Baudhayana sutras

The Baudhāyana sūtras (Sanskrit: बौधायन सूत्रस् ) are a group of Vedic Sanskrit texts which cover dharma, daily ritual, mathematics and is one of the oldest Dharma-related texts of Hinduism that have survived into the modern age from the 1st-millennium BCE. They belong to the Taittiriya branch of the Krishna Yajurveda school and are among the earliest texts of the genre.[1]

The Baudhayana sūtras consist of six texts:

  1. the Śrautasûtra, probably in 19 Praśnas (questions),
  2. the Karmāntasûtra in 20 Adhyāyas (chapters),
  3. the Dwaidhasûtra in 4 Praśnas,
  4. the Grihyasutra in 4 Praśnas,
  5. the Dharmasûtra in 4 Praśnas and
  6. the Śulbasûtra in 3 Adhyāyas.[2]

The Baudhāyana Śulbasûtra is noted for containing several early mathematical results, including an approximation of the square root of 2 and the statement of the Pythagorean theorem.[3]

Baudhāyana Shrautasūtra

Baudhayana's Śrauta sūtras related to performing Vedic sacrifices have followers in some Smārta brāhmaṇas (Iyers) and some Iyengars of Tamil Nadu, Yajurvedis or Namboothiris of Kerala, Gurukkal Brahmins (Aadi Saivas) and Kongu Vellalars. The followers of this sūtra follow a different method and do 24 Tila-tarpaṇa, as Lord Krishna had done tarpaṇa on the day before amāvāsyā; they call themselves Baudhāyana Amavasya.

Baudhāyana Dharmasūtra

The Dharmasūtra of Baudhāyana like that of Apastamba also forms a part of the larger Kalpasutra. Likewise, it is composed of praśnas which literally means 'questions' or books. The structure of this Dharmasūtra is not very clear because it came down in an incomplete manner. Moreover, the text has undergone alterations in the form of additions and explanations over a period of time. The praśnas consist of the Srautasutra and other ritual treatises, the Sulvasutra which deals with vedic geometry, and the Grhyasutra which deals with domestic rituals.[4]

There are no commentaries on this Dharmasūtra with the exception of Govindasvāmin's Vivaraṇa. The date of the commentary is uncertain but according to Olivelle it is not very ancient. Also the commentary is inferior in comparison to that of Haradatta on Āpastamba and Gautama.[5]

This Dharmasūtra is divided into four books. Olivelle states that Book One and the first sixteen chapters of Book Two are the 'Proto-Baudhayana'[4] even though this section has undergone alteration. Scholars like Bühler and Kane agree that the last two books of the Dharmasūtra are later additions. Chapter 17 and 18 in Book Two lays emphasis on various types of ascetics and acetic practices.[4]

The first book is primarily devoted to the student and deals in topics related to studentship. It also refers to social classes, the role of the king, marriage, and suspension of Vedic recitation. Book two refers to penances, inheritance, women, householder, orders of life, ancestral offerings. Book three refers to holy householders, forest hermit and penances. Book four primarily refers to the yogic practices and penances along with offenses regarding marriage.[6]

Baudhāyana Śulvasūtra

Pythagorean theorem

The Baudhāyana Śulvasūtra states the rule referred to today in most of the world as the Pythagorean Theorem. The rule was known to a number of ancient civilizations, including also the Greek and the Chinese, and was recorded in Mesopotamia as far back as 1800 BCE.[7] For the most part, the Śulvasūtras do not contain proofs of the rules which they describe. The rule stated in the Baudhāyana Śulvasūtra is:

दीर्घचतुरस्रस्याक्ष्णया रज्जुः पार्श्वमानी तिर्यग् मानी च यत् पृथग् भूते कुरूतस्तदुभयं करोति ॥

dīrghachatursrasyākṣaṇayā rajjuḥ pārśvamānī, tiryagmānī,
cha yatpṛthagbhūte kurutastadubhayāṅ karoti.

The diagonal of an oblong produces by itself both the areas which the two sides of the oblong produce separately.

The diagonal and sides referred to are those of a rectangle (oblong), and the areas are those of the squares having these line segments as their sides. Since the diagonal of a rectangle is the hypotenuse of the right triangle formed by two adjacent sides, the statement is seen to be equivalent to the Pythagorean theorem.[8]

Baudhāyana also provides a statement using a rope measure of the reduced form of the Pythagorean theorem for an isosceles right triangle:

The cord which is stretched across a square produces an area double the size of the original square.

Circling the square

Another problem tackled by Baudhāyana is that of finding a circle whose area is the same as that of a square (the reverse of squaring the circle). His sūtra i.58 gives this construction:

Draw half its diagonal about the centre towards the East–West line; then describe a circle together with a third part of that which lies outside the square.

Explanation:[9]

  • Draw the half-diagonal of the square, which is larger than the half-side by .
  • Then draw a circle with radius , or , which equals .
  • Now , so the area .

Square root of 2

Baudhāyana i.61-2 (elaborated in Āpastamba Sulbasūtra i.6) gives the length of the diagonal of a square in terms of its sides, which is equivalent to a formula for the square root of 2:

samasya dvikaraṇī. pramāṇaṃ tṛtīyena vardhayet
tac caturthenātmacatustriṃśonena saviśeṣaḥ
The diagonal [lit. "doubler"] of a square. The measure is to be increased by a third and by a fourth decreased by the 34th. That is its diagonal approximately.[citation needed]

That is,

which is correct to five decimals.[10]

Other theorems include: diagonals of rectangle bisect each other, diagonals of rhombus bisect at right angles, area of a square formed by joining the middle points of a square is half of original, the midpoints of a rectangle joined forms a rhombus whose area is half the rectangle, etc.

Note the emphasis on rectangles and squares; this arises from the need to specify yajña bhūmikās—i.e. the altar on which rituals were conducted, including fire offerings (yajña).

See also

Notes

  1. ^ Plofker, Kim (2007). Mathematics in India. p. 17. ISBN 978-0691120676.. In relative chronology, they predate Āpastamba, which is dated by Robert Lingat to the sutra period proper, between c. 500 to 200 BCE. Robert Lingat, The Classical Law of India, (Munshiram Manoharlal Publishers Pvt Ltd, 1993), p. 20
  2. ^ Sacred Books of the East, vol.14 – Introduction to Baudhayana
  3. ^ Nanda, Meera (16 September 2016). "Hindutva's science envy". Frontline. Archived from the original on 17 July 2017. Retrieved 14 October 2016.
  4. ^ a b c Patrick Olivelle, Dharmasūtras: The Law Codes of Ancient India, (Oxford World Classics, 1999), p. 127
  5. ^ Patrick Olivelle, Dharmasūtras: The Law Codes of Ancient India, (Oxford World Classics, 1999), p. xxxi
  6. ^ Patrick Olivelle, Dharmasūtras: The Law Codes of Ancient India, (Oxford World Classics, 1999), pp. 128–131
  7. ^ *Høyrup, Jens (1998). "Pythagorean 'Rule' and 'Theorem' – Mirror of the Relation Between Babylonian and Greek Mathematics". In Renger, Johannes (ed.). Babylon: Focus mesopotamischer Geschichte, Wiege früher Gelehrsamkeit, Mythos in der Moderne. 2. Internationales Colloquium der Deutschen Orient-Gesellschaft 24.–26. März 1998 in Berlin (PDF). Berlin: Deutsche Orient-Gesellschaft / Saarbrücken: SDV Saarbrücker Druckerei und Verlag. pp. 393–407.
  8. ^ The English translation comes from George Thibaut's series of articles in The Pandit. (See References.) The translated passage is on page 298, volume 9. Thibaut remarks, "We should of course say 'rectangular triangles' instead of 'oblongs'. The length of the diagonals of these oblongs or of the hypotenuses of these rectangular triangles is not explicitly mentioned by Baudháyana. Ápastamba states it, when describing the different manners of constructing the vedi."
  9. ^ * O'Connor, John J.; Robertson, Edmund F., "The Indian Sulbasutras", MacTutor History of Mathematics Archive, University of St Andrews St Andrews University, 2000.
  10. ^ O'Connor, "Baudhayana".

References


Read other articles:

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

 

Tinju padaPekan Olahraga Nasional XIX Putra Putri   46 kg     48 kg   49 kg 51 kg 52 kg 54 kg 56 kg 57 kg 60 kg 60 kg 64 kg 64 kg 69 kg 75 kg 81 kg 91 kg Tinju kelas ringan putri pada Pekan Olahraga Nasional XIX akan dilaksanakan di GSG Tinju Pelabuhan Ratu, Kabupaten Sukabumi, Jawa Barat.[1] Jadwal Seluruh waktu menggunakan Waktu Indonesia Barat (UTC+07:00) Tanggal Babak 23 September Perempat final 24 September Semifinal 27 September Final Hasil Perempat final Se...

 

Artikel ini bukan mengenai lempar lembing. Ilustrasi seseorang yang berusaha melempar seekor kambing Lempar kambing (dalam bahasa Spanyol: Lanzamiento de cabra desde campanario atau Salto de la cabra) adalah sebuah festival di Manganeses de la Polvorosa, provinsi Zamora, Spanyol. Festival ini dirayakan pada hari Minggu keempat bulan Januari. Dalam festival ini sekelompok pemuda akan melemparkan seekor kambing hidup dari atap sebuah gereja. Kerumunan di bawah kemudian akan mencoba menangkap ka...

Untuk merek yang sekarang ditangani oleh Indosat secara langsung, lihat IM3. PT Indosat Multimedia MobileSlogan: No LimitsNama dagangIndosat-M3JenisAnak perusahaanIndustriTelekomunikasiNasibMerger dengan PT Indosat TbkPenerusIndosatDidirikan25 Juli 2001PendiriIndosatDitutup20 November 2003KantorpusatJakarta, IndonesiaTokohkunciHasnul Suhaimi (Mantan Direktur Utama)ProdukOperator seluler GSMMerekBRIGHT (pascabayar)SMART (prabayar)PemilikIndosat PT Indosat Multimedia Mobile (disingkat Indosat-M...

 

العلاقات المجرية النرويجية المجر النرويج   المجر   النرويج تعديل مصدري - تعديل   العلاقات المجرية النرويجية هي العلاقات الثنائية التي تجمع بين المجر والنرويج.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة الم�...

 

Marsekal YugoslaviaJosip Broz TitoTito saat berkunjung ke India tahun 1954. Presiden Yugoslavia ke-1Masa jabatan14 Januari 1953 – 4 Mei 1980Perdana MenteriJosip Broz Tito (1953–1963)Petar Stambolić (1963–1967)Mika Špiljak (1967–1969)Mitja Ribičič (1969–1971)Džemal Bijedić (1971–1977)Veselin Đuranović (1977–1980)Wakil PresidenAleksandar Ranković (1963–1966)Koča Popović (1966–1967) PendahuluIvan Ribar(sebagai Presiden Kepresidenan Majelis Rakyat Republi...

Gunboat of the United States Navy For other ships with the same name, see USS Rhode Island. The only known photo of the USS Rhode Island, taken in 1866. History United States NameUSS Rhode Island Laid down1860, as John P. King Launched6 September 1860[1] Acquiredby purchase, 27 June 1861 Commissioned29 July 1861 Decommissioned21 April 1864 Renamed Eagle, 1861 Rhode Island, 29 July 1861 Commissioned3 October 1864 Decommissioned1867 RenamedCharleston, 8 November 1867 Fate Sold for merch...

 

Response from the Chinese government to COVID-19 Part of a series on theCOVID-19 pandemicScientifically accurate atomic model of the external structure of SARS-CoV-2. Each ball is an atom. COVID-19 (disease) SARS-CoV-2 (virus) Cases Deaths Timeline 2019 2020 January responses February responses March responses April responses May responses June responses July responses August responses September responses October responses November responses December responses 2021 January responses February ...

 

ХуторЯрской 2-й Центр хутора 49°36′15″ с. ш. 42°37′40″ в. д.HGЯO Страна  Россия Субъект Федерации Волгоградская область Муниципальный район Кумылженский Сельское поселение Краснянское История и география Тип климата Умеренно континентальный Часовой пояс UTC+3:00 На...

Universitas Thammasatมหาวิทยาลัยธรรมศาสตร์Nama sebelumnyaUniversitas Moral dan Ilmu PolitikMoto dalam bahasa IndonesiaUntuk keunggulan, keadilan, dan kesiapan dalam kepemimpinan (resmi) Saya mencintai Thammasat karena Thammasat mengajarkan saya untuk mencintai rakyat (tidak resmi)JenisNasionalDidirikan27 Juni 1934 (1934-06-27)PendiriPridi BanomyongRektorProf. Dr. Somkit LertpaithoonStaf administrasi1.505 (2007)[1]Jumlah mahasiswa33.4...

 

Это изображение демонстрирует нахождение простых множителей числа 864. Сокращённый способ написания — 25 × 33 В теории чисел, простые множители (простые делители) положительного целого числа — это простые числа, которые делят это число нацело (без остатка)[1]....

 

  .912-.875  .874-.855  .854-.835  .834-.815  Monastic community of Mount Athos This is a list of the administrative regions of Greece by Human Development Index as of 2023 with data for the year 2021.[1] Rank Province HDI (2021) Very high human development 1 Attica 0.909 –  Greece (average) 0.887 2 Western Macedonia 0.877 3 Ionian Islands 0.876 Epirus Crete 6 Central Macedonia 0.873 Thessaly 8 North Aegean 0.865 Peloponnese So...

Andra Balkankriget Del av Balkankrigen Stormakterna i skräck för en explosion på Balkan. Förutom den brittiska skulle ingen stormakts tron överleva resultatet av nästa kris på Balkan 1914, som antände första världskriget. Ägde rum 16 juni 1913 – 18 juli 1913 Plats Balkanhalvön Resultat Dödläge Bulgarien efterlyser vapenvila Upphörde när Rumänien accepterade vapenvilan som ledde till Bukarestfördraget, 1913 Båda sidor hävdar seger Stridande Bulgarien Serbien Rumäni...

 

Muncie redirects here. For other uses, see Muncie (disambiguation). City in Indiana, United StatesMuncieCityClockwise from top: Walnut Street Historic District, Appeal to the Great Spirit, Minnetrista Museum & Gardens, Ball State University SealNickname: Middletown[1]Location of Muncie in Delaware County, IndianaMuncieShow map of IndianaMuncieShow map of the United StatesCoordinates: 40°11′48″N 85°22′30″W / 40.19667°N 85.37500°W / 40.19667;...

 

Christianity-related events during the 9th century See also: Christianity in the 8th century and Christianity in the 10th century For broader coverage of this topic, see Christianity of the Middle Ages. Brothers Cyril and Methodius bring Christianity to the Slavic peoples.This article's lead section may be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects of the article. (December 2022) In the 9th ce...

Hospital General de Villarrobledo LocalizaciónPaís  EspañaLocalidad Avda. Miguel de Cervantes(esq. Crta. de El Provencio) s/nVillarrobledo (Albacete) España EspañaCoordenadas 39°16′48″N 2°36′09″O / 39.27996389, -2.60246111Datos generalesFundación 2007Universidad SESCAMCamas 132 110 de Hospitalización 22 de Cuidados EspecialesEspecialidad Ver especialidadesWeb oficial[editar datos en Wikidata] El Hospital General de Villarrobledo es un centr...

 

درآيسبآخ    شعار   الإحداثيات 50°37′00″N 7°55′54″E / 50.616666666667°N 7.9316666666667°E / 50.616666666667; 7.9316666666667   [1] تقسيم إداري  البلد ألمانيا[2][3]  التقسيم الأعلى باد مارينبيرغ  خصائص جغرافية  المساحة 4.62 كيلومتر مربع (31 ديسمبر 2017)[4][5]  ارتفا�...

 

Shopping mall in Delaware, United StatesDover MallDover Mall entrance near Boscov'sLocationDover, Delaware, United StatesCoordinates39°11′39″N 75°32′23″W / 39.1942°N 75.5398°W / 39.1942; -75.5398Address1365 North Dupont Highway Ste. 5061Opening date1982ManagementSimon Property GroupOwnerSimon Property Group (68.1%)No. of stores and services79[1]No. of anchor tenants7 (5 open, 2 vacant)Total retail floor area927,414 square feet (86,160 m2)[2...

索娜姆·马利克出生2002年4月15日  (22歲)索尼帕特縣 職業业余摔跤手  索娜姆·马利克(Sonam Malik,2002年4月15日—),印度女子摔跤运动员,2023年亚洲摔跤锦标赛女子自由式62公斤级铜牌得主、2022年亚洲运动会女子自由式62公斤级铜牌得主。[1] 参考资料 ^ International Wrestling Database. [2023-10-13]. (原始内容存档于2023-10-16). 

 

خان خانية جغتاي جغتاي خان (بالمنغولية: ᠴᠠᠭᠠᠲᠠᠢ)‏  تمثال جغتاي خان في منغوليا خان خانية جغتاي فترة الحكم1226 – 1241-42 جنكيز خان قره هولاكو  [لغات أخرى]‏ معلومات شخصية الميلاد 22 ديسمبر 1183(1183-12-22)منغوليا  الوفاة 1 جولاي 1242 (عن عمر 59)المالق، شينجيانغ الديانة التنغرية...