1-φθοροπεντάνιο

1-φθοροπεντάνιο
Γενικά
Όνομα IUPAC 1-φθοροπεντάνιο
Άλλες ονομασίες 1-πεντυλοφθορίδιο
Χημικά αναγνωριστικά
Χημικός τύπος C5H11F
Μοριακή μάζα 90,14 amu[1]
Σύντομος
συντακτικός τύπος
CH3CH2CH2CH2CH2F
Συντομογραφίες BuCH2F
Αριθμός CAS 592-50-7
SMILES CCCCCF
Ισομέρεια
Ισομερή θέσης 7
2-φθοροπεντάνιο
3-φθοροπεντάνιο
2-μεθυλο-1-φθοροβουτάνιο
2-μεθυλο-2-φθοροβουτάνιο
3-μεθυλο-2-φθοροβουτάνιο
3-μεθυλο-1-φθοροβουτάνιο
διμεθυλοφθοροπροπάνιο
Φυσικές ιδιότητες
Σημείο βρασμού 62-63 °C
Πυκνότητα 780 kg/m3
Δείκτης διάθλασης ,
nD
1,359-1,361
Εμφάνιση Υγρό
Χημικές ιδιότητες
Ελάχιστη θερμοκρασία
ανάφλεξης
-12 °C
Εκτός αν σημειώνεται διαφορετικά, τα δεδομένα αφορούν υλικά υπό κανονικές συνθήκες περιβάλλοντος (25°C, 100 kPa).

To 1-φθοροπεντάνιο ή 1-πεντυλοφθορίδιο είναι ένα υγρό (στις συνηθισμένες συνθήκες, T = 25 °C, P = 1 atm) αλκυλογονίδιο. Με βάση το χημικό τύπο του, C5H11F, έχει τα ακόλουθα επτά (7) ισομερές θέσης:

  1. 2-φθοροπεντάνιο.
  2. 3-φθοροπεντάνιο.
  3. 2-μεθυλο-1-φθοροβουτάνιο.
  4. 2-μεθυλο-2-φθοροβουτάνιο.
  5. 3-μεθυλο-2-φθοροβουτάνιο.
  6. 3-μεθυλο-1-φθοροβουτάνιο.
  7. Διμεθυλοφθοροπροπάνιο.

Ονοματολογία

Η ονομασία «φθοροπεντάνιο» προέρχεται από την ονοματολογία κατά IUPAC. Συγκεκριμένα, το πρόθεμα «πεντ-» δηλώνει την παρουσία πέντε (5) ατόμων άνθρακα ανά μόριο της ένωσης, το ενδιάμεσο «-αν-» δείχνει την παρουσία μόνο απλών δεσμών μεταξύ ατόμων άνθρακα στο μόριο και η κατάληξη «-ιο» φανερώνει ότι δεν περιέχει χαρακτηριστικές ομάδες που έχουν χαρακτηριστικές καταλήξεις. Το αρχικό πρόθεμα «φθορο-» δηλώνει την παρουσία ενός (1) ατόμου φθορίου ανά μόριο της ένωσης. Τέλος, ο αρχικός αριθμός θέσης «1-», δηλώνει τον αριθμό θέσης του ατόμου του άνθρακα με το οποίο ενώνεται το άτομο του φθορίου, για να διαχωριστεί η ένωση από τις ισομερείς της 2-φθοροπεντάνιο και 3-φθοροπεντάνιο.

Μοριακή δομή

Δεσμοί[2]
Δεσμός τύπος δεσμού ηλεκτρονική δομή Μήκος δεσμού Ιονισμός
C-H σ 2sp3-1s 109 pm 3% C- H+
C-C σ 2sp3-2sp3 154 pm
C-F σ 2sp3-2sp3 139 pm 43% C+ F-
Κατανομή φορτίων
σε ουδέτερο μόριο
F -0,43
H +0,03
C#1 +0,37
C#5 -0,09
C#2-#4 -0,06

Παραγωγή

Με φωτοχημική φθορίωση

Με φωτοχημική φθορίωση πεντανίου παράγεται μίγμα 1-φθοροπεντανίου, 2-φθοροπεντανίου και 3-φθοροπεντανίου[3]:

  • Όπου a + b + c = 1.
  • Ακολουθεί το συνηθισμένο μηχανισμό φωτοχημικής αλογόνωσης αλκανίων. Παράγονται και πολυφθοροπαράγωγα. Η συγκέντρωση των τελευταίων περιορίζεται με χρήση περίσσειας πεντανίου.
  • Η μέθοδος δεν είναι χρήσιμη αν επιθυμείται το ένα μόνο ισομερές, αφού είναι σχετικά δύσκολος διαχωρισμός.

Με υποκατάσταση υδροξυλίου από φθόριο

Με επίδραση υδροφθορίου (HF) σε 1-πεντανόλη (CH3CH2CH2CH2CH2OH)[4]:

  • Συνήθως το υδροφθόριο παρασκευάζεται επιτόπου με την αντίδραση:

Με υποκατάσταση χλωρίου από φθόριο

Με επίδραση φθοριούχου υφυδραργύρου (Hg2F2) σε 1-χλωροπεντάνιο (CH3CH2CH2CH2CH2Cl)[5][6]:

Με προσθήκη 1-φθοροπροπανίου σε αιθένιο

Με προσθήκη 1-φθοροπροπάνιου σε αιθένιο παράγεται 1-φθοροπεντάνιο[7]::

Με προσθήκη φθοραιθανίου σε κυκλοπροπάνιο

Με προσθήκη φθοραιθανίου σε κυκλοπροπάνιο παράγεται 1-φθοροπεντάνιο[8]:

κυκλοπροπάνιο

Με προσθήκη φθορομεθανίου σε κυκλοβουτάνιο

Με προσθήκη φθορομεθανίου σε κυκλοβουτάνιο παράγεται 1-φθοροπεντάνιο[9]:

κυκλοβουτάνιο

Χημικές ιδιότητες και παράγωγα

Αντιδράσεις υποκατάστασης

  • Οι αντιδράσεις είναι πολύ πιο αργές σε σύγκριση με τα αντίστοιχα αλκυλαλογονίδια των άλλων αλογόνων, γιατί ο μηχανισμός που επικρατεί σ' αυτές τις αντιδράσεις υποκαταστάσεως είναι ο SN2.

Υποκατάσταση από υδροξύλιο

Κατά την υδρόλυσή του με εναιώρημα υδροξειδίου του αργύρου (AgOH) σχηματίζεται 1-πεντανόλη (CH3CH2CH2CH2CH2OH)[10]:

Υποκατάσταση από αλκοξύλιο

Με αλκοολικά άλατα (RONa) σχηματίζει αλκυλoπεντυλαιθέρα (CH3CH2CH2CH2CH2OR)[10]:

Υποκατάσταση από αλκινύλιο

Με αλκινικά άλατα (RC≡CNa) σχηματίζει αλκίνιο (RC≡CCH2CH2CH2CH2CH3). Π.χ.[10]:

Υποκατάσταση από ακύλιο

Με καρβονικά άλατα (RCOONa) σχηματίζει καρβονικό πεντυλεστέρα (RCOOCH2CH2CH2CH2CH3)[10]:

Υποκατάσταση από κυάνιο

Με κυανιούχο νάτριο (NaCN) σχηματίζει εξανονιτρίλιο (CH3CH2CH2CH2CH2CN)[10]:

Υποκατάσταση από αλκύλιο

Με αλκυλολίθιο (RLi) σχηματίζει αλκάνιο[10]:

Υποκατάσταση από σουλφυδρίλιο

Με όξινο θειούχο νάτριο (NaSH) σχηματίζει 1-πεντανοθειόλη (CH3CH2CH2CH2CH2SH)[10]:

Υποκατάσταση από σουλφαλκύλιο

Με θειολικό νάτριο (RSNa) σχηματίζει αλκυλοπεντυλοθειαιθέρα (RSCH2CH2CH2CH2CH3)[10]:

Υποκατάσταση από ιώδιο

Με ιωδιούχο νάτριο (NaI) σχηματίζει 1-ιωδοπεντάνιο (CH3CH2CH2CH2CH2I)[10]:

Υποκατάσταση από αμινομάδα

Με αμμωνία (NH3) σχηματίζει 1-πενταναμίνη (CH3CH2CH2CH2CH2NH2)[10]:

Υποκατάσταση από αλκυλαμινομάδα

Με πρωυτοταγείς αμίνες (RNH2) σχηματίζει N-αλκυλο-1-πενταναμίνη (RNHCH2CH2CH2CH2CH3)[10]:

Υποκατάσταση από διαλκυλαμινομάδα

Με δευτεροταγείς αμίνες (R'NHR) σχηματίζει N,N-διαλκυλο-1-πενταναμίνη [R'N(CH2CH2CH2CH2CH3)R][10]:

Υποκατάσταση από τριαλκυλαμινομάδα

Με τριτοταγείς αμίνες [R'N(R)R"] σχηματίζει φθοριούχο N,N,N-τριαλκυλοπεντυλαμμώνιο {[R'N(CH2CH2CH2CH2CH3)(R)R"]F}[11]:

Υποκατάσταση από φωσφύλιο

Με φωσφίνη σχηματίζει 1-πεντανοφωσφαμίνη[12]:

Υποκατάσταση από νιτροομάδα

Με νιτρώδη άργυρο (AgNO2) σχηματίζει 1-νιτροπεντάνιο (CH3CH2CH2CH2CH2NO2)[13]:

Υποκατάσταση από φαινύλιο

Με επίδραση τύπου Friedel-Crafts σε βενζολίου παράγεται 1-φαινυλοπεντάνιο:

Παραγωγή οργανομεταλλικών ενώσεων

1. Με λίθιο (Li σχηματίζει πεντυλολίθιο[14]:

2. Με μαγνήσιο (Mg) σχηματίζει 1-πεντυλομαγνησιοφθορίδιο [15]:

Αναγωγή

1. Με λιθιοαργιλλιοϋδρίδιο (LiAlH4) παράγεται πεντάνιο.[16]:

2. Με «υδρογόνο εν τω γενάσθαι», δηλαδή μέταλλο + οξύ παράγεται πεντάνιο.[17]:

3. Με σιλάνιο, παρουσία τριφθοριούχου βορίου, παράγεται πεντάνιο[18]:

4. Αναγωγή από ένα αλκυλοκασσιτεράνιο. Π.χ.[19]:

Αντιδράσεις προσθήκης

1. Σε αλκένια. Π.χ. με αιθένιο (CH2=CH2) παράγει 1-φθορεπτάνιο (CH3CH2CH2CH2CH2CH2CH2F)[20]:

2. Σε αλκίνια. Π.χ. με αιθίνιο (HC≡CH) παράγει 1-φθορο-1-επτένιο (CH3CH2CH2CH2CH2CH=CHF)[21]:

3. Η αντίδραση του 1-φθοροπεντανίου με συζυγή αλκαδιένια αντιστοιχεί κυρίως σε 1,4-προσθήκη, αν και είναι επίσης δυνατές η 1,2-προσθήκη και η 3,4-προσθήκη, με τη χρήση κατάλληλων συνθηκών. Π.χ[22]:

(1,4-προσθήκη)
(1,2-προσθήκη)
(3,4-προσθήκη)

4. Σε κυκλοαλκάνια που έχουν τριμελή ή τετραμελή δακτύλιο. Π.χ. με κυκλοπροπάνιο παράγει 1-φθοροκτάνιο[23]:

κυκλοπροπάνιο

5. Σε ετεροκυκλικές ενώσεις που έχουν τριμελή ή τετραμελή δακτύλιο. Π.χ. με εποξυαιθάνιο παράγει πεντοξυ-2-φθοραιθάνιο[24]:

Αντίδραση απόσπασης

Με απόσπαση υδροφθορίου (HF) από 1-φθοροπεντάνιο παράγεται 1-πεντένιο[25]:

Παρεμβολή καρβενίων

  • Τα καρβένια (π.χ. [:CH2]) μπορούν παρεμβληθούν στους δεσμούς C-H. Π.χ. έχουμε[26]:

  • Η αντίδραση είναι ελάχιστα εκλεκτική και αυτό σημαίνει ότι κατά προσέγγιση έχουμε;
1. Παρεμβολή στους τρεις (3) δεσμούς CH2-H. Παράγεται 1-φθορεξάνιο.
2. Παρεμβολή στους δυο (2) δεσμούς C#2H-H: Παράγεται 2-μεθυλο-1-φθοροπεντάνιο.
3. Παρεμβολή στους δυο (2) δεσμούς C#3H-H: Παράγεται 3-μεθυλο-1-φθοροπεντάνιο.
4. Παρεμβολή στους δυο (2) δεσμούς C#3H-H: Παράγεται 4-μεθυλο-1-φθοροπεντάνιο.
5. Παρεμβολή στους δυο (2) δεσμούς C#1H-H: Παράγεται 2-φθορεξάνιο.

Προκύπτει επομένως μίγμα 1-φθορεξάνιου ~27%, 2-μεθυλο-1-φθοροπεντάνιου ~18%, 3-μεθυλο-1-φθοροπεντάνιου ~18%, 4-μεθυλο-1-φθοροπεντάνιου ~18% και 2-φθορεξάνιου ~18%.

Σημειώσεις και αναφορές

  1. Διαδικτυακός τόπος Chemical Book
  2. Τα δεδομένα προέρχονται εν μέρει από το «Table of periodic properties of thw Ellements», Sagrent-Welch Scientidic Company και Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, Σελ. 34.
  3. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 155, §6.7.2.
  4. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 185, §7.2.1, R = CH3CH2CH2CH2CH2, X = F.
  5. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 185, §7.2.8.
  6. Πραγματοποιείται και με υποκατάσταση βρωμίου ή ιωδίου, αλλά πιο αργά και δύσκολα.
  7. SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999, §6.3., σελ. 79, για Ε = CH2CH2CH3 και Nu = F.
  8. SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999, §6.3., σελ. 79, εφαρμογή για κυκλοαλκάνια και για Ε = CH2CH3 και Nu = F σε συνδυασμό με Ν. Αλεξάνδρου, Α. Βάρβογλη, Δ. Νικολαΐδη: Χημεία Ετεροχημικών Ενώσεων, Θεσσαλονίκη 1985, §1.2., σελ. 22-25
  9. SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999, §6.3., σελ. 79, εφαρμογή για κυκλοαλκάνια και για Ε = CH3 και Nu = F σε συνδυασμό με Ν. Αλεξάνδρου, Α. Βάρβογλη, Δ. Νικολαΐδη: Χημεία Ετεροχημικών Ενώσεων, Θεσσαλονίκη 1985, §1.2., σελ. 22-25
  10. 10,00 10,01 10,02 10,03 10,04 10,05 10,06 10,07 10,08 10,09 10,10 10,11 Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 186, §7.3.1.
  11. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 243, §10.2.Α, R = CH2CH2CH2CH2CH3, X = F.
  12. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 267, §11.3.Α1, R = CH3CH2CH2CH2CH2, X = F.
  13. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 244, §10.3.Α, R = CH2CH2CH2CH2CH3, X = F.
  14. Α. Βάρβογλη, «Χημεία Οργανικών Ενώσεων», παρατηρητής, Θεσσαλονίκη 1991, §5.1. σελ.82
  15. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 187, §7.3.5, R = CH2CH2CH2CH2CH3, X = F.
  16. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 187, §7.3.3α, R = CH2CH2CH2CH2CH3, X = F.
  17. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 187, §7.3.3β, R = CH2CH2CH2CH2CH3, X = F.
  18. Α. Βάρβογλη, «Χημεία Οργανικών Ενώσεων», παρατηρητής, Θεσσαλονίκη 1991, σελ. 291-293, §19.1.
  19. SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999, Σελ. 42, §4.3.
  20. SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999, §6.3., σελ. 79, για Ε = CH3CH2CH2CH2CH2 και Nu = F.
  21. SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999, §6.3., σελ. 79, εφαρμογή για αλκίνια και για Ε = CH3CH2CH2CH2CH2 και Nu = F με βάση και την §8.1, σελ. 114-116.
  22. SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999, §6.3., σελ. 79, εφαρμογή για αλκαδιένια και για Ε = CH3CH2CH2CH2CH2 και Nu = F με βάση και την §8.2, σελ. 116-117.
  23. SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999, §6.3., σελ. 79, εφαρμογή για κυκλοαλκάνια και για Ε = CH3CH2CH2CH2CH2 και Nu = F σε συνδυασμό με Ν. Αλεξάνδρου, Α. Βάρβογλη, Δ. Νικολαΐδη: Χημεία Ετεροχημικών Ενώσεων, Θεσσαλονίκη 1985, §1.2., σελ. 22-25
  24. Ν. Αλεξάνδρου, Α. Βάρβογλη, Δ. Νικολαΐδη: Χημεία Ετεροχημικών Ενώσεων, Θεσσαλονίκη 1985, §2.1., σελ. 16-17, εφαρμογή γενικής αντίδρασης για Nu = F.
  25. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.153, §6.3.1α.
  26. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 155, §6.7.3.

Πηγές

  • Γ. Βάρβογλη, Ν. Αλεξάνδρου, Οργανική Χημεία, Αθήνα 1972
  • Α. Βάρβογλη, «Χημεία Οργανικών Ενώσεων», παρατηρητής, Θεσσαλονίκη 1991
  • SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999
  • Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982
  • Ν. Αλεξάνδρου, Α. Βάρβογλη, Δ. Νικολαΐδη: Χημεία Ετεροχημικών Ενώσεων, Θεσσαλονίκη 1985