This regular tiling can also be constructed from [(5,5,3)] symmetry alternating two colors of pentagons, represented by t1(5,5,3).
Symmetry
This tiling represents a hyperbolic kaleidoscope of 6 mirrors defining a regular hexagon fundamental domain, and 5 mirrors meeting at a point. This symmetry by orbifold notation is called *33333 with 5 order-3 mirror intersections.
Related polyhedra and tiling
This tiling is topologically related as a part of sequence of regular tilings with order-6 vertices with SchlÀfli symbol {n,6}, and Coxeter diagram, progressing to infinity.
John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
"Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN0-486-40919-8. LCCN99035678.