Nirayana system

The nirayana system is a traditional Indian system of calendrical computations in which the phenomenon of precession of equinoxes is not taken into consideration.[1] In Indian astronomy, the precession of equinoxes is called ayana-calana which literally means shifting of the solstices and so nirayana is nir- + ayana meaning without ayana.[2] Ayanacalana refers to the continuous backward movement of the point of intersection of the ecliptic (which is a fixed circle) and the celestial equator (which keeps on moving backward). In contrast, the Indian systems of calendrical computations which take into consideration the effects of precession of equinoxes are called sayana systems.

Nirayana year

The nirayana year is the sidereal year, that is, is the actual time required for the Earth to revolve once around the Sun with respect to a fixed point on the ecliptic, and its duration is approximately 365.256363 days (365 days 6 hours 9 minutes 10 seconds). In the nirayana system, this fixed point is taken as that point 180° from the bright star Citrā (Spica). The starting point of the nirayana year coincided with the March equinox in the year 285 CE. Since the stars are fixed with respect to the ecliptic, the starting point remains unchanged, hence the name nirayana.[3][4]

Duration of the nirayana months and year.[5]a
Month per Ārya-Sinddhānta per Sūrya-Siddhānta
days gh pa vp days hr min sec days gh pa vp days hr min sec

vaiśākha

30 55 30 0 30 22 12 0 30 56 7 0 30 22 26 48

jyaiṣṭha

31 24 4 0 31 09 37 36 31 25 13 0 31 10 05 12

āṣāḍha

31 36 26 0 31 14 34 24 31 38 41 0 31 15 28 24

śrāvaṇa

31 28 4 0 31 11 13 36 31 28 31 0 31 11 24 24

bhādrapada

31 2 5 0 31 00 50 0 31 1 7 0 31 00 26 48

āśvina

30 27 24 0 30 10 57 36 30 26 29 0 30 10 35 36

kārttika

29 54 12 0 29 21 40 48 29 53 36 0 29 21 26 24

mārgaśīrṣa

29 30 31 0 29 12 12 24 29 29 25 0 29 11 46 0

pauṣa

29 21 2 0 29 08 24 48 29 19 4 0 29 07 37 36

māgha

29 27 24 0 29 10 57 36 29 26 53 0 29 10 45 12

phalguna

29 48 30 0 29 19 24 0 29 49 18 0 29 19 43 12

caitra

30 20 19 15 30 08 07 42 30 21 12 31.4 30 08 29 0.56
year 365 15 31 15 365 06 12 30 365 15 31 31.4 365 06 12 36.56
^a The abbreviations gh, pa, and vp stand for ghaṭikā (24 minutes), pala (also called vighatikā, 24 seconds), and vipala (0.4 seconds).

Months

In the calendars that follow the nirayana system, a month is an artificial unit of time. In the nirayana system, the ecliptic is divided into 12 parts of 30° and each part is called a rāśi. The first rāśi starts from the same point as that of the start the nirayana year. The beginning of a nirayana month is the moment at which the Sun enter into a rāśi. The length of a nirayana month is the duration of time taken by the Sun to travel completely in a rāśi, that is, to travel 30° of its elliptical orbit.[4] Since the speed at which the Sun is traversing its elliptical orbit around the sun is not constant, the durations of the sidereal months are also not constant. The mean length of a nirayana month is about 30.4369 days, but its actual length can vary from 29.45 days to 31.45 days. Calendar makers of different regions of India follow different computational systems, so, the duration of a nirayana month may vary from region to region.[6]

Since the nirayana months are defined artificially, there are no astronomical phenomena associated with the beginning of a nirayana month. The exact moment at which a new nirayana month begins can occur at any time of day, early morning, evening or night. To facilitate dating of days, the first day of a month has to be properly defined in terms of saṃkrānti, the time at which the Sun enters a new rāśi. Unfortunately, there is no consensus among calendar-makers, and tradition varies from region to region. A few of these are:[4]

  • The Orissa rule: The month begins on the same day as the saṃkrānti.
  • The Tamil rule: The month begins on the same day as the saṃkrānti if the saṃkrānti falls before sunset. Otherwise the month begins on the following day.
  • The Kerala rule: The month begins on the same day as the saṃkrānti if the saṃkrānti occurs before aparahna. Otherwise the month starts on the following day. (Aparahna is the time at 3/5th duration of the period from sunrise to sunset. For example, if the times of sunrise and sunset are 6am and 6pm, the aparahna is [(3/5) x (18 – 6) + 6]am = 1.12pm.)
  • The Bengal rule: When saṃkrānti takes place between sunrise and midnight on that day, the month begins on the following day. If it occurs between midnight and sunrise, the month begins on the third day. (In some special circumstances, there are some deviations from this rule.)

Major deficiency

The most important deficiency of the nirayana calendar is that the predictions of the dates of the onsets of the various seasons as per the nirayana system do not correspond to the actual dates on which they occur. This is because the seasons depend on the position of the sun on the ecliptic relative to the celestial equator. In particular, they depend on the positions of the equinoxes. Since, the positions of the equinoxes are slowly moving, the predictions of the seasons which ignore this movement of the equinoxes will be definitely erroneous.

To be more specific, the winter season begins on the winter solstice day which date is marked by sun's entry into Makara constellation. This event occurs on the 22nd December. But in the nirayana system, this happens not on the 22nd December but on the 14th January and the winter season is also supposed to begin on that date. Similar is the case with other seasons also. The result is that there is a clear difference of 23 days in the reckoning of seasons.[1]

References

  1. ^ a b Govt of India (1955). Report of the calendar reform committee. New Delhi: Council of Scientific and Industrial Reseaarch. p. 259. Retrieved 30 December 2023.
  2. ^ Article titled "Precession of the Equinoxes" and authored by K. V. Sarma in: Helaine Selin (2008). Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures. Springer. pp. 1830–1831. ISBN 978-1-4020-4559-2.
  3. ^ S. K. Chatterjee (2004). "Uniform all-India nirayan solar calendar" (PDF). Indian Journal of History of Science. 39 (4): 519–514. Retrieved 31 December 2023.
  4. ^ a b c "Indian calendars" (PDF). www.packolkata.gov.in. Positional Astronomy Center. Retrieved 31 December 2023.
  5. ^ Robert Sewell (1896). The Indian Calendar. London: Swan Sonnenschein & Co. p. 10. Retrieved 1 January 2024.
  6. ^ S.K. Uma, Padmaja Venugopal, K. Rupa and S. Balachandra Rao (2018). "The solar ingress according to makarandasarini and other Indian astronomical texts" (PDF). Journal of Astronomical History and Heritage. 21 (2): 202–210. Retrieved 1 January 2024.{{cite journal}}: CS1 maint: multiple names: authors list (link)

Read other articles:

Direktorat Jenderal Bimbingan Masyarakat Islam Kementerian Agama Republik IndonesiaSusunan organisasiDirektur JenderalProf. Dr. Phil. H. Kamaruddin Amin, MA.[1][2]Sekretaris DitjenH. Muhammad Fuad, S.Sos, M.Sc.Direktur Urusan Agama Islam dan Pembinaan SyariahDr. H. Adib, M.Ag.Direktur Bina Kantor Urusan Agama dan Keluarga SakinahH. Zainal Mustamin, S.Ag, MA.Direktur Penerangan Agama IslamDr. H. Ahmad Zayadi, M.Pd.Direktur Pemberdayaan Zakat dan WakafDrs. H. Tarmizi, MA. Kantor...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2022. Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Kei Ko...

 

 

Bolungarvík BolungarvíkurkaupstaðurMunisipalitas Lambang kebesaranLokasi di IslandiaNegara IslandiaRegionVestfirðirLuas • Total108,08 km2 (4,173 sq mi)Populasi (2017) • Total945 • Kepadatan0,087/km2 (0,23/sq mi)LAU4100Situs webhttp://www.bolungarvik.is/ Bolungarvík adalah salah satu munisipalitas di Islandia yang menjadi bagian region Vestfirðir. Kode LAU munisipalitas ini adalah 4100. Menurut sensus 2017, jumlah penduduk...

Questa voce sull'argomento strade d'Italia è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Nuova strada ANAS 215ex SS 51 (Variante tra Castello Lavazzo e Macchietto)Denominazioni precedentiStrada statale 51 di Alemagna LocalizzazioneStato Italia Regioni Veneto DatiClassificazioneStrada statale InizioSS 51 presso Termine di Cadore FineSS 51 al km 63,800 Lunghezza10,52 km Data apertura1996 GestoreANAS Manuale La nuova strada ANAS 215 ex SS 51 ...

 

 

Pour les articles homonymes, voir Apprentissage de la propreté. Sur les autres projets Wikimedia : propreté, sur le Wiktionnaire (thésaurus) La propreté est l'absence de souillure , incluant poussière, tache, et mauvaises odeurs. Elle implique des procédés de nettoyage, notamment dans le domaine de l'hygiène alimentaire (« élimination des souillures, des résidus d'aliments, de la saleté, de la graisse ou de toute autre matière indésirable »[1]). On peut parler d...

 

 

La Tache Noire - salah satu lukisan Bettannier yang paling terkenal. Ini menggambarkan seorang anak yang diajari tentang provinsi hilang Alsace-Lorraine setelah Perang Prancis-Prusia. Kehilangan ini adalah tema yang sering berulang dalam karyanya. Nicolas Albert Bettannier (12 Agustus 1851 – 17 November 1932) biasanya dikenal sebagai Albert Bettannier, adalah seorang pelukis Perancis pada era Republik Ketiga Prancis. Biografi Bettannier lahir di Metz pada tahun 1851 sebagai pu...

Belgian-Congolese footballer (1928–2020) Léon Mokuna Personal informationFull name Léon Mukuna MutomboDate of birth (1928-11-01)1 November 1928Place of birth Léopoldville, Belgian Congo(modern-day Kinshasa, Democratic Republic of the Congo)Date of death 28 January 2020(2020-01-28) (aged 91)Place of death Ghent, BelgiumHeight 1.75 m (5 ft 9 in)[1]Position(s) Forward[1]Senior career*Years Team Apps (Gls)1954 Victoria Club 1954–1957 Sporting Lisbon 13 (...

 

 

Un diavolo di Giotto, Cappella degli Scrovegni, Padova (1296-1298) Barbariccia è un diavolo inventato da Dante Alighieri, che lo inserisce tra i Malebranche, la diabolica truppa di demoni protagonista di un curioso episodio dell'Inferno (Canti XXI, XXII e XXIII). Essi creano con le loro grottesche figure una parentesi dallo stile tipicamente comico che è molto rara nell'opera dantesca e rappresenta una preziosissima testimonianza di come il grande poeta sapesse adattare con duttilità la su...

 

 

هنودمعلومات عامةنسبة التسمية الهند التعداد الكليالتعداد قرابة 1.21 مليار[1][2]تعداد الهند عام 2011ق. 1.32 مليار[3]تقديرات عام 2017ق. 30.8 مليون[4]مناطق الوجود المميزةبلد الأصل الهند البلد الهند  الهند نيبال 4,000,000[5] الولايات المتحدة 3,982,398[6] الإمار...

Province of Spain This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Gipuzkoa – news · newspapers · books · scholar · JSTOR (August 2010) (Learn how and when to remove this message) Province in Basque Country, SpainGipuzkoa GuipúzcoaProvinceHistorical Territory of Gipuzkoa1 FlagCoat of armsMotto(s): Fidel...

 

 

Not to be confused with Sweepstakes (schooner). Lithograph of Sweepstakes by Fannier Palmer and published by Nathaniel Currier in 1853 History United States NameSweepstakes OwnerChambers & Heiser, New York BuilderDaniel and Aaron Westervelt, New York Launched1853 FateRan aground on a reef in the Sunda Strait and damaged; sold for scrap on May 13, 1862 General characteristics TypeClipper Length216.4 ft (66.0 m) Beam41.6 ft (12.7 m) Draft6.2 ft (1.9 m)[1 ...

 

 

淡江高峰塔倒塌事件高峰塔B座、C座公寓,與倒塌的A座公寓結構類似 (2012)日期1993年12月11日,​30年前​(1993-12-11)时间下午1时35分(马来西亚标准时间,周六)地点 马来西亚雪兰莪淡江(英语:Ulu Klang)山景花园(英语:Taman Hillview)高峰塔坐标3°10′33.4″N 101°45′42.1″E / 3.175944°N 101.761694°E / 3.175944; 101.761694坐标:3°10′33.4″N 101°45′42.1″E&...

A Diablada dance squad passing through the streets during the Carnival and Bolivia.GenreFolk danceInventorPre-Columbian Andean bolivian, civilizationsYear1500sOriginAltiplano region, Bolivia, South America The Diablada, also known as the Danza de los Diablos (English: Dance of the Devils), is an Andean folk dance performed in Bolivia the Altiplano region of South America, characterized by performers wearing masks and costumes representing the devil and other characters from pre-Columbian theo...

 

 

For related races, see 2020 United States Senate elections.Not to be confused with 2020 South Carolina Senate election. 2020 United States Senate election in South Carolina ← 2014 November 3, 2020 2026 → Turnout72.1%   Nominee Lindsey Graham Jaime Harrison Party Republican Democratic Popular vote 1,369,137 1,110,828 Percentage 54.44% 44.17% County results Congressional district results Precinct resultsGraham:      40–50%   ...

 

 

此條目可能包含原创研究。 (2017年3月20日)请协助補充参考资料、添加相关内联标签和删除原创研究内容以改善这篇条目。详细情况请参见讨论页。  此条目页的主題是關於占星學的摩羯宮。关于天文學的摩羯座,請見「摩羯座」。 摩羯宮,又稱山羊宮,是占星術黃道十二宮之第十宮,源於摩羯座的星座圖。它跨越黃道帶天體的經度之間的270°和300°,指的是出生日期�...

American politician; 4th governor of Idaho (1897–1901) Frank Steunenberg4th Governor of IdahoIn officeJanuary 4, 1897 – January 7, 1901LieutenantGeorge MooreJ. H. HutchinsonPreceded byWilliam J. McConnellSucceeded byFrank W. Hunt Personal detailsBorn(1861-08-08)August 8, 1861Keokuk, Iowa, U.S.DiedDecember 30, 1905(1905-12-30) (aged 44)Caldwell, Idaho, U.S.Manner of deathAssassinationPolitical partyDemocraticOther politicalaffiliationsPopulistSpouseBelle KeppelChild...

 

 

Wikispecies mempunyai informasi mengenai Sanchezia. Sanchezia TaksonomiKerajaanPlantaeDivisiTracheophytaOrdoLamialesFamiliAcanthaceaeGenusSanchezia Ruiz dan Pav., 1794 Sanchezia adalah genus tumbuh-tumbuhan tropis berbunga yang berasal dari Peru dan Ekuador yang termasuk keluarga Acanthaceae.[1][2] Tanaman ini dapat diperbanyak dengan cara distek.[3] Taksonomi Tanaman ini dapat tumbuh 6 sampai 8 kaki (1,3 sampai 2,4 meter). Dengan batang berbentuk semikayu, dan berdau...

 

 

戈韦阿Gouveia市镇戈韦阿在巴西的位置坐标:18°27′14″S 43°44′27″W / 18.4539°S 43.7408°W / -18.4539; -43.7408国家巴西州米纳斯吉拉斯州面积 • 总计874.927 平方公里(337.811 平方英里)海拔1,113.69 公尺(3,653.84 英尺)人口 • 總計11,569人 • 密度13.2人/平方公里(34.2人/平方英里) 戈韦阿(葡萄牙语:Gouveia)是巴西米纳斯吉拉斯...

Serie A2 maschile FIP 1998-1999Dettagli della competizioneSport Pallacanestro OrganizzatoreLega Basket Federazione FIP Periodo27 settembre 1998 —30 maggio 1999 Squadre14 VerdettiPromozioni Montecatini S.C. Pall. Trieste Viola R. Calabria V.L. Pesaro[1] Ripescaggi Dinamo Sassari Fabriano Basket Non ammesse allastagione successiva Libertas Forlì Cronologia della competizioneed. successiva →     ← ed. precedente Modifi...

 

 

Pour les articles homonymes, voir Timmers. Pieter Timmers Informations Nages Nage libre Nationalité Belge Naissance 21 janvier 1988 (36 ans) Neerpelt, Belgique Taille 2,00 m (6′ 7″)[1] Club BRABO Entraîneur Ronald Gaastra Records Grand bassin 100 m nl : 47 s 80 (RN)200 m nl : 1 min 47 s 01 Petit bassin 50 m nl : 21 s 22 (RN)100 m nl : 46 s 54 (RN)200 m nl : 1 min ...