Da der die Maschine durchfließende elektrische Strom nach Passieren der UKW den Walzensatz erneut durchläuft, nun in umgekehrter Richtung, und abschließend noch einmal durch das Steckerbrett fließt, treten die beiden Terme und am Ende der Enigma-Gleichung in invertierter Form erneut auf.
Aufgrund der Involutorik (Verschlüsseln = Entschlüsseln) gilt die Enigma-Gleichung wie für den Verschlüsselungsvorgang ebenso für die Entschlüsselung.
Geschichte
Die Gleichung wurde vom damals 27-jährigen polnischen Kryptoanalytiker Marian Rejewski bei seiner Arbeit in der polnischen Dechiffrierstelle, dem Biuro Szyfrów im Jahre 1932 aufgestellt und stellte die Grundlage dar für die Ermittlung der von den deutschen Militärs (damals) streng geheim gehaltenen Walzenverdrahtung der drei Walzen I bis III sowie der Umkehrwalze A der Enigma. Damit legte Rejewski die entscheidenden Voraussetzungen für die Entzifferung des geheimen militärischen Nachrichtenverkehrs der deutschen Wehrmacht im Zweiten Weltkrieg.
Der amerikanische Historiker David Kahn würdigte dies als kryptanalytische Meisterleistung, die Rejewski „in das Pantheon der größten Kryptoanalytiker aller Zeiten erhebt“ (im Original: „elevates him to the pantheon of the greatest cryptanalysts of all time“). Der englische Codeknacker Irving J. Good bezeichnete Rejewskis Gleichung als „The theorem that won World War II“ (deutsch: „Das Theorem, das den Zweiten Weltkrieg gewann“).
Literatur
Friedrich L. Bauer: Entzifferte Geheimnisse. Methoden und Maximen der Kryptologie. 3., überarbeitete und erweiterte Auflage. Springer, Berlin u. a. 2000, ISBN 3-540-67931-6.
Kris Gaj, Arkadiusz Orłowski: Facts and myths of Enigma: breaking stereotypes. Eurocrypt, 2003, pp. 106–122. PDF; 0,1 MB
Michael Pröse: Chiffriermaschinen und Entzifferungsgeräte im Zweiten Weltkrieg - Technikgeschichte und informatikhistorische Aspekte. Dissertation, Leipzig, 2004, p. 97 PDF; 7,5 MB
Marian Rejewski: An Application of the Theory of Permutations in Breaking the Enigma Cipher. Applicationes Mathematicae, 16 (4), 1980, pp. 543–559 PDF; 1,7 MB.