Q-learning at its simplest stores data in tables. This approach becomes infeasible as the number of states/actions increases (e.g., if the state space or action space were continuous), as the probability of the agent visiting a particular state and performing a particular action diminishes.
Reinforcement learning differs from supervised learning in not needing labelled input-output pairs to be presented, and in not needing sub-optimal actions to be explicitly corrected. Instead, the focus is on finding a balance between exploration (of uncharted territory) and exploitation (of current knowledge) with the goal of maximizing the cumulative reward (the feedback of which might be incomplete or delayed).[1] The search for this balance is known as the exploration-exploitation dilemma.
The environment is typically stated in the form of a Markov decision process (MDP), as many reinforcement learning algorithms use dynamic programming techniques.[2] The main difference between classical dynamic programming methods and reinforcement learning algorithms is that the latter do not assume knowledge of an exact mathematical model of the Markov decision process, and they target large MDPs where exact methods become infeasible.[3]
Introduction
Due to its generality, reinforcement learning is studied in many disciplines, such as game theory, control theory, operations research, information theory, simulation-based optimization, multi-agent systems, swarm intelligence, and statistics. In the operations research and control literature, RL is called approximate dynamic programming, or neuro-dynamic programming. The problems of interest in RL have also been studied in the theory of optimal control, which is concerned mostly with the existence and characterization of optimal solutions, and algorithms for their exact computation, and less with learning or approximation (particularly in the absence of a mathematical model of the environment).
A set of environment and agent states (the state space), ;
A set of actions (the action space), , of the agent;
, the transition probability (at time ) from state to state under action .
, the immediate reward after transition from to under action .
The purpose of reinforcement learning is for the agent to learn an optimal (or near-optimal) policy that maximizes the reward function or other user-provided reinforcement signal that accumulates from immediate rewards. This is similar to processes that appear to occur in animal psychology. For example, biological brains are hardwired to interpret signals such as pain and hunger as negative reinforcements, and interpret pleasure and food intake as positive reinforcements. In some circumstances, animals learn to adopt behaviors that optimize these rewards. This suggests that animals are capable of reinforcement learning.[4][5]
A basic reinforcement learning agent interacts with its environment in discrete time steps. At each time step t, the agent receives the current state and reward . It then chooses an action from the set of available actions, which is subsequently sent to the environment. The environment moves to a new state and the reward associated with the transition is determined. The goal of a reinforcement learning agent is to learn a policy:
,
that maximizes the expected cumulative reward.
Formulating the problem as a Markov decision process assumes the agent directly observes the current environmental state; in this case, the problem is said to have full observability. If the agent only has access to a subset of states, or if the observed states are corrupted by noise, the agent is said to have partial observability, and formally the problem must be formulated as a partially observable Markov decision process. In both cases, the set of actions available to the agent can be restricted. For example, the state of an account balance could be restricted to be positive; if the current value of the state is 3 and the state transition attempts to reduce the value by 4, the transition will not be allowed.
When the agent's performance is compared to that of an agent that acts optimally, the difference in performance yields the notion of regret. In order to act near optimally, the agent must reason about long-term consequences of its actions (i.e., maximize future rewards), although the immediate reward associated with this might be negative.
Two elements make reinforcement learning powerful: the use of samples to optimize performance, and the use of function approximation to deal with large environments. Thanks to these two key components, RL can be used in large environments in the following situations:
A model of the environment is known, but an analytic solution is not available;
The only way to collect information about the environment is to interact with it.
The first two of these problems could be considered planning problems (since some form of model is available), while the last one could be considered to be a genuine learning problem. However, reinforcement learning converts both planning problems to machine learning problems.
Exploration
The exploration vs. exploitation trade-off has been most thoroughly studied through the multi-armed bandit problem and for finite state space Markov decision processes in Burnetas and Katehakis (1997).[12]
Reinforcement learning requires clever exploration mechanisms; randomly selecting actions, without reference to an estimated probability distribution, shows poor performance. The case of (small) finite Markov decision processes is relatively well understood. However, due to the lack of algorithms that scale well with the number of states (or scale to problems with infinite state spaces), simple exploration methods are the most practical.
One such method is -greedy, where is a parameter controlling the amount of exploration vs. exploitation. With probability , exploitation is chosen, and the agent chooses the action that it believes has the best long-term effect (ties between actions are broken uniformly at random). Alternatively, with probability , exploration is chosen, and the action is chosen uniformly at random. is usually a fixed parameter but can be adjusted either according to a schedule (making the agent explore progressively less), or adaptively based on heuristics.[13]
Algorithms for control learning
Even if the issue of exploration is disregarded and even if the state was observable (assumed hereafter), the problem remains to use past experience to find out which actions lead to higher cumulative rewards.
Criterion of optimality
Policy
The agent's action selection is modeled as a map called policy:
The policy map gives the probability of taking action when in state .[14]: 61 There are also deterministic policies.
State-value function
The state-value function is defined as, expected discounted return starting with state , i.e. , and successively following policy . Hence, roughly speaking, the value function estimates "how good" it is to be in a given state.[14]: 60
where the random variable denotes the discounted return, and is defined as the sum of future discounted rewards:
where is the reward for transitioning from state to , is the discount rate. is less than 1, so rewards in the distant future are weighted less than rewards in the immediate future.
The algorithm must find a policy with maximum expected discounted return. From the theory of Markov decision processes it is known that, without loss of generality, the search can be restricted to the set of so-called stationary policies. A policy is stationary if the action-distribution returned by it depends only on the last state visited (from the observation agent's history). The search can be further restricted to deterministic stationary policies. A deterministic stationary policy deterministically selects actions based on the current state. Since any such policy can be identified with a mapping from the set of states to the set of actions, these policies can be identified with such mappings with no loss of generality.
For each possible policy, sample returns while following it
Choose the policy with the largest expected discounted return
One problem with this is that the number of policies can be large, or even infinite. Another is that the variance of the returns may be large, which requires many samples to accurately estimate the discounted return of each policy.
These problems can be ameliorated if we assume some structure and allow samples generated from one policy to influence the estimates made for others. The two main approaches for achieving this are value function estimation and direct policy search.
Value function approaches attempt to find a policy that maximizes the discounted return by maintaining a set of estimates of expected discounted returns for some policy (usually either the "current" [on-policy] or the optimal [off-policy] one).
These methods rely on the theory of Markov decision processes, where optimality is defined in a sense stronger than the one above: A policy is optimal if it achieves the best-expected discounted return from any initial state (i.e., initial distributions play no role in this definition). Again, an optimal policy can always be found among stationary policies.
To define optimality in a formal manner, define the state-value of a policy by
where stands for the discounted return associated with following from the initial state . Defining as the maximum possible state-value of , where is allowed to change,
A policy that achieves these optimal state-values in each state is called optimal. Clearly, a policy that is optimal in this sense is also optimal in the sense that it maximizes the expected discounted return, since , where is a state randomly sampled from the distribution of initial states (so ).
Although state-values suffice to define optimality, it is useful to define action-values. Given a state , an action and a policy , the action-value of the pair under is defined by
where now stands for the random discounted return associated with first taking action in state and following , thereafter.
The theory of Markov decision processes states that if is an optimal policy, we act optimally (take the optimal action) by choosing the action from with the highest action-value at each state, . The action-value function of such an optimal policy () is called the optimal action-value function and is commonly denoted by . In summary, the knowledge of the optimal action-value function alone suffices to know how to act optimally.
Assuming full knowledge of the Markov decision process, the two basic approaches to compute the optimal action-value function are value iteration and policy iteration. Both algorithms compute a sequence of functions () that converge to . Computing these functions involves computing expectations over the whole state-space, which is impractical for all but the smallest (finite) Markov decision processes. In reinforcement learning methods, expectations are approximated by averaging over samples and using function approximation techniques to cope with the need to represent value functions over large state-action spaces.
Monte Carlo methods
Monte Carlo methods[15] are used to solve reinforcement learning problems by averaging sample returns. Unlike methods that require full knowledge of the environment’s dynamics, Monte Carlo methods rely solely on actual or simulated experience—sequences of states, actions, and rewards obtained from interaction with an environment. This makes them applicable in situations where the complete dynamics are unknown. Learning from actual experience does not require prior knowledge of the environment and can still lead to optimal behavior. When using simulated experience, only a model capable of generating sample transitions is required, rather than a full specification of transition probabilities, which is necessary for dynamic programming methods.
Monte Carlo methods apply to episodic tasks, where experience is divided into episodes that eventually terminate. Policy and value function updates occur only after the completion of an episode, making these methods incremental on an episode-by-episode basis, though not on a step-by-step (online) basis. The term “Monte Carlo” generally refers to any method involving random sampling; however, in this context, it specifically refers to methods that compute averages from complete returns, rather than partial returns.
These methods function similarly to the bandit algorithms, in which returns are averaged for each state-action pair. The key difference is that actions taken in one state affect the returns of subsequent states within the same episode, making the problem non-stationary. To address this non-stationarity, Monte Carlo methods use the framework of general policy iteration (GPI). While dynamic programming computes value functions using full knowledge of the Markov decision process (MDP), Monte Carlo methods learn these functions through sample returns. The value functions and policies interact similarly to dynamic programming to achieve optimality, first addressing the prediction problem and then extending to policy improvement and control, all based on sampled experience.[14]
The first problem is corrected by allowing the procedure to change the policy (at some or all states) before the values settle. This too may be problematic as it might prevent convergence. Most current algorithms do this, giving rise to the class of generalized policy iteration algorithms. Many actor-critic methods belong to this category.
The second issue can be corrected by allowing trajectories to contribute to any state-action pair in them. This may also help to some extent with the third problem, although a better solution when returns have high variance is Sutton's temporal difference (TD) methods that are based on the recursive Bellman equation.[16][17] The computation in TD methods can be incremental (when after each transition the memory is changed and the transition is thrown away), or batch (when the transitions are batched and the estimates are computed once based on the batch). Batch methods, such as the least-squares temporal difference method,[18] may use the information in the samples better, while incremental methods are the only choice when batch methods are infeasible due to their high computational or memory complexity. Some methods try to combine the two approaches. Methods based on temporal differences also overcome the fourth issue.
Another problem specific to TD comes from their reliance on the recursive Bellman equation. Most TD methods have a so-called parameter that can continuously interpolate between Monte Carlo methods that do not rely on the Bellman equations and the basic TD methods that rely entirely on the Bellman equations. This can be effective in palliating this issue.
Function approximation methods
In order to address the fifth issue, function approximation methods are used. Linear function approximation starts with a mapping that assigns a finite-dimensional vector to each state-action pair. Then, the action values of a state-action pair are obtained by linearly combining the components of with some weights:
The algorithms then adjust the weights, instead of adjusting the values associated with the individual state-action pairs. Methods based on ideas from nonparametric statistics (which can be seen to construct their own features) have been explored.
Value iteration can also be used as a starting point, giving rise to the Q-learning algorithm and its many variants.[19] Including Deep Q-learning methods when a neural network is used to represent Q, with various applications in stochastic search problems.[20]
The problem with using action-values is that they may need highly precise estimates of the competing action values that can be hard to obtain when the returns are noisy, though this problem is mitigated to some extent by temporal difference methods. Using the so-called compatible function approximation method compromises generality and efficiency.
Direct policy search
An alternative method is to search directly in (some subset of) the policy space, in which case the problem becomes a case of stochastic optimization. The two approaches available are gradient-based and gradient-free methods.
Gradient-based methods (policy gradient methods) start with a mapping from a finite-dimensional (parameter) space to the space of policies: given the parameter vector , let denote the policy associated to . Defining the performance function by under mild conditions this function will be differentiable as a function of the parameter vector . If the gradient of was known, one could use gradient ascent. Since an analytic expression for the gradient is not available, only a noisy estimate is available. Such an estimate can be constructed in many ways, giving rise to algorithms such as Williams' REINFORCE method[21] (which is known as the likelihood ratio method in the simulation-based optimization literature).[22]
Policy search methods may converge slowly given noisy data. For example, this happens in episodic problems when the trajectories are long and the variance of the returns is large. Value-function based methods that rely on temporal differences might help in this case. In recent years, actor–critic methods have been proposed and performed well on various problems.[23]
Policy search methods have been used in the robotics context.[24] Many policy search methods may get stuck in local optima (as they are based on local search).
Model-based algorithms
Finally, all of the above methods can be combined with algorithms that first learn a model of the Markov Decision Process, the probability of each next state given an action taken from an existing state. For instance, the Dyna algorithm[25] learns a model from experience, and uses that to provide more modelled transitions for a value function, in addition to the real transitions. Such methods can sometimes be extended to use of non-parametric models, such as when the transitions are simply stored and 'replayed'[26] to the learning algorithm.
Model-based methods can be more computationally intensive than model-free approaches, and their utility can be limited by the extent to which the Markov Decision Process can be learnt.[27]
There are other ways to use models than to update a value function.[28] For instance, in model predictive control the model is used to update the behavior directly.
Theory
Both the asymptotic and finite-sample behaviors of most algorithms are well understood. Algorithms with provably good online performance (addressing the exploration issue) are known.
Efficient exploration of Markov decision processes is given in Burnetas and Katehakis (1997).[12] Finite-time performance bounds have also appeared for many algorithms, but these bounds are expected to be rather loose and thus more work is needed to better understand the relative advantages and limitations.
For incremental algorithms, asymptotic convergence issues have been settled[clarification needed]. Temporal-difference-based algorithms converge under a wider set of conditions than was previously possible (for example, when used with arbitrary, smooth function approximation).
Associative reinforcement learning tasks combine facets of stochastic learning automata tasks and supervised learning pattern classification tasks. In associative reinforcement learning tasks, the learning system interacts in a closed loop with its environment.[46]
Adversarial deep reinforcement learning is an active area of research in reinforcement learning focusing on vulnerabilities of learned policies. In this research area some studies initially showed that reinforcement learning policies are susceptible to imperceptible adversarial manipulations.[49][50][51] While some methods have been proposed to overcome these susceptibilities, in the most recent studies it has been shown that these proposed solutions are far from providing an accurate representation of current vulnerabilities of deep reinforcement learning policies.[52]
Fuzzy reinforcement learning
By introducing fuzzy inference in reinforcement learning,[53] approximating the state-action value function with fuzzy rules in continuous space becomes possible. The IF - THEN form of fuzzy rules make this approach suitable for expressing the results in a form close to natural language. Extending FRL with Fuzzy Rule Interpolation [54] allows the use of reduced size sparse fuzzy rule-bases to emphasize cardinal rules (most important state-action values).
Inverse reinforcement learning
In inverse reinforcement learning (IRL), no reward function is given. Instead, the reward function is inferred given an observed behavior from an expert. The idea is to mimic observed behavior, which is often optimal or close to optimal.[55] One popular IRL paradigm is named maximum entropy inverse reinforcement learning (MaxEnt IRL). [56] MaxEnt IRL estimates the parameters of a linear model of the reward function by maximizing the entropy of the probability distribution of observed trajectories subject to constraints related to matching expected feature counts. Recently it has been shown that MaxEnt IRL is a particular case of a more general framework named random utility inverse reinforcement learning (RU-IRL). [57] RU-IRL is based on random utility theory and Markov decision processes. While prior IRL approaches assume that the apparent random behavior of an observed agent is due to it following a random policy, RU-IRL assumes that the observed agent follows a deterministic policy but randomness in observed behavior is due to the fact that an observer only has partial access to the features the observed agent uses in decision making. The utility function is modeled as a random variable to account for the ignorance of the observer regarding the features the observed agent actually considers in its utility function.
Safe reinforcement learning
Safe reinforcement learning (SRL) can be defined as the process of learning policies that maximize the expectation of the return in problems in which it is important to ensure reasonable system performance and/or respect safety constraints during the learning and/or deployment processes.[58] An alternative approach is risk-averse reinforcement learning, where instead of the expected return, a risk-measure of the return is optimized, such as the Conditional Value at Risk (CVaR).[59] In addition to mitigating risk, the CVaR objective increases robustness to model uncertainties.[60][61] However, CVaR optimization in risk-averse RL requires special care, to prevent gradient bias[62] and blindness to success.[63]
Self-reinforcement learning
Self-reinforcement learning (or self learning), is a learning paradigm which does not use the concept of immediate reward Ra(s,s') after transition from s to s' with action a. It does not use an external reinforcement, it only uses the agent internal self-reinforcement. The internal self-reinforcement is provided by mechanism of feelings and emotions. In the learning process emotions are backpropagated by a mechanism of secondary reinforcement. The learning equation does not include the immediate reward, it only includes the state evaluation.
The self-reinforcement algorithm updates a memory matrix W =||w(a,s)|| such that in each iteration executes the following machine learning routine:
1. in situation s perform action a
2. receive a consequence situation s'
3. compute state evaluation v(s') of how good is to be in the consequence situation s'
4. update crossbar memory w'(a,s) = w(a,s) + v(s')
Initial conditions of the memory are received as input from the genetic environment. It is a system with only one input (situation), and only one output (action, or behavior).
Self reinforcement (self learning) was introduced in 1982 along with a neural network capable of self-reinforcement learning, named Crossbar Adaptive Array (CAA).[64][65] The CAA computes, in a crossbar fashion, both decisions about actions and emotions (feelings) about consequence states. The system is driven by the interaction between cognition and emotion. [66]
Statistical comparison of reinforcement learning algorithms
Efficient comparison of RL algorithms is essential for research, deployment and monitoring of RL systems. To compare different algorithms on a given environment, an agent can be trained for each algorithm. Since the performance is sensitive to implementation details, all algorithms should be implemented as closely as possible to each other.[67] After the training is finished, the agents can be run on a sample of test episodes, and their scores (returns) can be compared. Since episodes are typically assumed to be i.i.d, standard statistical tools can be used for hypothesis testing, such as T-test and permutation test.[68] This requires to accumulate all the rewards within an episode into a single number - the episodic return. However, this causes a loss of information, as different time-steps are averaged together, possibly with different levels of noise. Whenever the noise level varies across the episode, the statistical power can be improved significantly, by weighting the rewards according to their estimated noise.[69]
^van Otterlo, M.; Wiering, M. (2012). "Reinforcement Learning and Markov Decision Processes". Reinforcement Learning. Adaptation, Learning, and Optimization. Vol. 12. pp. 3–42. doi:10.1007/978-3-642-27645-3_1. ISBN978-3-642-27644-6.
^Russell, Stuart J.; Norvig, Peter (2010). Artificial intelligence : a modern approach (Third ed.). Upper Saddle River, New Jersey. pp. 830, 831. ISBN978-0-13-604259-4.{{cite book}}: CS1 maint: location missing publisher (link)
^Xie, Zhaoming; Hung Yu Ling; Nam Hee Kim; Michiel van de Panne (2020). "ALLSTEPS: Curriculum-driven Learning of Stepping Stone Skills". arXiv:2005.04323 [cs.GR].
^Williams, Ronald J. (1987). "A class of gradient-estimating algorithms for reinforcement learning in neural networks". Proceedings of the IEEE First International Conference on Neural Networks. CiteSeerX10.1.1.129.8871.
^Sutton, Richard (1990). "Integrated Architectures for Learning, Planning and Reacting based on Dynamic Programming". Machine Learning: Proceedings of the Seventh International Workshop.
^Riveret, Regis; Gao, Yang (2019). "A probabilistic argumentation framework for reinforcement learning agents". Autonomous Agents and Multi-Agent Systems. 33 (1–2): 216–274. doi:10.1007/s10458-019-09404-2. S2CID71147890.
^Yamagata, Taku; McConville, Ryan; Santos-Rodriguez, Raul (2021-11-16). "Reinforcement Learning with Feedback from Multiple Humans with Diverse Skills". arXiv:2111.08596 [cs.LG].
^Dabérius, Kevin; Granat, Elvin; Karlsson, Patrik (2020). "Deep Execution - Value and Policy Based Reinforcement Learning for Trading and Beating Market Benchmarks". The Journal of Machine Learning in Finance. 1. SSRN3374766.
^Duan, J; Wang, W; Xiao, L (2023-10-26). "DSAC-T: Distributional Soft Actor-Critic with Three Refinements". arXiv:2310.05858 [cs.LG].
^Soucek, Branko (6 May 1992). Dynamic, Genetic and Chaotic Programming: The Sixth-Generation Computer Technology Series. John Wiley & Sons, Inc. p. 38. ISBN0-471-55717-X.
^Goodfellow, Ian; Shlens, Jonathan; Szegedy, Christian (2015). "Explaining and Harnessing Adversarial Examples". International Conference on Learning Representations. arXiv:1412.6572.
^Behzadan, Vahid; Munir, Arslan (2017). "Vulnerability of Deep Reinforcement Learning to Policy Induction Attacks". Machine Learning and Data Mining in Pattern Recognition. Lecture Notes in Computer Science. Vol. 10358. pp. 262–275. arXiv:1701.04143. doi:10.1007/978-3-319-62416-7_19. ISBN978-3-319-62415-0. S2CID1562290.
^ Bozinovski, S. (1982). "A self-learning system using secondary reinforcement". In Trappl, Robert (ed.). Cybernetics and Systems Research: Proceedings of the Sixth European Meeting on Cybernetics and Systems Research. North-Holland. pp. 397–402. ISBN 978-0-444-86488-8
^ Bozinovski S. (1995) "Neuro genetic agents and structural theory of self-reinforcement learning systems". CMPSCI Technical Report 95-107, University of Massachusetts at Amherst [1]
^ Bozinovski, S. (2014) "Modeling mechanisms of cognition-emotion interaction in artificial neural networks, since 1981." Procedia Computer Science p. 255-263
Kota Taebaek Taebaek adalah sebuah kota kecil yang terletak di Provinsi Gangwon, Korea Selatan.[1] Kota ini pada awalnya bernama Hwangji, lalu diganti pada tanggal 1 Desember 1984 menjadi Taebaek.[2] Kota ini terletak di dekat Pegunungan Taebaek dan merupakan kota tertinggi dari permukaan laut di Korea Selatan, sekitar 650-700 meter. Awalnya kota ini merupakan sebuah kota pertambangan batubara, tetapi kini industri tersebut tidak beroperasi lagi.[1] Tambang batubara Ta...
Caselle in PittariKomuneComune di Caselle in PittariLokasi Caselle in Pittari di Provinsi SalernoNegara ItaliaWilayah CampaniaProvinsiSalerno (SA)Luas[1] • Total45,56 km2 (17,59 sq mi)Ketinggian[2]444 m (1,457 ft)Populasi (2016)[3] • Total1.972 • Kepadatan43/km2 (110/sq mi)Zona waktuUTC+1 (CET) • Musim panas (DST)UTC+2 (CEST)Kode pos84030Kode area telepon0974Situs webhttp://www.comu...
Disambiguazione – CET rimanda qui. Se stai cercando altri significati, vedi Cet (disambigua). Fusi orari dell'Europa: Azzurro Western European Time (UTC+0) Blu Western European Time (UTC+0)Western European Summer Time (UTC+1) Rosso Central European Time (UTC+1)Central European Summer Time (UTC+2) Giallo Ora di Kaliningrad (UTC+2). Ocra Eastern European Time (UTC+2)Eastern European Summer Time (UTC+3) Verde Ora di Mosca (UTC+3) I colori più chiari indicano i paesi che non osservano...
Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Wanua – berita · surat kabar · buku · cendekiawan · JSTOR Dalam bahasa Minahasa Kawanua sering di artikan sebagai penduduk negeri atau wanua-wanua yang bersatu atau Mina-Esa (Orang Minahasa). Kata Kawanu...
1975 studio album by Charley PrideCharleyStudio album by Charley PrideReleasedMay 1975 (1975-05)RecordedJune 1974StudioRCA Victor StudioGenreCountrycountry pop[1]LabelRCA VictorProducerJack ClementCharley Pride chronology Pride of America(1974) Charley(1975) The Happiness of Having You(1975) Singles from Charley I Ain't All BadReleased: March 1975 Hope You're Feelin' Me (Like I'm Feelin' You)Released: July 1975 Charley is the twentieth studio album by American count...
Asian American supermarket chain GW Supermarket大中华超级市场Company typePrivateIndustryRetailFounded2004 (New York, New York)FounderLihui ZhangFounder and CEOHeadquartersNew York, New YorkNumber of locations22 (2023)ProductsBakery, dairy, deli, frozen foods, grocery, meat, produce, seafood, snacks, liquorWebsitewww.gw-supermarket.com Great Wall SupermarketTraditional Chinese大中華超級市場Simplified Chinese大中华超级市场Literal meaningGreat Chinese SupermarketTranscr...
جيري يلسورث المصممة والمخترعة لإحدي رقائق الكومبيوتر المستخدمة في الكشف التلقائي في معرض «ميكر فير» في عام 2009 ساهمت المرأة في مجالات متنوعة في الهندسة في التاريخ الحديث والقديم، وعادة ما يكون تمثيل المرأة منخفض سواء علي المستوي العملي أو المستوي البحثي في مجالات الهندسة�...
This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (January 2014) (Learn how and when to remove this template message) A newspaper illustration from Harper's Weekly, depicting the scene on Wall Street on the morning of May 14, 1884 The Panic of 1884 was an economic panic during the Depression of 1882–1885.[1] It was unusual in that it struck at the end ...
Wakil Bupati Tanah DatarPetahanaRichi Aprian, S.H., M.H.sejak 26 Februari 2021KediamanRumah Dinas Wakil Bupati Tanah DatarMasa jabatan5 tahunDibentuk1961Pejabat pertamaH. MasriSitus webwww.tanahdatar.go.id Berikut ini adalah daftar Wakil Bupati Tanah Datar dari masa ke masa. No Foto Wakil Bupati Mulai Jabatan Akhir Jabatan Prd. Ket. Bupati 1 H.Masri 1961 1974 1 Brigjen TNI (Purn.) H.Mahyudin Algamar 2 Drs. H.MasnefiM.S. 26 September 2000 26 September 2005 2 H.Masriadi Martu...
Public high school in Barre, Massachusetts, United StatesQuabbin Regional High SchoolAddress872 South StreetBarre, Massachusetts 01005United StatesCoordinates42°24′00″N 72°06′53″W / 42.40000°N 72.11472°W / 42.40000; -72.11472InformationTypePublic High SchoolOpen enrollment[1]SuperintendentShelia MuirPrincipalPurnima DeMoraisStaff47.30 (FTE)[3]Grades9–12Enrollment626 (2018–19)[3]Student to teacher ratio13.23[3]AreaBarreCol...
Person active in politics For other uses, see The Politician (disambiguation). PoliticianU.S. politicians (Kissinger, Nixon, Ford, Haig) in the White House's Oval Office discussing Representative Ford's nomination to the vice presidencyOccupationNames Emperor President Member of congress Senator Prime Minister Minister Speaker Member of parliament Governor Lieutenant Governor Chief Minister Premier Mayor Councillor Occupation typePoliticianActivity sectorsGovernmentDescriptionCompetencies Lea...
Heng On恆安Stasiun angkutan cepat MTRNama TionghoaHanzi Tradisional 恆安 Hanzi Sederhana 恒安 Yale KantonHàng'ōn Arti harfiahLasting safe(ly)TranskripsiTionghoa StandarHanyu PinyinHéng'ānYue: KantonRomanisasi YaleHàng'ōnJyutpingHang4on1 Informasi umumLokasiDekat Kam On Court, Sai Sha Road, Ma On ShanDistrik Sha Tin, Hong KongPemilikKCR CorporationOperatorMTR CorporationJalur Jalur Tuen MaJumlah peron2 (1 peron pulau)Jumlah jalur2KonstruksiJenis struktu...
2018 general election in Florida This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: 2018 Florida elections – news · newspapers · books · scholar · JSTOR (January 2019) (Learn how and when to remove this message) 2018 Florida elections← 20162020 → Elections in Florida Federal government Pre...
Artikel ini memiliki beberapa masalah. Tolong bantu memperbaikinya atau diskusikan masalah-masalah ini di halaman pembicaraannya. (Pelajari bagaimana dan kapan saat yang tepat untuk menghapus templat pesan ini) Artikel ini menggunakan kata-kata yang berlebihan dan hiperbolis tanpa memberikan informasi yang jelas. Silakan buang istilah-istilah yang hiperbolis tersebut. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Artikel ini tidak memiliki referensi atau sumber tepercaya...
American academic (born 1956) Susannah HeschelBorn (1956-05-15) May 15, 1956 (age 67)NationalityAmericanParentAbraham Joshua Heschel (father)Academic backgroundAlma materTrinity College, Harvard Divinity School, University of PennsylvaniaAcademic workInstitutionsDartmouth College Websitehttps://faculty-directory.dartmouth.edu/susannah-heschelSignature Susannah Heschel (born 15 May 1956) is an American scholar and professor of Jewish studies at Dartmouth College.[1] The author and...
Roman Empire during Late Antiquity and the Middle Ages Byzantine redirects here. For other uses, see Byzantine (disambiguation). Byzantine Empire330–1453The empire in 555 under Justinian the Great, at its greatest extent since the fall of the Western Roman Empire (its vassals in pink)The change of territory of the Byzantine Empire (476–1400)CapitalConstantinople (modern-day Istanbul)Common languages Latin and Greek Regional languages Religion Christianity (state)Demonym(s)ByzantineNo...