Proper generalized decomposition

The proper generalized decomposition (PGD) is an iterative numerical method for solving boundary value problems (BVPs), that is, partial differential equations constrained by a set of boundary conditions, such as the Poisson's equation or the Laplace's equation.

The PGD algorithm computes an approximation of the solution of the BVP by successive enrichment. This means that, in each iteration, a new component (or mode) is computed and added to the approximation. In principle, the more modes obtained, the closer the approximation is to its theoretical solution. Unlike POD principal components, PGD modes are not necessarily orthogonal to each other.

By selecting only the most relevant PGD modes, a reduced order model of the solution is obtained. Because of this, PGD is considered a dimensionality reduction algorithm.

Description

The proper generalized decomposition is a method characterized by

  1. a variational formulation of the problem,
  2. a discretization of the domain in the style of the finite element method,
  3. the assumption that the solution can be approximated as a separate representation and
  4. a numerical greedy algorithm to find the solution.[1][2]

Variational formulation

In the Proper Generalized Decomposition method, the variational formulation involves translating the problem into a format where the solution can be approximated by minimizing (or sometimes maximizing) a functional. A functional is a scalar quantity that depends on a function, which in this case, represents our problem.

The most commonly implemented variational formulation in PGD is the Bubnov-Galerkin method.[3][4] This method is chosen for its ability to provide an approximate solution to complex problems, such as those described by partial differential equations (PDEs). In the Bubnov-Galerkin approach, the idea is to project the problem onto a space spanned by a finite number of basis functions. These basis functions are chosen to approximate the solution space of the problem.

In the Bubnov-Galerkin method, we seek an approximate solution that satisfies the integral form of the PDEs over the domain of the problem. This is different from directly solving the differential equations. By doing so, the method transforms the problem into finding the coefficients that best fit this integral equation in the chosen function space.

While the Bubnov-Galerkin method is prevalent, other variational formulations are also used in PGD,[5][3] depending on the specific requirements and characteristics of the problem, such as:

  • Petrov-Galerkin Method: This method is similar to the Bubnov-Galerkin approach but differs in the choice of test functions. In the Petrov-Galerkin method, the test functions (used to project the residual of the differential equation) are different from the trial functions (used to approximate the solution). This can lead to improved stability and accuracy for certain types of problems.[6]
  • Collocation Method: In collocation methods, the differential equation is satisfied at a finite number of points in the domain, known as collocation points. This approach can be simpler and more direct than the integral-based methods like Galerkin's, but it may also be less stable for some problems.
  • Least Squares Method: This approach involves minimizing the square of the residual of the differential equation over the domain. It is particularly useful when dealing with problems where traditional methods struggle with stability or convergence.
  • Mixed Finite Element Method: In mixed methods, additional variables (such as fluxes or gradients) are introduced and approximated along with the primary variable of interest. This can lead to more accurate and stable solutions for certain problems, especially those involving incompressibility or conservation laws.
  • Discontinuous Galerkin Method: This is a variant of the Galerkin method where the solution is allowed to be discontinuous across element boundaries. This method is particularly useful for problems with sharp gradients or discontinuities.

Domain discretization

The discretization of the domain is a well defined set of procedures that cover (a) the creation of finite element meshes, (b) the definition of basis function on reference elements (also called shape functions) and (c) the mapping of reference elements onto the elements of the mesh.

Separate representation

PGD assumes that the solution u of a (multidimensional) problem can be approximated as a separate representation of the form where the number of addends N and the functional products X1(x1), X2(x2), ..., Xd(xd), each depending on a variable (or variables), are unknown beforehand.

Greedy algorithm

The solution is sought by applying a greedy algorithm, usually the fixed point algorithm, to the weak formulation of the problem. For each iteration i of the algorithm, a mode of the solution is computed. Each mode consists of a set of numerical values of the functional products X1(x1), ..., Xd(xd), which enrich the approximation of the solution. Due to the greedy nature of the algorithm, the term 'enrich' is used rather than 'improve', since some modes may actually worsen the approach. The number of computed modes required to obtain an approximation of the solution below a certain error threshold depends on the stopping criterion of the iterative algorithm.

Features

PGD is suitable for solving high-dimensional problems, since it overcomes the limitations of classical approaches. In particular, PGD avoids the curse of dimensionality, as solving decoupled problems is computationally much less expensive than solving multidimensional problems.

Therefore, PGD enables to re-adapt parametric problems into a multidimensional framework by setting the parameters of the problem as extra coordinates: where a series of functional products K1(k1), K2(k2), ..., Kp(kp), each depending on a parameter (or parameters), has been incorporated to the equation.

In this case, the obtained approximation of the solution is called computational vademecum: a general meta-model containing all the particular solutions for every possible value of the involved parameters.[7]

Sparse Subspace Learning

The Sparse Subspace Learning (SSL) method leverages the use of hierarchical collocation to approximate the numerical solution of parametric models. With respect to traditional projection-based reduced order modeling, the use of a collocation enables non-intrusive approach based on sparse adaptive sampling of the parametric space. This allows to recover the lowdimensional structure of the parametric solution subspace while also learning the functional dependency from the parameters in explicit form. A sparse low-rank approximate tensor representation of the parametric solution can be built through an incremental strategy that only needs to have access to the output of a deterministic solver. Non-intrusiveness makes this approach straightforwardly applicable to challenging problems characterized by nonlinearity or non affine weak forms.[8]

References

  1. ^ Amine Ammar; Béchir Mokdad; Francisco Chinesta; Roland Keunings (2006). "A New Family of Solvers for Some Classes of Multidimensional Partial Differential Equations Encountered in Kinetic Theory Modeling of Complex Fluids". Journal of Non-Newtonian Fluid Mechanics.
  2. ^ Amine Ammar; Béchir Mokdad; Francisco Chinesta; Roland Keunings (2007). "A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids. Part II: Transient simulation using space-time separated representations". Journal of Non-Newtonian Fluid Mechanics.
  3. ^ a b Croft, Thomas Lloyd David (2015-04-09). Proper generalised decompositions: theory and applications (phd thesis). Cardiff University.
  4. ^ Chinesta, Francisco; Keunings, Roland; Leygue, Adrien (2014). The Proper Generalized Decomposition for Advanced Numerical Simulations: A Primer. SpringerBriefs in Applied Sciences and Technology. Springer International Publishing. ISBN 978-3-319-02864-4.
  5. ^ Aguado, José Vicente (18 Nov 2018). "Advanced strategies for the separated formulation of problems in the Proper Generalized Decomposition framework".
  6. ^ Perelló i Ribas, Rafel (2020-06-22). Petrov-Galerkin Proper Generalized Decomposition strategies for convection-diffusion problems (Master thesis thesis). Universitat Politècnica de Catalunya.
  7. ^ Francisco Chinesta, Adrien Leygue, Felipe Bordeu, Elías Cueto, David Gonzalez, Amine Ammar, Antonio Huerta (2013). "PGD-Based Computational Vademecum for Efficient Design, Optimization and Control". Archives of Computational Methods in Engineering.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. ^ Borzacchiello, Domenico; Aguado, José V.; Chinesta, Francisco (April 2019). "Non-intrusive Sparse Subspace Learning for Parametrized Problems". Archives of Computational Methods in Engineering. 26 (2): 303–326. doi:10.1007/s11831-017-9241-4. hdl:10985/18435. ISSN 1134-3060. S2CID 126121268.

Read other articles:

العلاقات البريطانية الفنزويلية المملكة المتحدة فنزويلا   المملكة المتحدة   فنزويلا تعديل مصدري - تعديل   العلاقات البريطانية الفنزويلية هي العلاقات الثنائية التي تجمع بين المملكة المتحدة وفنزويلا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة ...

 

 

Istana GyeonghuiGerbang Sungjeongmun di Istana Gyeonghui.Nama KoreaHangul경희궁 Hanja慶熙宮 Alih AksaraGyeonghuigungMcCune–ReischauerKyŏng-hŭi-gung Gyeonghuigung atau Istana Gyeonghui adalah istana yang terletak di Seoul, Korea Selatan. Istana Gyeonghui termasuk dari Lima Istana Besar Korea yang didirikan oleh Dinasti Joseon. Pada masa-masa akhir Dinasti Joseon, Istana Gyeonghui adalah istana sampingan untuk raja dan lokasinya terletak di sebelah barat Seoul. Istana ini sering kali ...

 

 

Grand Prix Amerika Serikat 2018 Lomba ke-18 dari 21 dalam Formula Satu musim 2018← Lomba sebelumnyaLomba berikutnya → Tata Letak Circuit of the Americas.Detail perlombaan[1]Tanggal 21 Oktober 2018 (2018-10-21)Nama resmi Formula 1 Pirelli 2018 United States Grand PrixLokasi Circuit of the Americas, Austin, Texas, Amerika SerikatSirkuit Fasilitas balapan permanenPanjang sirkuit 5.513 km (3.426 mi)Jarak tempuh 56 putaran, 308.405 km (191.634 mi)Cuaca Sebagian...

American academic administrator Homer Price RaineyRainey in 1939Born(1896-01-19)January 19, 1896Clarksville, TexasDiedDecember 19, 1985(1985-12-19) (aged 89)Boulder, ColoradoResting placeMountain View Memorial Park, Boulder, ColoradoEducationLovelady High School Austin College (B.A) University of Chicago (M.A., Ph.D)Occupation(s)University President, Clergyman, PoliticianKnown forBeing Fired After his Support for Academic Freedom as the President of the University of TexasPolitical ...

 

 

Peta pembagian administratif tingkat pertama Malta Pembagian administratif Malta terdiri atas 68 munisipalitas (kunsilli lokali) pada tingkat pertama sejak 30 Juni 1993. Pembagian berdasarkan region kadang dilakukan untuk keperluan statistik. lbsPembagian administratif EropaNegaraberdaulat Albania Andorra Armenia1 Austria Azerbaijan1 Belanda Belarus Belgia Bosnia dan Herzegovina Britania Raya Inggris Irlandia Utara Skotlandia Wales Bulgaria Ceko Denmark Estonia Finlandia Georgia1 Hungaria Rep...

 

 

International cricket tournament Cricket at the 2022 Commonwealth GamesPictogram of the 2022 Commonwealth Games cricket tournamentDates29 July – 7 August 2022Administrator(s)Commonwealth Games Federation (CGF)Cricket formatWomen's Twenty20 InternationalTournament format(s)Single round-robin & playoffsHost(s) EnglandChampions Australia (1st title)Runners-up IndiaParticipants8Matches16Most runs Beth Mooney (179)Most wickets Renuka Singh (11) Medalists   Australia&...

Pay television network This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: ESPN Latin America – news · newspapers · books · scholar · JSTOR (October 2021) Television channel ESPN Latin AmericaBroadcast areaArgentinaBoliviaChileColombiaCentral AmericaDominican RepublicEcuadorMexicoParaguayPeruUrugu...

 

 

MairécomuneMairé – Veduta LocalizzazioneStato Francia Regione Nuova Aquitania Dipartimento Vienne ArrondissementChâtellerault CantoneChâtellerault-3 TerritorioCoordinate46°51′N 0°45′E / 46.85°N 0.75°E46.85; 0.75 (Mairé)Coordinate: 46°51′N 0°45′E / 46.85°N 0.75°E46.85; 0.75 (Mairé) Superficie21,75 km² Abitanti185[1] (2009) Densità8,51 ab./km² Altre informazioniCod. postale86270 Fuso orarioUTC+1 Codice INS...

 

 

Yehezkiel 32Kitab Yehezkiel 30:13–18 pada suatu naskah bahasa Inggris dari awal abad ke-13, MS. Bodl. Or. 62, fol. 59a. Teks bahasa Ibrani disalin sebagaimana dalam kodeks bahasa Latin. Terjemahan bahasa Latin ditulis di bagian marjin.KitabKitab YehezkielKategoriNevi'imBagian Alkitab KristenPerjanjian LamaUrutan dalamKitab Kristen26← pasal 31 pasal 33 → Yehezkiel 32 (disingkat Yeh 32) adalah bagian dari Kitab Yehezkiel dalam Alkitab Ibrani dan Perjanjian Lama di Alkitab Kristen....

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

 

 

جزء من سلسلة مقالات حولعلم الاجتماع تاريخ فهرس المواضيع الرئيسية مجتمع عولمة سلوك الإنسان تأثير الإنسان على البيئة هوية الثورات الصناعية 3 / 4 / 5 تعقيد اجتماعي بنائية اجتماعية الثقافة البيئية مساواة اجتماعية إنصاف اجتماعي نفوذ اجتماعي تدرج اجتماعي بنية اجتماعية وجهات نظر ...

 

 

  لمعانٍ أخرى، طالع آلية (توضيح). هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (مايو_2013) إن دور آلية الاتصال غير المتزامن (ACM) هو مزامنة نقل البيانات في نظام ما، وذلك فيما بين عمليتي الكتابة والقراءة التي تتم في ...

WWE professional wrestling roster division NXT UKLogo for the brand and the NXT UK television programmeProduct typeProfessional wrestlingSports entertainmentOwnerWWEProduced byPaul Triple H LevesqueCountryUnited KingdomIntroduced15 December 2016 (as United Kingdom)18 June 2018 (as NXT UK)Discontinued4 September 2022Related brandsRawSmackDownNXT205 LiveECWPrevious names: United Kingdom(2016 – 2018)General Manager: Johnny Saint(7 June 2018 – 4 September 2022)Assistant to the General Ma...

 

 

Lake in New York, United States of America Seneca LakeAerial view from the southern part of Seneca Lake.Seneca LakeLocation within New YorkShow map of New York Adirondack ParkSeneca LakeSeneca Lake (the United States)Show map of the United StatesLocationSchuyler, Seneca, Yates, and Ontario counties, New York, United StatesGroupFinger LakesCoordinates42°39′20″N 76°53′51″W / 42.65556°N 76.89750°W / 42.65556; -76.89750TypeGround morainePrimary inflowsCatharine...

 

 

Part of a series on the History of Iceland Timeline of Icelandic history Middle ages Settlement of Iceland 870–930 Icelandic Commonwealth 930–1262      Farthings 965      Christianization 999–1118 Sturlung era 1180–1264      Staðamálin 1178–1297 Norwegian rule 1262–1380      Old Covenant 1262 Danish rule 1380–1918      Reformation 1536–1627      Danish trade monopoly 1602–1874 Erupti...

President of Hungary from 1918 to 1919 The native form of this personal name is gróf nagykárolyi Károlyi Mihály Ádám György Miklós. This article uses Western name order when mentioning individuals. Mihály KárolyiKárolyi in 19191st President of HungaryIn office16 November 1918 – 21 March 1919Acting until 11 January 1919Prime MinisterDénes BerinkeyPreceded byOffice EstablishedSucceeded bySándor GarbaiPrime Minister of HungaryIn office31 October 1918 – 11 J...

 

 

Tassili n'AjjerSitus Warisan Dunia UNESCOLokasiAljazairMemuatTaman Nasional Tassili, La Vallée d'Iherir Ramsar WetlandKriteriaKebudayaan dan Alam: (i), (iii), (vii), (viii)Nomor identifikasi179Pengukuhan1982 (Sesi ke-6)Luas[convert: nomor tidak sah]Koordinat25°30′N 9°0′E / 25.500°N 9.000°E / 25.500; 9.000IUCN Kategori II (Taman Nasional)LetakProvinsi Tamanghasset, AljazairDidirikan1972 Ramsar WetlandNama resmiLa Vallée d'IherirDitetapkan2 Februa...

 

 

Paok bakau Paok bakau di Singapura Status konservasi Punah EXSingkatan dari Extinct (Punah)  EWSingkatan dari Extinct in the Wild (Punah di Alam Liar)Terancam CRSingkatan dari Critical (Kritis) ENSingkatan dari Endangered (Genting) VUSingkatan dari Vulnerable (Rentan)  NTSingkatan dari Not Threatened (Tidak terancam)Aman LCSingkatan dari Least-Concern (Aman) Hampir Terancam  (IUCN 3.1)[1] Klasifikasi ilmiah Kerajaan: Animalia Filum: Chordata Kelas: Aves Ordo: Passerifo...

VII Commissione permanente della Camera dei deputati (Cultura, scienza e istruzione)Stato Italia TipoOrgano della Camera dei deputati Istituito4 giugno 1948 Operativo dal15 giugno 1948 PresidenteFederico Mollicone (FdI) VicepresidentiValentina Grippo (A-IV-RE)Giorgia Latini (Lega) Sito webVII Commissione permanente della Camera dei deputati Modifica dati su Wikidata · Manuale La Commissione permanente VII Cultura, scienza e istruzione è un organo della Camera dei deputati della Re...

 

 

Le decisioni di Pisino o decisioni di settembre (in croato Pazinske odluke o Rujanske odluke) sono decisioni manifeste del Comitato nazionale di liberazione per l'Istria adottate a Pisino il 13 settembre 1943 e dal Parlamento dei rappresentanti del popolo istriano del 26 settembre 1943 per proclamare unilateralmente l'annessione dell'Istria alla Repubblica Socialista di Croazia e alla Jugoslavia. All'epoca la penisola istriana era divisa tra provincia di Pola e provincia di Fiume ed era stata...