Infinite-order apeirogonal tiling
The infinite-order apeirogonal tiling is a regular tiling of the hyperbolic plane . It has Schläfli symbol of {∞,∞}, which means it has countably infinitely many apeirogons around all its ideal vertices.
Symmetry
This tiling represents the fundamental domains of *∞∞ symmetry.
This tiling can also be alternately colored in the [(∞,∞,∞)] symmetry from 3 generator positions.
Domains
0
1
2
symmetry: [(∞,∞,∞)]
t0 {(∞,∞,∞)}
t1 {(∞,∞,∞)}
t2 {(∞,∞,∞)}
The union of this tiling and its dual can be seen as orthogonal red and blue lines here, and combined define the lines of a *2∞2∞ fundamental domain.
a{∞,∞} or = ∪
Paracompact uniform tilings in [∞,∞] family
= =
= =
= =
= =
= =
=
=
{∞,∞}
t{∞,∞}
r{∞,∞}
2t{∞,∞}=t{∞,∞}
2r{∞,∞}={∞,∞}
rr{∞,∞}
tr{∞,∞}
Dual tilings
V∞∞
V∞.∞.∞
V(∞.∞)2
V∞.∞.∞
V∞∞
V4.∞.4.∞
V4.4.∞
Alternations
[1+ ,∞,∞] (*∞∞2)
[∞+ ,∞] (∞*∞)
[∞,1+ ,∞] (*∞∞∞∞)
[∞,∞+ ] (∞*∞)
[∞,∞,1+ ] (*∞∞2)
[(∞,∞,2+ )] (2*∞∞)
[∞,∞]+ (2∞∞)
h{∞,∞}
s{∞,∞}
hr{∞,∞}
s{∞,∞}
h2 {∞,∞}
hrr{∞,∞}
sr{∞,∞}
Alternation duals
V(∞.∞)∞
V(3.∞)3
V(∞.4)4
V(3.∞)3
V∞∞
V(4.∞.4)2
V3.3.∞.3.∞
Paracompact uniform tilings in [(∞,∞,∞)] family
(∞,∞,∞) h{∞,∞}
r(∞,∞,∞) h2 {∞,∞}
(∞,∞,∞) h{∞,∞}
r(∞,∞,∞) h2 {∞,∞}
(∞,∞,∞) h{∞,∞}
r(∞,∞,∞) r{∞,∞}
t(∞,∞,∞) t{∞,∞}
Dual tilings
V∞∞
V∞.∞.∞.∞
V∞∞
V∞.∞.∞.∞
V∞∞
V∞.∞.∞.∞
V∞.∞.∞
Alternations
[(1+ ,∞,∞,∞)] (*∞∞∞∞)
[∞+ ,∞,∞)] (∞*∞)
[∞,1+ ,∞,∞)] (*∞∞∞∞)
[∞,∞+ ,∞)] (∞*∞)
[(∞,∞,∞,1+ )] (*∞∞∞∞)
[(∞,∞,∞+ )] (∞*∞)
[∞,∞,∞)]+ (∞∞∞)
Alternation duals
V(∞.∞)∞
V(∞.4)4
V(∞.∞)∞
V(∞.4)4
V(∞.∞)∞
V(∞.4)4
V3.∞.3.∞.3.∞
See also
References
External links