Linear equation over a ring

In algebra, linear equations and systems of linear equations over a field are widely studied. "Over a field" means that the coefficients of the equations and the solutions that one is looking for belong to a given field, commonly the real or the complex numbers. This article is devoted to the same problems where "field" is replaced by "commutative ring", or "typically Noetherian integral domain".

In the case of a single equation, the problem splits in two parts. First, the ideal membership problem, which consists, given a non-homogeneous equation

with and b in a given ring R, to decide if it has a solution with in R, and, if any, to provide one. This amounts to decide if b belongs to the ideal generated by the ai. The simplest instance of this problem is, for k = 1 and b = 1, to decide if a is a unit in R.

The syzygy problem consists, given k elements in R, to provide a system of generators of the module of the syzygies of that is a system of generators of the submodule of those elements in Rk that are solutions of the homogeneous equation

The simplest case, when k = 1 amounts to find a system of generators of the annihilator of a1.

Given a solution of the ideal membership problem, one obtains all the solutions by adding to it the elements of the module of syzygies. In other words, all the solutions are provided by the solution of these two partial problems.

In the case of several equations, the same decomposition into subproblems occurs. The first problem becomes the submodule membership problem. The second one is also called the syzygy problem.

A ring such that there are algorithms for the arithmetic operations (addition, subtraction, multiplication) and for the above problems may be called a computable ring, or effective ring. One may also say that linear algebra on the ring is effective.

The article considers the main rings for which linear algebra is effective.

Generalities

To be able to solve the syzygy problem, it is necessary that the module of syzygies is finitely generated, because it is impossible to output an infinite list. Therefore, the problems considered here make sense only for a Noetherian ring, or at least a coherent ring. In fact, this article is restricted to Noetherian integral domains because of the following result.[1]

Given a Noetherian integral domain, if there are algorithms to solve the ideal membership problem and the syzygies problem for a single equation, then one may deduce from them algorithms for the similar problems concerning systems of equations.

This theorem is useful to prove the existence of algorithms. However, in practice, the algorithms for the systems are designed directly.

A field is an effective ring as soon one has algorithms for addition, subtraction, multiplication, and computation of multiplicative inverses. In fact, solving the submodule membership problem is what is commonly called solving the system, and solving the syzygy problem is the computation of the null space of the matrix of a system of linear equations. The basic algorithm for both problems is Gaussian elimination.

Properties of effective rings

Let R be an effective commutative ring.

  • There is an algorithm for testing if an element a is a zero divisor: this amounts to solving the linear equation ax = 0.
  • There is an algorithm for testing if an element a is a unit, and if it is, computing its inverse: this amounts to solving the linear equation ax = 1.
  • Given an ideal I generated by a1, ..., ak,
    • there is an algorithm for testing if two elements of R have the same image in R/I: testing the equality of the images of a and b amounts to solving the equation a = b + a1z1 + ⋯ + akzk;
    • linear algebra is effective over R/I: for solving a linear system over R/I, it suffices to write it over R and to add to one side of the ith equation a1zi,1 + ⋯ + akzi, k (for i = 1, ...), where the zi, j are new unknowns.
  • Linear algebra is effective on the polynomial ring if and only if one has an algorithm that computes an upper bound of the degree of the polynomials that may occur when solving linear systems of equations: if one has solving algorithms, their outputs give the degrees. Conversely, if one knows an upper bound of the degrees occurring in a solution, one may write the unknown polynomials as polynomials with unknown coefficients. Then, as two polynomials are equal if and only if their coefficients are equal, the equations of the problem become linear equations in the coefficients, that can be solved over an effective ring.

Over the integers or a principal ideal domain

There are algorithms to solve all the problems addressed in this article over the integers. In other words, linear algebra is effective over the integers; see Linear Diophantine system for details.

More generally, linear algebra is effective on a principal ideal domain if there are algorithms for addition, subtraction and multiplication, and

  • Solving equations of the form ax = b, that is, testing whether a is a divisor of b, and, if this is the case, computing the quotient a/b,
  • Computing Bézout's identity, that is, given a and b, computing s and t such that as + bt is a greatest common divisor of a and b.

It is useful to extend to the general case the notion of a unimodular matrix by calling unimodular a square matrix whose determinant is a unit. This means that the determinant is invertible and implies that the unimodular matrices are exactly the invertible matrices such all entries of the inverse matrix belong to the domain.

The above two algorithms imply that given a and b in the principal ideal domain, there is an algorithm computing a unimodular matrix

such that

(This algorithm is obtained by taking for s and t the coefficients of Bézout's identity, and for u and v the quotient of b and a by as + bt; this choice implies that the determinant of the square matrix is 1.)

Having such an algorithm, the Smith normal form of a matrix may be computed exactly as in the integer case, and this suffices to apply the described in Linear Diophantine system for getting an algorithm for solving every linear system.

The main case where this is commonly used is the case of linear systems over the ring of univariate polynomials over a field. In this case, the extended Euclidean algorithm may be used for computing the above unimodular matrix; see Polynomial greatest common divisor § Bézout's identity and extended GCD algorithm for details.

Over polynomials rings over a field

Linear algebra is effective on a polynomial ring over a field k. This has been first proved in 1926 by Grete Hermann.[2] The algorithms resulting from Hermann's results are only of historical interest, as their computational complexity is too high for allowing effective computer computation.

Proofs that linear algebra is effective on polynomial rings and computer implementations are presently all based on Gröbner basis theory.

References

  1. ^ Richman, Fred (1974). "Constructive aspects of Noetherian rings". Proc. Amer. Math. Soc. 44 (2): 436–441. doi:10.1090/s0002-9939-1974-0416874-9.
  2. ^ Hermann, Grete (1926). "Die Frage der endlich vielen Schritte in der Theorie der Polynomideale". Mathematische Annalen. 95: 736–788. doi:10.1007/BF01206635. S2CID 115897210.. English translation in Communications in Computer Algebra 32/3 (1998): 8–30.

Read other articles:

ФК «Динамо» Москва Общая информация Сезон 1930 Тренер - Капитан Фёдор Ильич Селин Стадион «Динамо» Соревнования Чемпионат Москвы (весна) без классификации Чемпионат Москвы (осень) 1 Победитель Лучший бомбардир Василий Павлов 14 голов Домашняя посещаемость Наибольшая 15 000 9 �...

 

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يوليو 2023) مجمع سليمان الضراط للألعاب الرياضيةمعلومات عامةالمنطقة الإدارية بنغازي البلد  ليبيا الاستعمالالمالك الاتحاد الليبي لكرة السلةالموقع الجغرافيالإحداثي�...

For other uses, see Magic in the Air (disambiguation). 2014 single by Magic System featuring ChawkiMagic in the AirSingle by Magic System featuring Chawkifrom the album Africainement vôtre LanguageFrench, EnglishReleasedMarch 17, 2014Recorded2014GenrePopLength3:53LabelParlophoneWarnerSongwriter(s)Magic SystemRedOneAlex PChawkiProducer(s)RedOneMagic System singles chronology Mamadou (2013) Magic in the Air (2014) Ahmed Chawki singles chronology Habibi I Love You(2013) Magic in the Air...

 

Satria Dewa: GatotkacaPoster rilis teatrikalSutradaraHanung BramantyoProduserCelerina JudisariDitulis oleh Rahabi Mandra Hanung Bramantyo Pemeran Rizky Nazar Yasmin Napper Omar Daniel Ali Fikry Yayan Ruhian Cecep Arif Rahman Sigi Wimala Edward Akbar Jerome Kurnia Penata musikRicky LionardiSinematograferGalang GalihPenyuntingWawan I. WibowoPerusahaanproduksiSatria Dewa StudioTanggal rilis 9 Juni 2022 (2022-06-09) (Indonesia) 18 Agustus 2022 (2022-08-18) (Malaysia) 10 No...

 

Indian academic This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Madhu Khanna – news · newspapers · books · scholar · JSTOR (December 2014) (Learn how and when to remove this template message) Ma...

Private liberal arts college in Portland, Oregon This article's tone or style may not reflect the encyclopedic tone used on Wikipedia. See Wikipedia's guide to writing better articles for suggestions. (May 2022) (Learn how and when to remove this template message) Reed CollegeTypePrivate liberal arts collegeEstablished1908; 116 years ago (1908)Endowment$726 million (2022)[1]PresidentAudrey BilgerAcademic staff164[2]Students1,534 (Fall 2022)Undergraduates1,523...

 

Турбинелла пирум Раковина моллюска с разных ракурсов Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ПервичноротыеБез ранга:СпиральныеТип:МоллюскиКласс:БрюхоногиеПодкласс:ЦеногастроподыОтряд...

 

Stasiun Cipunegara Stasiun Cipunegara, 2012LokasiKiarasari, Compreng, Subang, Jawa Barat 41257IndonesiaKoordinat6°27′18″S 107°52′48″E / 6.45500°S 107.88000°E / -6.45500; 107.88000Koordinat: 6°27′18″S 107°52′48″E / 6.45500°S 107.88000°E / -6.45500; 107.88000Ketinggian+21 mOperator Kereta Api IndonesiaDaerah Operasi III Cirebon Letakkm 131+554 lintas Jakarta–Jatinegara–Cikampek–Cirebon Prujakan–Prupuk–Purwokerto�...

National volleyball team AlgeriaAssociationAlgerian Volleyball FederationConfederationCAVBHead coachKrimo BernaouiFIVB ranking52 (as of 2 December 2023)Uniforms Home Away Summer OlympicsAppearances1 (First in 1992)Best result12th (1992)World ChampionshipAppearances2 (First in 1994)Best result13th (1994)World CupAppearances1 (First in 1991)Best result9th (1991)African ChampionshipAppearances17 (First in 1967)Best result (1991, 1993)www.afvb.org Algeria men's national volleyball team Medal ...

 

Pengeboman Medan 2019Polrestabes MedanPengeboman Medan 2019 (Medan)LokasiKompleks Kantor Polisi Resort Kota Besar Medan, Sidorame Bar. I, Kec. Medan Perjuangan, Kota Medan, Sumatera Utara 20235Tanggal13 November 2019 (2019-11-13) 08:45 (WIB)SasaranPolisi di Polrestabes MedanJenis seranganBom bunuh diriKorban tewas1 (pelaku pengeboman)Korban luka6Penyerang1MotifTeror Pengeboman Medan 2019 adalah serangan bom bunuh diri terjadi di halamam Markas Kepolisian Resor Kota Besar Medan, Sumatera ...

 

  لمعانٍ أخرى، طالع كوكي (توضيح). كوكيPastas secas (بالإسبانية) معلومات عامةالمنشأ بارس تاريخ الابتكار القرن 7 النوع  القائمة ... حلويات — cookies, biscuits, crackers (en) — shelf-stable food (en) — معجنات — طبق — bánh (en) تعديل - تعديل مصدري - تعديل ويكي بيانات الكُعَيْكة[1] أو الكوكي أو الرقيقة ا�...

Overview of education in North Korea This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Education in North Korea – news · newspapers · books · scholar · JSTOR...

 

Purported phenomena beyond the scope of normal scientific understanding This article is about unexplained phenomena. For phenomena not subject to the laws of nature, see supernatural. For unexplained but presumed natural phenomena, see preternatural. For other uses, see Paranormal (disambiguation). Paranormal activity redirects here. For the film, see Paranormal Activity. Part of a series on theParanormal Main articles Astral projection Astrology Aura Bilocation Breatharianism Clairvoyance Cl...

 

City in Khuzestan province, Iran For the administrative division of Khuzestan province, see Dezful County. City in Khuzestan, IranDezful Persian: دزفولCityNicknames: دسفیل ,دژپل, desfeal, dezhpollDezfulCoordinates: 32°22′43″N 48°24′52″E / 32.37861°N 48.41444°E / 32.37861; 48.41444[1]CountryIranProvinceKhuzestanCountyDezfulDistrictCentralElevation150 m (490 ft)Population (2016)[2] • Urban264,709&#...

Fosforo biancoDisposizione dei tetraedri nel solido Nome IUPACFosforo bianco Caratteristiche generaliFormula bruta o molecolareP4 Massa molecolare (u)123.9 Aspettosolido bianco/giallastro Numero CAS12185-10-3 Numero EINECS601-810-2 PubChem123286 SMILESP12P3P1P23 Proprietà chimico-fisicheDensità (g/cm3, in c.s.)1,8 Temperatura di fusione44,1 °C (317,2 K) Temperatura di ebollizione282 °C (555 K) Indicazioni di sicurezzaTemperatura di autoignizione30 °C (303 K)...

 

Pour les articles homonymes, voir Brigadier (homonymie). Le sens du grade de brigadier varie selon l'armée, le pays et l'époque : Dans certaines armées (Armée suisse), il correspond au général de brigade (OF-6 dans la nomenclature de l'OTAN) ; En France dans les armes dites « montées », c'est un grade de militaire du rang (OR-4 ou OR-3 dans la nomenclature de l'OTAN) ; C'est un grade dans les polices nationale et municipales françaises et dans l'administrat...

 

Bart D. Ehrman Bart D. Ehrman, 27 februari 2012.Född5 oktober 1955[1] (68 år)Lawrence, USAMedborgare iUSAUtbildad vidMoody Bible InstitutePrinceton Theological SeminaryWheaton College SysselsättningFilolog, författare, universitetslärare, teologArbetsgivareUniversity of North Carolina at Chapel HillUtmärkelserEmperor Has No Clothes Award (2014)Guggenheimstipendiet (2018)[2]Webbplatsbartehrman.comRedigera Wikidata Bart Denton Ehrman, född 5 oktober 1955 i Lawrence, Kansas...

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (أغسطس 2019) كأس الكؤوس الأوروبية 1998–99 تفاصيل الموسم كأس الكؤوس الأوروبية  النسخة 39  التاريخ بداية:13 أغسطس 1998  ...

 

Department in Occitanie, France For other uses, see Gard (disambiguation). Department of France in OccitanieGardDepartment of FranceFrom top down, left to right: Pont du Gard, prefecture building in Nîmes, Cévennes and Arena of Nîmes FlagCoat of armsLocation of Gard in FranceCoordinates: 44°7′41″N 4°4′54″E / 44.12806°N 4.08167°E / 44.12806; 4.08167CountryFranceRegionOccitaniePrefectureNîmesSubprefecturesAlèsLe ViganGovernment • President of...