Lithium metaborate is a chemical compound of lithium, boron, and oxygen with elemental formula LiBO2. It is often encountered as a hydrate, LiBO2·nH2O, where n is usually 2 or 4. However, these formulas do not describe the actual structure of the solids.
Lithium metaborate is one of the borates, a large family of salts (ionic compounds) with anions consisting of boron, oxygen, and hydrogen.
Structure
Lithium metaborate has several crystal forms.
The α form consists of infinite chains of trigonal planar metaborate anions [BO2O−]n.
The γ form is stable at 15 kbar and 950 °C. It has a polymeric cation consisting of a tridimensional regular array of [B(O−)4]− tetrahedra sharing oxygen vertices, alernating with lithium cations, each also surrounded by four oxygen atoms. The B-O distances are 148.3 pm, the Li-O distances are 196 pm.[2]
Lithium metaborate forms glass relatively easily, and consists of approximately 40% tetrahedral borate anions, and 60% trigonal planar boron. The ratio of tetrahedral to trigonal boron has been shown to be strongly temperature dependent in the liquid and supercooled liquid state.[3][4]
^David R. Lide (1998): Handbook of Chemistry and Physics, edition 87, pages 4–66. CRC Press. ISBN0-8493-0594-2
^M. Marezio and J. P. Remeika (1966): "Polymorphism of LiMO2 Compounds and High‐Pressure Single‐Crystal Synthesis of LiBO2". Journal of Chemical Physics, volume 44, issue 9, pages 3348-. doi:10.1063/1.1727236
^Terrance D. Hettipathirana (2004): "Simultaneous determination of parts-per-million level Cr, As, Cd and Pb, and major elements in low level contaminated soils using borate fusion and energy dispersive X-ray fluorescence spectrometry with polarized excitation". Spectrochimica Acta Part B: Atomic Spectroscopy, volume 59, issue 2, pages 223-229. doi:10.1016/j.sab.2003.12.013
^ abcFernand Claisse (2003): "Fusion and fluxes". Comprehensive Analytical Chemistry: Sample Preparation for Trace Element Analysis, volume 41, pages 301-311.