119, ISBN 978-0897915779, S2CID 525253.
  • Day, William H. E.; Sankoff, David (1986), "Computational complexity of inferring phylogenies by compatibility", Systematic Zoology, 35 (2): 224–229, doi:10.2307/2413432, JSTOR 2413432.
  • Doreian, Patrick; Woodard, Katherine L. (1994), "Defining and locating cores and boundaries of social networks", Social Networks, 16 (4): 267–293, doi:10.1016/0378-8733(94)90013-2.
  • Erdős, Paul; Szekeres, George (1935), "A combinatorial problem in geometry" (PDF), Compositio Mathematica, 2: 463–470, archived (PDF) from the original on 2020-05-22, retrieved 2009-12-19.
  • Festinger, Leon (1949), "The analysis of sociograms using matrix algebra", Human Relations, 2 (2): 153–158, doi:10.1177/001872674900200205, S2CID 143609308.
  • Graham, R.; Rothschild, B.; Spencer, J. H. (1990), Ramsey Theory, New York: John Wiley and Sons, ISBN 978-0-471-50046-9.
  • Hamzaoglu, I.; Patel, J. H. (1998), "Test set compaction algorithms for combinational circuits", Proc. 1998 IEEE/ACM International Conference on Computer-Aided Design, pp. 283–289, doi:10.1145/288548.288615, ISBN 978-1581130089, S2CID 12258606.
  • Karp, Richard M. (1972), "Reducibility among combinatorial problems", in Miller, R. E.; Thatcher, J. W. (eds.), Complexity of Computer Computations (PDF), New York: Plenum, pp. 85–103, archived from the original (PDF) on 2011-06-29, retrieved 2009-12-13.
  • Kuhl, F. S.; Crippen, G. M.; Friesen, D. K. (1983), "A combinatorial algorithm for calculating ligand binding", Journal of Computational Chemistry, 5 (1): 24–34, doi:10.1002/jcc.540050105, S2CID 122923018.
  • Kuratowski, Kazimierz (1930), "Sur le problème des courbes gauches en Topologie" (PDF), Fundamenta Mathematicae (in French), 15: 271–283, doi:10.4064/fm-15-1-271-283, archived (PDF) from the original on 2018-07-23, retrieved 2009-12-19.
  • Luce, R. Duncan; Perry, Albert D. (1949), "A method of matrix analysis of group structure", Psychometrika, 14 (2): 95–116, doi:10.1007/BF02289146, hdl:10.1007/BF02289146, PMID 18152948, S2CID 16186758.
  • Moon, J. W.; Moser, L. (1965), "On cliques in graphs", Israel Journal of Mathematics, 3: 23–28, doi:10.1007/BF02760024, MR 0182577.
  • Paull, M. C.; Unger, S. H. (1959), "Minimizing the number of states in incompletely specified sequential switching functions", IRE Transactions on Electronic Computers, EC-8 (3): 356–367, doi:10.1109/TEC.1959.5222697.
  • Peay, Edmund R. (1974), "Hierarchical clique structures", Sociometry, 37 (1): 54–65, doi:10.2307/2786466, JSTOR 2786466.
  • Prihar, Z. (1956), "Topological properties of telecommunications networks", Proceedings of the IRE, 44 (7): 927–933, doi:10.1109/JRPROC.1956.275149, S2CID 51654879.
  • Rhodes, Nicholas; Willett, Peter; Calvet, Alain; Dunbar, James B.; Humblet, Christine (2003), "CLIP: similarity searching of 3D databases using clique detection", Journal of Chemical Information and Computer Sciences, 43 (2): 443–448, doi:10.1021/ci025605o, PMID 12653507.
  • Samudrala, Ram; Moult, John (1998), "A graph-theoretic algorithm for comparative modeling of protein structure", Journal of Molecular Biology, 279 (1): 287–302, CiteSeerX 10.1.1.64.8918, doi:10.1006/jmbi.1998.1689, PMID 9636717.
  • Spirin, Victor; Mirny, Leonid A. (2003), "Protein complexes and functional modules in molecular networks", Proceedings of the National Academy of Sciences, 100 (21): 12123–12128, Bibcode:2003PNAS..10012123S, doi:10.1073/pnas.2032324100, PMC 218723, PMID 14517352.
  • Sugihara, George (1984), "Graph theory, homology and food webs", in Levin, Simon A. (ed.), Population Biology, Proc. Symp. Appl. Math., vol. 30, pp. 83–101.
  • Tanay, Amos; Sharan, Roded; Shamir, Ron (2002), "Discovering statistically significant biclusters in gene expression data", Bioinformatics, 18 (Suppl. 1): S136–S144, doi:10.1093/bioinformatics/18.suppl_1.S136, PMID 12169541.
  • Turán, Paul (1941), "On an extremal problem in graph theory", Matematikai és Fizikai Lapok (in Hungarian), 48: 436–452

Read other articles:

Arsitektur Mughal Taj Mahal, Agra, adalah struktur arsitektur Mughal yang paling dikenal. Masjid Badshahi, Lahore, Pakistan adalah masjid terbesar di dunia selama 313 tahun, dan saat ini merupakan masjid terbesar kedua di Asia Selatan. Masjid Jama, Delhi, masjid terbesar di India. Buland Darwaza, Agra dibangun oleh Akbar Agung untuk memperingati kemenangannya. Benteng Merah, Delhi, tempat tinggal dinasti Mughal. Makam Humayun, Delhi. Gerbang Alamgiri di Benteng Lahore, Lahore, Pakistan. Maka...

 

Cari artikel bahasa  Cari berdasarkan kode ISO 639 (Uji coba)  Kolom pencarian ini hanya didukung oleh beberapa antarmuka Halaman bahasa acak Bahasa BulunganBPS: 0433 4, 0435 1 Kode BPS: 0435 1 Dituturkan diIndonesiaWilayah  Kalimantan Utara Bulungan Kelurahan Tanjung Palas Ulu Kelurahan Tanjung Palas Tengah Kelurahan Tanjung Palas Ilir Desa Antutan Desa Mara Ilir Desa Mangkupadi Desa Long Bia Desa Sekatak Puji EtnisBulunganPenutur Rumpun bahasaAustronesia Melayu-Polinesia...

 

Ernst Rudolf Johannes Reuter (29 Juli 1889–29 September 1953) adalah wali kota Berlin Barat dari 1948 sampai 1953, selama Perang Dingin. Masa muda Ia dilahirkan di Apenrade, sekarang disebut Aabenraa, Denmark. Reuter belajar di universitas di Münster dan Marburg di mana ia tamat pada 1912 dan lulus ujian guru. Pada tahun yang sama ia menjadi anggota Sozialdemokratische Partei Deutschlands (SPD). Selama Perang Dunia I, Reuter terluka dan ditangkap oleh Rusia. Selama ditawan ia belajar baha...

English painter (1860–1927) Solomon Joseph SolomonSelf-portrait, c. 1896Born16 September 1860 (1860-09-16)London, EnglandDied27 July 1927 (1927-07-28) (aged 66)Birchington-on-Sea, Kent, EnglandNationalityBritishKnown forPortrait paintingNotable workPsycheElectedRoyal AcademyPresident, Royal Society of British Artists Ajax and Cassandra (1886). In the collection of the Art Gallery of Ballarat in Victoria, Australia[1] Portrait of French mezzo-soprano Blanche...

 

Berikut adalah Daftar perguruan tinggi swasta di Sulawesi Tengah, yang pembinaannya berada di bawah Kementerian Pendidikan dan Kebudayaan Republik Indonesia dan Perguruan Tinggi Swasta Keagamaan, yang pembinaannya berada di bawah Kementerian Agama. Daftar ini tidak termasuk Perguruan Tinggi Kedinasan yang pembinaannya berada dibawah masing-masing kementerian/lembaga. Universitas Universitas Alkhairaat, Kota Palu Universitas Kristen Tentena, Kab Poso Universitas Madako, Kab Tolitoli Universita...

 

Peta menunjukan lokasi Tagum City Tagum City adalah munisipalitas yang terletak di provinsi Davao del Norte, Filipina. Pada tahun 2010, munisipalitas ini memiliki populasi sebesar 233.254 jiwa atau 46.651 rumah tangga. Pembagian wilayah Secara administratif Tagum City terbagi menjadi 23 barangay, yaitu: Barangay di wilayah Tagum City Barangay Penduduk(2007) Luas wilayah(Hektar) Apokon 21,856 630 Bincungan 3,672 1,485 Busaon 3,427 1,056 Canocotan 9,665 2,655 Cuambogan 5,314 880 La Filipina 9,7...

Charlie PuthCharlie Puth pada Mei 2022Informasi latar belakangNama lahirCharles Otto Puth Jr.Lahir2 Desember 1991 (umur 32)Rumson, New Jersey, Amerika Serikat AlmamaterBerklee College of Music (Bachelor of Music [BM]) Genre Pop[1] R&B[2] Pekerjaan Penyanyi Penulis Produser rekaman Instrumen Vocal Piano Keyboard Tahun aktif2009–presentLabel Artist Partner Group Atlantic Loudr eleveneleven Situs webcharlieputh.com Tanda tangan Charles Otto Puth Jr. (/puːθ/, lahir 2 ...

 

العلاقات الفانواتية الكورية الجنوبية فانواتو كوريا الجنوبية   فانواتو   كوريا الجنوبية تعديل مصدري - تعديل   العلاقات الفانواتية الكورية الجنوبية هي العلاقات الثنائية التي تجمع بين فانواتو وكوريا الجنوبية.[1][2][3][4][5] مقارنة بين البلدين هذ...

 

2014 single by James Bay Let It GoSingle by James Bayfrom the album Chaos and the Calm and the EP Let It Go Released15 September 2014Recorded2013–2014StudioNashville, TennesseeGenreIndie rocksoulblues rocksoft rockLength4:21 (album version)4:08 (international edit)3:45 (radio mix)LabelRepublicSongwriter(s)James BayPaul BarryProducer(s)Jacquire KingJames Bay singles chronology Let It Go (2014) Hold Back the River (2014) Music videoLet It Go on YouTube Let It Go is a song by English singer-so...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Kbkg wz. 1960 – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this template message) Assault rifle-grenade launcher Karabinek-granatnik wz.1960 The Karabinek-granatnik wz.1960TypeAssault rifle-grenade launcherPlace...

 

Voce principale: Atalanta Bergamasca Calcio. Atalanta Bergamasca CalcioStagione 1953-1954 Sport calcio Squadra Atalanta Allenatore Luigi Ferrero (1ª-18ª) Luigi Tentorio (D.T.) e Francesco Simonetti (19ª-34ª) All. in seconda Francesco Simonetti (1ª-18ª) Presidente Daniele Turani Serie A10º Maggiori presenzeCampionato: Annovazzi, Bernasconi, Corsini, Rasmussen, Villa (33) Miglior marcatoreCampionato: Bassetto (17) StadioComunale 1952-1953 1954-1955 Si invita a seguire il modello di...

 

Opisthacanthus Opisthacanthus asper Klasifikasi ilmiah Domain: Eukaryota Kerajaan: Animalia Filum: Arthropoda Kelas: Arachnida Ordo: Scorpiones Famili: Hormuridae Genus: OpisthacanthusPeters, 1861 Diversitas sekitar 20 spesies (lihat teks) Opisthacanthus adalah genus dari kalajengking dalam famili Hormuridae. Mereka banyak ditemukan di Amerika Selatan dan Amerika Tengah, Karibia, Afrika, dan Madagaskar.[1] Spesies Spesies yang berada di bawah genus ini adalah:[2] Opisthacanth...

Christian religious practice For other uses, see Confirmation (disambiguation). A stained glass representation of a Lutheran confirmation In Christian denominations that practice infant baptism, confirmation is seen as the sealing of the covenant created in baptism. Those being confirmed are known as confirmands. For adults, it is an affirmation of belief.[1] It involves laying on of hands. Catholicism views confirmation as a sacrament. The sacrament is called chrismation in the Easte...

 

Chronologies Données clés 1886 1887 1888  1889  1890 1891 1892Décennies :1850 1860 1870  1880  1890 1900 1910Siècles :XVIIe XVIIIe  XIXe  XXe XXIeMillénaires :-Ier Ier  IIe  IIIe Chronologies géographiques Afrique Afrique du Sud, Algérie, Angola, Bénin, Botswana, Burkina Faso, Burundi, Cameroun, Cap-Vert, République centrafricaine, Comores, République du Congo, République démocratique du Congo, Côte d'Ivoire, Djibouti, Égyp...

 

1942 mystery film noir by Jack Conway For other uses, see Crossroads (disambiguation). CrossroadsTheatrical release posterDirected byJack ConwayScreenplay byGuy TrosperStory byJohn H. KafkaHoward Emmett RogersBased onthe screenplay of the film Crossroadsby John H. KafkaProduced byEdwin H. KnopfStarring William Powell Hedy Lamarr Claire Trevor Basil Rathbone CinematographyJoseph RuttenbergEdited byGeorge BoemlerMusic byBronislau KaperProductioncompanyMetro-Goldwyn-MayerDistributed byLoew's Inc...

Pony Canyon, Inc.株式会社ポニーキャニオンLogo Pony Canyon sejak 2016Markas Pony Canyon di Minato, TokyoNama asli株式会社ポニーキャニオンJenisKabushiki kaishaIndustriIndustri anime Industri musik Industri film Label rekamanGenreVarianDidirikan1 Oktober 1966; 57 tahun lalu (1966-10-01) (Sebagai Nippon Hoso Sabisu - Nippon Broadcasting Service)PendiriNippon Broadcasting SystemKantorpusat Minato, Tokyo, JepangTokohkunciYoshimura Takashi (吉村隆) (Presiden dan CEO) ...

 

FlamingoGedung SerbagunaInformasi umumLokasiJl. Genteng Kali No.51-53, Kecamatan Genteng, Provinsi Jawa Timur, Kode Pos 60275KotaSurabayaNegara IndonesiaDibuka1992 Flamingo adalah salah satu gedung serbaguna yang terletak di pusat Kota Surabaya. Gedung ini terletak di sebelah selatan Sungai Kalimas, sebelah barat Gedung Perum Perhutani Divisi Regional Jawa Timur, dan sebelah timur Kantor Pupuk Kalimantan Timur. Deskripsi Gedung Flamingo pada awalnya merupakan restoran chinese food dan te...

 

Fictional video game character Fictional character Crash BandicootCrash Bandicoot characterCrash from Crash Bandicoot 4: It's About TimeFirst appearanceCrash Bandicoot (1996)Created byAndy GavinJason RubinDesigned byCharles ZembillasJoe PearsonVoiced by English Brendan O'Brien (1996–2004) Carlos Alazraqui (1997) Chip Chinery (1999) Steve Blum (2003) Jess Harnell (2005–2021) Scott Whyte (2020–present) Eric Rogers (SA, season 1) Rhys Darby (SA, season 3) Japanese Kappei Yamaguchi (1996–...

«Per le sue scoperte in relazione a composti sintetici che inibiscono l'azione di alcune sostanze dell'organismo, e soprattutto alla loro azione sul sistema vascolare e i muscoli scheletrici.» (Motivazione per il Premio Nobel per la medicina 1957) Daniel Bovet Premio Nobel per la medicina 1957 Daniel Bovet (Neuchâtel, 23 marzo 1907 – Roma, 8 aprile 1992) è stato un biochimico ed esperantista svizzero naturalizzato italiano, vincitore del Premio Nobel per la medicina nel 1957. I suo...

 

سيرترالين سيرترالين الاسم النظامي (1S,4S)-4-(3,4-Dichlorophenyl)-N-methyl-1,2,3,4-tetrahydronaphthalen-1-amine تداخل دوائي إيزوكاربوكسازيد،  وفينيلزين،  وبروكاربازين،  و(±)-دبرينيل  [لغات أخرى]‏،  وترانيلسيبرومين،  وزولبيديم،  ودزموبريسين،  وكلوبيدوغريل،  وإيبتيفيباتيد،  �...