Squaring the square

The first perfect squared square discovered, a compound one of side 4205 and order 55.[1] Each number denotes the side length of its square.

Squaring the square is the problem of tiling an integral square using only other integral squares. (An integral square is a square whose sides have integer length.) The name was coined in a humorous analogy with squaring the circle. Squaring the square is an easy task unless additional conditions are set. The most studied restriction is that the squaring be perfect, meaning the sizes of the smaller squares are all different. A related problem is squaring the plane, which can be done even with the restriction that each natural number occurs exactly once as a size of a square in the tiling. The order of a squared square is its number of constituent squares.

Perfect squared squares

Smith diagram of a rectangle

A "perfect" squared square is a square such that each of the smaller squares has a different size.

Perfect squared squares were studied by R. L. Brooks, C. A. B. Smith, A. H. Stone and W. T. Tutte (writing under the collective pseudonym "Blanche Descartes") at Cambridge University between 1936 and 1938. They transformed the square tiling into an equivalent electrical circuit – they called it a "Smith diagram" – by considering the squares as resistors that connected to their neighbors at their top and bottom edges, and then applied Kirchhoff's circuit laws and circuit decomposition techniques to that circuit. The first perfect squared squares they found were of order 69.

The first perfect squared square to be published, a compound one of side 4205 and order 55, was found by Roland Sprague in 1939.[1]

Martin Gardner published an extensive article written by W. T. Tutte about the early history of squaring the square in his Mathematical Games column of November 1958.[2]

Lowest-order perfect squared square (1) and the three smallest perfect squared squares (2–4): all are simple squared squares

Simple squared squares

A "simple" squared square is one where no subset of more than one of the squares forms a rectangle or square. When a squared square has a square or rectangular subset, it is "compound".

In 1978, A. J. W. Duijvestijn [de] discovered a simple perfect squared square of side 112 with the smallest number of squares using a computer search. His tiling uses 21 squares, and has been proved to be minimal.[3] This squared square forms the logo of the Trinity Mathematical Society. It also appears on the cover of the Journal of Combinatorial Theory.

Duijvestijn also found two simple perfect squared squares of sides 110 but each comprising 22 squares. Theophilus Harding Willcocks, an amateur mathematician and fairy chess composer, found another. In 1999, I. Gambini proved that these three are the smallest perfect squared squares in terms of side length.[4]

The perfect compound squared square with the fewest squares was discovered by T.H. Willcocks in 1946 and has 24 squares; however, it was not until 1982 that Duijvestijn, Pasquale Joseph Federico and P. Leeuw mathematically proved it to be the lowest-order example.[5]

Mrs. Perkins's quilt

When the constraint of all the squares being different sizes is relaxed, a squared square such that the side lengths of the smaller squares do not have a common divisor larger than 1 is called a "Mrs. Perkins's quilt". In other words, the greatest common divisor of all the smaller side lengths should be 1. The Mrs. Perkins's quilt problem asks for a Mrs. Perkins's quilt with the fewest pieces for a given square. The number of pieces required is at least ,[6] and at most .[7] Computer searches have found exact solutions for small values of (small enough to need up to 18 pieces).[8] For the number of pieces required is:

1, 4, 6, 7, 8, 9, 9, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, ... (sequence A005670 in the OEIS)

No more than two different sizes

A square cut into 10 pieces (an HTML table)
       
       
   

For any integer other than 2, 3, and 5, it is possible to dissect a square into squares of one or two different sizes.[9]

Squaring the plane

Tiling the plane with different integral squares using the Fibonacci series
1. Tiling with squares with Fibonacci-number sides is almost perfect except for 2 squares of side 1.
2. Duijvestijn found a 110-square tiled with 22 different integer squares.
3. Scaling the Fibonacci tiling by 110 times and replacing one of the 110-squares with Duijvestijn's perfects the tiling.

In 1975, Solomon Golomb raised the question whether the whole plane can be tiled by squares, one of each integer edge-length, which he called the heterogeneous tiling conjecture. This problem was later publicized by Martin Gardner in his Scientific American column and appeared in several books, but it defied solution for over 30 years.

In Tilings and patterns, published in 1987, Branko Grünbaum and G. C. Shephard describe a way of tiling of the plane by integral squares by recursively taking any perfect squared square and enlarging it so that the formerly smallest tile has the size of the original squared square, then replacing this tile with a copy of the original squared square. The recursive scaling process increases the sizes of the squares exponentially – skipping most integers – a feature which they note was true of all perfect integral tilings of the plane known at that time.

In 2008 James Henle and Frederick Henle proved Golomb's heterogeneous tiling conjecture: there exists a tiling of the plane by squares, one of each integer size. Their proof is constructive and proceeds by "puffing up" an L-shaped region formed by two side-by-side and horizontally flush squares of different sizes to a perfect tiling of a larger rectangular region, then adjoining the square of the smallest size not yet used to get another, larger L-shaped region. The squares added during the puffing up procedure have sizes that have not yet appeared in the construction and the procedure is set up so that the resulting rectangular regions are expanding in all four directions, which leads to a tiling of the whole plane.[10]

Cubing the cube

Cubing the cube is the analogue in three dimensions of squaring the square: that is, given a cube C, the problem of dividing it into finitely many smaller cubes, no two congruent.

Unlike the case of squaring the square, a hard yet solvable problem, there is no perfect cubed cube and, more generally, no dissection of a rectangular cuboid C into a finite number of unequal cubes.

To prove this, we start with the following claim: for any perfect dissection of a rectangle in squares, the smallest square in this dissection does not lie on an edge of the rectangle. Indeed, each corner square has a smaller adjacent edge square, and the smallest edge square is adjacent to smaller squares not on the edge.

Now suppose that there is a perfect dissection of a rectangular cuboid in cubes. Make a face of C its horizontal base. The base is divided into a perfect squared rectangle R by the cubes which rest on it. The smallest square s1 in R is surrounded by larger, and therefore higher, cubes. Hence the upper face of the cube on s1 is divided into a perfect squared square by the cubes which rest on it. Let s2 be the smallest square in this dissection. By the claim above, this is surrounded on all 4 sides by squares which are larger than s2 and therefore higher.

The sequence of squares s1, s2, ... is infinite and the corresponding cubes are infinite in number. This contradicts our original supposition.[11]

If a 4-dimensional hypercube could be perfectly hypercubed then its 'faces' would be perfect cubed cubes; this is impossible. Similarly, there is no solution for all cubes of higher dimensions.

See also

References

  1. ^ a b Sprague, R. (1939). "Beispiel einer Zerlegung des Quadrats in lauter verschiedene Quadrate". Mathematische Zeitschrift. 45: 607–608. doi:10.1007/BF01580305. MR 0000470. English translation by David Moews, "An example of a dissection of the square into pairwise unequal squares".
  2. ^ Gardner, Martin (November 1958). "How rectangles, including squares, can be divided into squares of unequal size". Mathematical Games. Scientific American. 199 (5): 136–144. JSTOR 24944827. W. T. Tutte is not named as an author of the column, but it consists almost entirely of a long multi-paragraph quote credited to Tutte.
  3. ^ Duijvestijn, A. J. W. (1978). "Simple perfect squared square of lowest order". Journal of Combinatorial Theory, Series B. 25 (2): 240–243. doi:10.1016/0095-8956(78)90041-2. MR 0511994.
  4. ^ Gambini, Ian (1999). "A method for cutting squares into distinct squares". Discrete Applied Mathematics. 98 (1–2): 65–80. doi:10.1016/S0166-218X(99)00158-4. MR 1723687.
  5. ^ Duijvestijn, A. J. W.; Federico, P. J.; Leeuw, P. (1982). "Compound perfect squares". The American Mathematical Monthly. 89 (1): 15–32. doi:10.1080/00029890.1982.11995375. JSTOR 2320990. MR 0639770.
  6. ^ Conway, J. H. (1964). "Mrs. Perkins's quilt". Proceedings of the Cambridge Philosophical Society. 60 (3): 363–368. doi:10.1017/S0305004100037877. MR 0167425.
  7. ^ Trustrum, G. B. (1965). "Mrs Perkins's quilt". Proceedings of the Cambridge Philosophical Society. 61 (1): 7–11. doi:10.1017/s0305004100038573. MR 0170831.
  8. ^ Wynn, Ed (2014). "Exhaustive generation of 'Mrs. Perkins's quilt' square dissections for low orders". Discrete Mathematics. 334: 38–47. arXiv:1308.5420. doi:10.1016/j.disc.2014.06.022. MR 3240464.
  9. ^ Henry, J. B.; Taylor, P. J. (2009). Challenge! 1999 - 2006 Book 2. Australian Mathematics Trust. p. 84. ISBN 978-1-876420-23-9.
  10. ^ Henle, Frederick V.; Henle, James M. (2008). "Squaring the plane" (PDF). The American Mathematical Monthly. 115 (1): 3–12. doi:10.1080/00029890.2008.11920491. JSTOR 27642387. S2CID 26663945.
  11. ^ Brooks, R. L.; Smith, C. A. B.; Stone, A. H.; Tutte, W. T. (1940). "The dissection of rectangles into squares". Duke Mathematical Journal. 7: 312–340. doi:10.1215/S0012-7094-40-00718-9. MR 0003040.

Read other articles:

Esther RolleRolle, 1978LahirEsther Elizabeth Rolle(1920-11-08)8 November 1920Pompano Beach, Florida, A.S.Meninggal17 November 1998(1998-11-17) (umur 78)Culver City, California, A.S.MakamWestview Community Cemetery, Pompano Beach, FloridaKebangsaanAmerika, BahamaPekerjaanAktrisTahun aktif1964–1998Dikenal atasFlorida Evans di Maude dan Good TimesSuami/istriOscar Robinson ​ ​(m. 1955; c. 1975)​PenghargaanPenghargaan Emmy: Outstanding S...

 

Cerek tilil Status konservasi Risiko Rendah (IUCN 3.1)[1] Klasifikasi ilmiah Kerajaan: Animalia Filum: Chordata Kelas: Aves Ordo: Charadriiformes Famili: Charadriidae Genus: Charadrius Spesies: C. alexandrinus Nama binomial Charadrius alexandrinusLinnaeus, 1758 Subspecies C. a. alexandrinus C. a. nivosus C. a. tenuirostris Charadrius alexandrinus Cerek tilil (bahasa Latin = Charadrius alexandrinus) adalah spesies burung dari keluarga Charadriidae, dari genus Charadrius. Bur...

 

Lokasi Distrik Kamihei di Prefektur Iwate. Lokasi munisipalitas yang ada di Distrik Kamihei, Prefektur Iwate1. – Ōtsuchiwarna hijau - cakupan wilayah distrik saat iniwarna kuning - bekas wilayah distrik pada awal zaman Meiji Distrik Kamihei (上閉伊郡code: ja is deprecated , Kamihei-gun) adalah sebuah distrik yang terletak di Prefektur Iwate, Jepang. Per 1 Oktober 2020, distrik ini memiliki estimasi jumlah penduduk sebesar 11.004 jiwa dan kepadatan penduduk sebesar 54,91 orang per km²....

Слэвитэ сэ фий, НистренеB. Indonesia: Lagu kebangsaan TransnistriaLagu kebangsaan TransnistriaAliasМы славим тебя, Приднестровье (B. Indonesia:  In Russian )Ми славимо тебе, Придністров’я (B. Indonesia: In Ukrainian )Penulis lirikBoris Parmenov / Nicholas Bozhko / Vitaly PishenkoKomponisBoris Alexandrovich Alexandrov, 1943 (1943)Sampel audioberkasbantuan Sampel audioLagu kebangsaan Republik Transnistriaberk...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (ديسمبر 2020) الاتحاد الأفريقي لكرة القدم. المقالات الرئيسة: كرة القدم في تونس وكرة القدم في أفريقيا ظهرت رياضة كرة القدم في تونس مع دخول الحماية الفرنسية لتونس ومنذ ذلك �...

 

TT Circuit AssenLokasiAssen, BelandaZona waktuGMT +1Acara besarFIM MotoGPDutch TTSBK, Champ Car World SeriesSuperleague FormulaPanjang4.545 km (2.824 mi)Tikungan12 kanan, 6 kiriRekor lap1:18.765 (Sebastien Bourdais, Champ Car, 2007)Situs webwww.tt-assen.com TT Circuit Assen merupakan sebuah sirkuit balap di Belanda yang terletak di dekat Assen. Sirkuit ini dibangun pada tahun 1955 dan digunakan untuk kejuaraan Superbike dan MotoGP. Sirkuit ini dibangun untuk tujuan TT Belanda tahun 1954, deng...

Bangladeshi cricketer (born 1986) Mahmudullah RiyadMahmudullah in 2018Personal informationFull nameMohammad Mahmudullah Riyad[1]Born (1986-02-04) 4 February 1986 (age 38)Mymensingh, BangladeshNicknameRiyad,[2] Silent Killer[3][4]Height1.80 m (5 ft 11 in)BattingRight-handedBowlingRight-arm off breakRoleAll-rounderRelationsMushfiqur Rahim (brother-in-law)International information National sideBangladesh (2007–present)Test debut (cap...

 

Resolusi 1024Dewan Keamanan PBBPemandangan dari bunker Suriah pada wilayah IsraelTanggal28 November 1995Sidang no.3.599KodeS/RES/1024 (Dokumen)TopikIsrael-Republik Arab SuriahRingkasan hasil15 mendukungTidak ada menentangTidak ada abstainHasilDiadopsiKomposisi Dewan KeamananAnggota tetap Tiongkok Prancis Rusia Britania Raya Amerika SerikatAnggota tidak tetap Argentina Botswana Republik Ceko Jerman Honduras Indonesia Italia&...

 

Type of evoked potential Animation of cortical spreading depression Migraine Migraine Prevention of migraine attacks Aura Cortical spreading depression ICHD classification and diagnosis of migraine Retinal migraine Familial hemiplegic migraine Sporadic hemiplegic migraine Cortical spreading depression seen using intrinsic optical signal imaging in gyrencephalic brain. Speed 50x. From Santos E et al. Neuroimage 2014. [1] Hemodynamic changes observed after MCA occlusion in IOS. The video has a ...

Koleksi Jalur suara Doraemon TVlagu tema karya VariousDirilis25 November 2009Genrelagu temaLabelKolombiaDoraemon Doraemon (Doraemon) (2019)String Module Error: Match not foundString Module Error: Match not found Koleksi Jalur suara Doraemon TV (2009) Koleksi lagu tema Doraemon TV adalah kumpulan lagu tema film Doraemon saat pembukaan maupun saat penutupan. Daftar Lagu Keseluruhan Nobita to Animaru Puranetto Soundtrack No.JudulDurasi1.Sayonara ni sayonara (Kaientai) 2.Yume no hito (Ta...

 

Dominican baseball player (born 1994) In this Spanish name, the first or paternal surname is Lopez and the second or maternal family name is Kely. Baseball player Reynaldo LópezLópez with the Washington Nationals in 2016Atlanta Braves – No. 40PitcherBorn: (1994-01-04) January 4, 1994 (age 30)San Pedro de Macorís, Dominican RepublicBats: RightThrows: RightMLB debutJuly 19, 2016, for the Washington NationalsMLB statistics (through April 16, 2024)Win–loss recor...

 

تشارلز كونراد أبوت (بالإنجليزية: Charles Conrad Abbott)‏    معلومات شخصية الميلاد 4 يونيو 1843 [1][2]  ترنتون[1][2]  الوفاة 27 يوليو 1919 (76 سنة) [3]  بريستول[1]  مواطنة الولايات المتحدة[1]  الحياة العملية المدرسة الأم جامعة بنسيلفانيا (–1865)[2]  �...

Questa voce o sezione sull'argomento cantanti non è ancora formattata secondo gli standard. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. GiovannaLittle Tony e Giovanna (1973) Nazionalità Italia GenerePop Periodo di attività musicale1967 – in attività EtichettaMeazzi, Ariston Records, Ri-Fi, Drums, Kicco Music, Music Universe a.c.m. Album pubblicati21 Studio21 Modifica dati su Wikidata ...

 

English, Scottish, Irish and Great Britain legislationActs of parliaments of states preceding the United Kingdom Of the Kingdom of EnglandRoyal statutes, etc. issued beforethe development of Parliament 1225–1267 1275–1307 1308–1325 Temp. incert. 1327–1411 1413–1460 1461 1463 1464 1467 1468 1472 1474 1477 1482 1483 1485–1503 1509–1535 1536 1539–1540 1541 1542 1543 1545 1546 1547 1548 1549      1551      1553 1554 1555 &...

 

Graph of the polynomial function x4 + x3 – x2 – 7x/4 – 1/2 (in green) together with the graph of its resolvent cubic R4(y) (in red). The roots of both polynomials are visible too. In algebra, a resolvent cubic is one of several distinct, although related, cubic polynomials defined from a monic polynomial of degree four: P ( x ) = x 4 + a 3 x 3 + a 2 x 2 + a 1 x + a 0 . {\displaystyle P(x)=x^{4}+a_{3}x^{3}+a_{2}x^{2}+a_{1}x+a_{0}.} In each case: The coefficients of the resolvent cubic ca...

СтаницаМигулинская 49°41′47″ с. ш. 41°15′39″ в. д.HGЯO Страна  Россия Субъект Федерации Ростовская область Муниципальный район Верхнедонской Сельское поселение Мигулинское История и география Прежние названия Мигулинский городок (XVII век) Часовой пояс UTC...

 

السعفة الذهبيةالشعارمعلومات عامةالبلد فرنسا المكان كان أول جائزة 1955 موقع الويب festival-cannes.com (الإنجليزية) تعديل - تعديل مصدري - تعديل ويكي بيانات السَّعَفَة الذَّهَبية (بالفرنسية: Palme d'Or)‏ أعلى جائزة تمنح لفيلم في مهرجان كان السينمائي. بدأ منح هذه الجائزة في سنة 1955. لمحة تاريخ�...

 

التركيب الكيميائي العام لـ acyl-CoA ، حيث R هي سلسلة جانبية من الأحماض الدهنية أسيل مرافق الإنزيم-أ (بالإنجليزية: Acyl-CoA)‏ هي مجموعة من الإنزيمات المساعدة التي تستقلب الأحماض الدهنية . تتعرض Acyl-CoA لعملية أكسدة بيتا لتشكل في النهاية(أستيل كو أيه) acetyl-CoA. يدخل أستيل كو أيه في حلقة حمض ...

English blues rock band Savoy BrownSavoy Brown at the Towne Crier Café in Pawling, NY; 6 April 2007.Background informationAlso known asSavoy Brown Blues BandOriginLondon, EnglandGenresBlues rock[1]Years active1965–2022LabelsDecca, Deram, Parrot, Blind Pig, GNP CrescendoPast membersSee list of Savoy Brown membersWebsitesavoybrown.com Savoy Brown (originally Savoy Brown Blues Band) were a British blues rock band[1] formed in Battersea, southwest London,[2] in 1965. Pa...

 

1871 stamps of Tolima. This is a survey of the postage stamps and postal history of Tolima. Tolima Department is one of the 32 departments of Colombia, located in the Andean region, in the center-west of the country. The department of Tolima was created in 1861 from a part of what had been Cundinamarca. First stamps The first postage stamps of Tolima were issued in 1870.[1] See also Postage stamps and postal history of Colombia References ^ Tolima. Sandafayre Stamp Atlas. Retrieved 2...