Share to: share facebook share twitter share wa share telegram print page

Axiom of infinity

In axiomatic set theory and the branches of mathematics and philosophy that use it, the axiom of infinity is one of the axioms of Zermelo–Fraenkel set theory. It guarantees the existence of at least one infinite set, namely a set containing the natural numbers. It was first published by Ernst Zermelo as part of his set theory in 1908.[1]

Formal statement

In the formal language of the Zermelo–Fraenkel axioms, the axiom is as follows:

There exists a set 𝐼 (the set that is postulated to be infinite) such that the empty set is an element of it and for every element of 𝐼, there exists an element of 𝐼 consisting of just the elements of and itself.

This formula can be abbreviated as:

Some mathematicians may call a set built this way an inductive set.

Interpretation and consequences

This axiom is closely related to the von Neumann construction of the natural numbers in set theory, in which the successor of x is defined as x ∪ {x}. If x is a set, then it follows from the other axioms of set theory that this successor is also a uniquely defined set. Successors are used to define the usual set-theoretic encoding of the natural numbers. In this encoding, zero is the empty set:

0 = {}.

The number 1 is the successor of 0:

1 = 0 ∪ {0} = {} ∪ {0} = {0} = {{}}.

Likewise, 2 is the successor of 1:

2 = 1 ∪ {1} = {0} ∪ {1} = {0, 1} = { {}, {{}} },

and so on:

3 = {0, 1, 2} = { {}, {{}}, {{}, {{}}} };
4 = {0, 1, 2, 3} = { {}, {{}}, { {}, {{}} }, { {}, {{}}, {{}, {{}}} } }.

A consequence of this definition is that every natural number is equal to the set of all preceding natural numbers. The count of elements in each set, at the top level, is the same as the represented natural number, and the nesting depth of the most deeply nested empty set {}, including its nesting in the set that represents the number of which it is a part, is also equal to the natural number that the set represents.

This construction forms the natural numbers. However, the other axioms are insufficient to prove the existence of the set of all natural numbers, . Therefore, its existence is taken as an axiom – the axiom of infinity. This axiom asserts that there is a set I that contains 0 and is closed under the operation of taking the successor; that is, for each element of I, the successor of that element is also in I.

Thus the essence of the axiom is:

There is a set, I, that includes all the natural numbers.

The axiom of infinity is also one of the von Neumann–Bernays–Gödel axioms.

Extracting the natural numbers from the infinite set

The infinite set I is a superset of the natural numbers. To show that the natural numbers themselves constitute a set, the axiom schema of specification can be applied to remove unwanted elements, leaving the set N of all natural numbers. This set is unique by the axiom of extensionality.

To extract the natural numbers, we need a definition of which sets are natural numbers. The natural numbers can be defined in a way that does not assume any axioms except the axiom of extensionality and the axiom of induction—a natural number is either zero or a successor and each of its elements is either zero or a successor of another of its elements. In formal language, the definition says:

Or, even more formally:

Alternative method

An alternative method is the following. Let be the formula that says "x is inductive"; i.e. . Informally, what we will do is take the intersection of all inductive sets. More formally, we wish to prove the existence of a unique set such that

(*)

For existence, we will use the Axiom of Infinity combined with the Axiom schema of specification. Let be an inductive set guaranteed by the Axiom of Infinity. Then we use the axiom schema of specification to define our set – i.e. is the set of all elements of , which also happen to be elements of every other inductive set. This clearly satisfies the hypothesis of (*), since if , then is in every inductive set, and if is in every inductive set, it is in particular in , so it must also be in .

For uniqueness, first note that any set that satisfies (*) is itself inductive, since 0 is in all inductive sets, and if an element is in all inductive sets, then by the inductive property so is its successor. Thus if there were another set that satisfied (*) we would have that since is inductive, and since is inductive. Thus . Let denote this unique element.

This definition is convenient because the principle of induction immediately follows: If is inductive, then also , so that .

Both these methods produce systems that satisfy the axioms of second-order arithmetic, since the axiom of power set allows us to quantify over the power set of , as in second-order logic. Thus they both completely determine isomorphic systems, and since they are isomorphic under the identity map, they must in fact be equal.

An apparently weaker version

Some old texts use an apparently weaker version of the axiom of infinity, to wit:

This says that there is an element in x and for every element y of x there is another element of x that is a strict superset of y. This implies that x is an infinite set without saying much about its structure. However, with the help of the other axioms of ZF, we can show that this implies the existence of ω. First, if we take the powerset of any infinite set x, then that powerset will contain elements that are subsets of x of every finite cardinality (among other subsets of x). Proving the existence of those finite subsets may require either the axiom of separation or the axioms of pairing and union. Then we can apply the axiom of replacement to replace each element of that powerset of x by the initial ordinal number of the same cardinality (or zero, if there is no such ordinal). The result will be an infinite set of ordinals. Then we can apply the axiom of union to that to get an ordinal greater than or equal to ω.

Independence

The axiom of infinity cannot be proved from the other axioms of ZFC if they are consistent. (To see why, note that ZFC Con(ZFC − Infinity) and use Gödel's Second incompleteness theorem.)[citation needed]

The negation of the axiom of infinity cannot be derived from the rest of the axioms of ZFC, if they are consistent. (This is tantamount to saying that ZFC is consistent, if the other axioms are consistent.) Thus, ZFC implies neither the axiom of infinity nor its negation and is compatible with either.

Indeed, using the von Neumann universe, we can build a model of ZFC − Infinity + (¬Infinity). It is , the class of hereditarily finite sets, with the inherited membership relation. Note that if the axiom of the empty set is not taken as a part of this system (since it can be derived from ZF + Infinity), then the empty domain also satisfies ZFC − Infinity + ¬Infinity, as all of its axioms are universally quantified, and thus trivially satisfied if no set exists.

The cardinality of the set of natural numbers, aleph null (), has many of the properties of a large cardinal. Thus the axiom of infinity is sometimes regarded as the first large cardinal axiom, and conversely large cardinal axioms are sometimes called[by whom?] stronger axioms of infinity.

See also

References

  1. ^ Zermelo: Untersuchungen über die Grundlagen der Mengenlehre, 1907, in: Mathematische Annalen 65 (1908), 261-281; Axiom des Unendlichen p. 266f.
  • Paul Halmos (1960) Naive Set Theory. Princeton, NJ: D. Van Nostrand Company. Reprinted 1974 by Springer-Verlag. ISBN 0-387-90092-6.
  • Thomas Jech (2003) Set Theory: The Third Millennium Edition, Revised and Expanded. Springer-Verlag. ISBN 3-540-44085-2.
  • Kenneth Kunen (1980) Set Theory: An Introduction to Independence Proofs. Elsevier. ISBN 0-444-86839-9.
  • Hrbacek, Karel; Jech, Thomas (1999). Introduction to Set Theory (3 ed.). Marcel Dekker. ISBN 0-8247-7915-0.

Read other articles:

Diomerdes Nacionalidade Império Sassânida Etnia Persa Ocupação Nobre Religião Zoroastrismo Diomerdes filho de Rastices (em persa médio: ĵōymard ī Rastagān; em parta: ĵōymard Rastagān; em grego clássico: Διωμέρδου Ραστιγαν; romaniz.:Diomérdou Rastigan) foi dignitário persa do século III, ativo no reinado do xá Sapor I (r. 240–270). É conhecido apenas a partir da inscrição Feitos do Divino Sapor de acordo com a qual era filho de Rastices. Apare…

São Roque de Minas   Município do Brasil   Cachoeira Casca D'Anta na Serra da Canastra em São Roque de MinasCachoeira Casca D'Anta na Serra da Canastra em São Roque de Minas Hino Gentílico sanroquense Localização Localização de São Roque de Minas em Minas GeraisLocalização de São Roque de Minas em Minas Gerais São Roque de MinasLocalização de São Roque de Minas no Brasil Mapa de São Roque de Minas Coordenadas 20° 14' 42 S 46° 21' 57 O País…

Misiones Datos generalesNombre Misiones Fútbol ClubApodo(s) MisionerosFundación 26 de marzo de 1906Desaparición 25 de junio de 1980 (fusión con Miramar y creación de Miramar Misiones)InstalacionesEstadio Parque Luis Méndez PianaMontevideo, UruguayCapacidad 6.500Inauguración 5 de diciembre de 1958 (65 años)[1]​Uniforme Titular Última temporadaLiga Primera C(1979) ? Página web oficial[editar datos en Wikidata] El Misiones Football Club era un equipo uruguayo de fútb…

Marcin Kamiński Data i miejsce urodzenia 15 stycznia 1992 Konin Wzrost 191 cm Pozycja obrońca Informacje klubowe Klub Schalke 04 Numer w klubie 35 Kariera juniorska Lata Klub 2001–2005 Aluminium Konin 2005–2009 Lech Poznań Kariera seniorska[a] Lata Klub Wyst. Gole 2009–2016 Lech Poznań 158 (8) 2016–2021 VfB Stuttgart 60 (1) 2018–2019 → Fortuna Düsseldorf (wyp.) 27 (0) 2021– Schalke 04 50 (4) W sumie: 295 (13) Kariera reprezentacyjna[b] Lata Reprezentacja Wyst. Gole 2009

Elix Skipper Personalia Geburtstag 15. Dezember 1967[1][2] Karriereinformationen Ringname(n) Dark Guerrera[1][2]Elix Skipper[1][2]Extreme Blade[1][2]Skip Over[1][2] Namenszusätze Primetime Körpergröße 191 cm[2] Kampfgewicht 101 kg[2] Angekündigt aus Long Island, New YorkAtlanta, Georgia, USA Trainiert von Pez Whatley[1]WCW Power Plant[1][2] Debüt 1999[1][2]…

El Reino de Lesoto está dividido en diez distritos, cada uno de los cuales está dirigido por un administrador de distrito. Cada distrito tiene una capital conocida como camptown. Los distritos se subdividen a su vez en 80 circunscripciones, que consisten en 129 consejos comunitarios locales. La mayoría de los distritos llevan el nombre de sus capitales. Hlotse, la capital del distrito de Leribe, es también conocida como Leribe. Por el contrario, el distrito de Berea es llamado a veces T…

Digital time capsule with contributions about life in 2006 Yahoo! Time CapsuleScreenshot of Yahoo! Time Capsule shows the count down before the reopening.Type of siteTime capsuleAvailable inMultilingualOwnerYahoo!Created byJonathan HarrisURLtimecapsule.yahoo.comCommercialNoRegistrationYesLaunchedOctober 10, 2006Current statusN/A The Yahoo! Time Capsule, a brainchild of Jonathan Harris, is a time capsule project by Yahoo! Inc. where users could contribute to a digital legacy of how…

У Вікіпедії є статті про інших людей з таким ім'ям: Педру I. Педру I (IV) Імператор Бразилії 11 березня 1826 — 24 вересня 1834 Коронація: 1 грудня 1822 Попередник: Жуан I Наступник: Педро II Король Португалії 10 березня 1826 — 2 травня 1826 Попередник: Жуан VI Наступник: Марія II …

Motor vehicle TVR M SeriesOverviewManufacturerTVRProduction1972–1979AssemblyBlackpool, EnglandBody and chassisClassSports Car / RoadsterLayoutFMRPowertrainEngineFord Kent 1.6L I4Triumph 2.5L I6Ford Essex 3.0L V6DimensionsLength155 in (3,937 mm)Width64 in (1,626 mm)Height47 in (1,194 mm) (coupe) or 44 in (1,118 mm) (roadster)Curb weight1,972 lb (894 kg) - 2,250 lb (1,020 kg)ChronologyPredecessorTVR VixenTVR Tuscan (1967)Succes…

Subsystem of the Linux kernel Not to be confused with digital rights management. Original author(s)kernel.org & freedesktop.orgDeveloper(s)kernel.org & freedesktop.orgWritten inCTypeDevice driverLoadable kernel moduleLicenseMIT License[citation needed]GPL[citation needed]Websitedri.freedesktop.org/wiki/DRM The Direct Rendering Manager (DRM) is a subsystem of the Linux kernel responsible for interfacing with GPUs of modern video cards. DRM exposes an API that user-space pr…

Kelompok Media Bali PostIndustriMediaDidirikan16 Agustus 1948PendiriKetut NadhaKantorpusatDenpasar, IndonesiaTokohkunciSatria NaradhaProduksurat kabar, televisi, radioSitus webwww.balipost.com Kelompok Media Bali Post (disingkat KMB) merupakan sebuah perusahaan yang bergerak dalam bidang media. Sejarah Cikal bakal KMB adalah surat kabar Bali Post yang didirikan oleh Ketut Nadha. Sepeninggal Ketut, putranya, Satria Naradha meneruskan bisnisnya dan mengembangkannya dengan mendirikan KMB. KMB menge…

Satuan Radar 214Komando Sektor Pertahanan Udara Nasional ILambang SATRAD 214 TegalNegara IndonesiaCabang Tentara Nasional IndonesiaTipe unitKomando Pertahanan NasionalBagian dariKosek IKNMotoLabda Pratiyata Yudha (Kemahiran, Kesaktian, Peperangan)Situs webwww.kohanudnas.mil.idTokohKomandanLetkol Lek I Ketut Wiratmaja Satuan Radar 214/Tegal (atau Satrad 214/Tegal) merupakan unsur pertahanan udara yang berada langsung dibawah komando Kosek IKN. Di wilayah utara Provinsi Jawa Tengah yang bertu…

American supernatural teen drama series First KillGenre Supernatural Teen drama Created byVictoria SchwabBased onFirst Killby V. E. SchwabStarring Sarah Catherine Hook Imani Lewis Elizabeth Mitchell Aubin Wise Gracie Dzienny Dominic Goodman Phillip Mullings, Jr. Jason R. Moore Music byKurt FarquharCountry of originUnited StatesOriginal languageEnglishNo. of seasons1No. of episodes8ProductionExecutive producers Victoria Schwab Emma Roberts Karah Preiss Jet Wilkinson Felicia D. Henderson Producers…

Guamanian politician Frank AguonVice Speaker of the Guam LegislatureIn officeJanuary 6, 2003 (2003-01-06) – January 3, 2005 (2005-01-03)Preceded byLawrence KasperbauerSucceeded byJoanne M.S. BrownSenator of the Guam LegislatureIn officeJanuary 7, 2013 (2013-01-07) – January 7, 2019 (2019-01-07)In officeJanuary 5, 2009 (2009-01-05) – January 3, 2011 (2011-01-03)In officeJanua…

Bahamian model and actress Shakara LedardLedard in 2009Born (1979-02-21) February 21, 1979 (age 44)Nassau, BahamasModeling informationHeight1.75 m (5 ft 9 in)Hair colorBrownEye colorBrown Shakara Ledard (born February 21, 1979) is a Bahamian-born model and actress based in New York City.[1][2] Biography Ledard was born in Nassau, The Bahamas on February 21, 1979, to Dennis Ledard, a businessman from Normandy, France, and Maddie, who is Bahamian. Dennis owned s…

Piala Emas CONCACAF 2015Berkas:Piala Emas CONCACAF 2015.jpgInformasi turnamenTuan rumahKanadaAmerika SerikatJadwalpenyelenggaraan7–26 JuliJumlahtim peserta12 (dari 1 konfederasi)Tempatpenyelenggaraan14 (di 14 kota)Hasil turnamenJuara Meksiko (gelar ke-7)Tempat kedua JamaikaTempat ketiga PanamaTempat keempat Amerika SerikatStatistik turnamenJumlahpertandingan26Jumlah gol62 (2,38 per pertandingan)Jumlahpenonton1.090.396 (41.938 per pertandingan)Pemain terb…

Railway tunnel in Honshu, Japan Akima Railway TunnelAkima Tunnel on the Hokuriku ShinkansenOverviewLineHokuriku ShinkansenLocationbetween Takasaki city and Karuizawa Coordinates36°23′13.1496″N 138°48′17.2866″E / 36.386986000°N 138.804801833°E / 36.386986000; 138.804801833StatusactiveOperationOpened1997OperatorEast Japan Railway CompanyTrafficRailwayCharacterPassenger and FreightTechnicalLine length8,295 m (27,215 ft)No. of tracks2 Akima Tunnel (秋…

Herb Ursynowa Herb Ursynowa przedstawia bramę zamkową z dwiema umieszczonymi symetrycznie wieżami, nad którą widnieje patron Ursynowa – niedźwiedź, będący nawiązaniem do herbu Rawicz Juliana Ursyna Niemcewicza. Czarny niedźwiedź stoi na dwóch łapach i jest odwrócony w prawą stronę[a], a w prawej łapie trzyma różę[1]. Dolna część tła jest zielona, natomiast górne pole jest żółte. Brama jest w kolorze czerwonym[1]. Herb został zaprojektowany przez zespół specjalis…

United States Army general For persons of a similar name, see Donald Rutherford (disambiguation). Donald L. Rutherford Major General Donald L. Rutherford23rd Chief of Chaplains of the United States ArmyBorn (1955-08-04) August 4, 1955 (age 68)Kinderhook, New YorkAllegiance United StatesService/branch United States ArmyYears of service1977–2015Rank Major GeneralCommands heldU.S. Army Chaplain CorpsBattles/warsGulf WarWar on TerrorIraq WarAwards Army Distinguished Service Medal Le…

Betlehem Galilea בֵּית לֶחֶם הַגְּלִילִיתArsitektur Templar di Betlehem Galilea (tahun 2004)Betlehem GalileaKoordinat: 32°44′12″N 35°11′29″E / 32.73667°N 35.19139°E / 32.73667; 35.19139Koordinat: 32°44′12″N 35°11′29″E / 32.73667°N 35.19139°E / 32.73667; 35.19139Grid position167/237 PALDistrikUtaraDewanJezreel ValleyAffiliasiMoshavim MovementDidirikan2000 SM (kota kuno)1596 (Bayt Lahm)1906 (koloni T…

Kembali kehalaman sebelumnya

Lokasi Pengunjung: 3.136.26.105