Levodopa was first synthesized and isolated in the early 1910s.[3] The antiparkinsonian effects of levodopa were discovered in the 1950s and 1960s.[3] Following this, it was introduced for the treatment of Parkinson's disease in 1970.[3]
In humans, conversion of levodopa to dopamine does not only occur within the central nervous system. Cells in the peripheral nervous system perform the same task. Thus administering levodopa alone will lead to increased dopamine signaling in the periphery as well. Excessive peripheral dopamine signaling is undesirable as it causes many of the adverse side effects seen with sole levodopa administration. To bypass these effects, it is standard clinical practice to coadminister (with levodopa) a peripheral DOPA decarboxylase inhibitor (DDCI) such as carbidopa (medicines containing carbidopa, either alone or in combination with levodopa, are branded as Lodosyn[6] (Aton Pharma)[7]Sinemet (Merck Sharp & Dohme Limited), Pharmacopa (Jazz Pharmaceuticals), Atamet (UCB), Syndopa and Stalevo (Orion Corporation) or with a benserazide (combination medicines are branded Madopar or Prolopa), to prevent the peripheral synthesis of dopamine from levodopa). However, when consumed as a botanical extract, for example from M pruriens supplements, a peripheral DOPA decarboxylase inhibitor is not present.[8]
Inbrija (previously known as CVT-301) is an inhaled powder formulation of levodopa indicated for the intermittent treatment of "off episodes" in patients with Parkinson's disease currently taking carbidopa/levodopa.[9] It was approved by the United States Food and Drug Administration on 21 December 2018, and is marketed by Acorda Therapeutics.[10]
Coadministration of pyridoxine without a DDCI accelerates the peripheral decarboxylation of levodopa to such an extent that it negates the effects of levodopa administration, a phenomenon that historically caused great confusion.
In addition, levodopa, co-administered with a peripheral DDCI, is efficacious for the short-term treatment of restless leg syndrome.[11]
The two types of response seen with administration of levodopa are:
The short-duration response is related to the half-life of the drug.
The longer-duration response depends on the accumulation of effects over at least two weeks, during which ΔFosB accumulates in nigrostriatal neurons. In the treatment of Parkinson's disease, this response is evident only in early therapy, as the inability of the brain to store dopamine is not yet a concern.
Nausea, which is often reduced by taking the drug with food, although protein reduces drug absorption. Levodopa is an amino acid, so protein competitively inhibits levodopa absorption.
Gastrointestinal bleeding
Disturbed respiration, which is not always harmful, and can actually benefit patients with upper airway obstruction
Possible dopamine dysregulation: The long-term use of levodopa in Parkinson's disease has been linked to the so-called dopamine dysregulation syndrome.[19]
Clinicians try to avoid these side effects and adverse reactions by limiting levodopa doses as much as possible until absolutely necessary.
Metabolites of dopamine, such as DOPAL, are known to be dopaminergic neurotoxins. The long term use of levodopa increases oxidative stress through monoamine oxidase led enzymatic degradation of synthesized dopamine causing neuronal damage and cytotoxicity. The oxidative stress is caused by the formation of reactive oxygen species (H2O2) during the monoamine oxidase led metabolism of dopamine. It is further perpetuated by the richness of Fe2+ ions in striatum via the Fenton reaction and intracellular autooxidation. The increased oxidation can potentially cause mutations in DNA due to the formation of 8-oxoguanine, which is capable of pairing with adenosine during mitosis.[20] See also the catecholaldehyde hypothesis.
Levodopa was first synthesized in 1911 by Torquato Torquati from the Vicia faba bean.[3] It was first isolated in 1913 by Marcus Guggenheim from the V.faba bean.[3] Guggenheim tried levodopa at a dose of 2.5mg and thought that it was inactive aside from nausea and vomiting.[3]
In work that earned him a Nobel Prize in 2000, Swedish scientist Arvid Carlsson first showed in the 1950s that administering levodopa to animals with drug-induced (reserpine) Parkinsonian symptoms caused a reduction in the intensity of the animals' symptoms. In 1960 or 1961 Oleh Hornykiewicz, after discovering greatly reduced levels of dopamine in autopsied brains of patients with Parkinson's disease,[3][21] published together with the neurologist Walther Birkmayer dramatic therapeutic antiparkinson effects of intravenously administered levodopa in patients.[22] This treatment was later extended to manganese poisoning and later Parkinsonism by George Cotzias and his coworkers,[23] who used greatly increased oral doses, for which they won the 1969 Lasker Prize.[24][25] The first study reporting improvements in patients with Parkinson's disease resulting from treatment with levodopa was published in 1968.[26]
Levodopa was first marketed in 1970 by Roche under the brand name Larodopa.[3]
Levodopa is the generic name of the drug and its INNTooltip International Nonproprietary Name, USANTooltip United States Adopted Name, USPTooltip United States Pharmacopeia, BANTooltip British Approved Name, DCFTooltip Dénomination Commune Française, DCITTooltip Denominazione Comune Italiana, and JANTooltip Japanese Accepted Name.[27][28][14][15]
Levodopa prodrugs, with the potential for better pharmacokinetics, reduced fluctuations in levodopa levels, and reduced "on–off" phenomenon, are being researched and developed.[31][32]
Depression
Levodopa has been reported to be inconsistently effective as an antidepressant in the treatment of depressive disorders.[33][34] However, it was found to enhance psychomotor activation in people with depression.[33][34]
In 2015, a retrospective analysis comparing the incidence of age-related macular degeneration (AMD) between patients taking versus not taking levodopa found that the drug delayed onset of AMD by around 8years. The authors state that significant effects were obtained for both dry and wet AMD.[38][non-primary source needed]
^Hardebo JE, Owman C (July 1980). "Barrier mechanisms for neurotransmitter monoamines and their precursors at the blood-brain interface". Annals of Neurology. 8 (1): 1–31. doi:10.1002/ana.410080102. PMID6105837. S2CID22874032.
^ abLivingston C, Monroe-Duprey L (April 2024). "A Review of Levodopa Formulations for the Treatment of Parkinson's Disease Available in the United States". J Pharm Pract. 37 (2): 485–494. doi:10.1177/08971900221151194. PMID36704966.
^Lees A, Tolosa E, Stocchi F, Ferreira JJ, Rascol O, Antonini A, et al. (January 2023). "Optimizing levodopa therapy, when and how? Perspectives on the importance of delivery and the potential for an early combination approach". Expert Rev Neurother. 23 (1): 15–24. doi:10.1080/14737175.2023.2176220. hdl:10451/56313. PMID36729395.
^Merims D, Giladi N (2008). "Dopamine dysregulation syndrome, addiction and behavioral changes in Parkinson's disease". Parkinsonism & Related Disorders. 14 (4): 273–80. doi:10.1016/j.parkreldis.2007.09.007. PMID17988927.
^Ehringer H, Hornykiewicz O (December 1960). "[Distribution of noradrenaline and dopamine (3-hydroxytyramine) in the human brain and their behavior in diseases of the extrapyramidal system]". Klinische Wochenschrift. 38 (24): 1236–9. doi:10.1007/BF01485901. PMID13726012. S2CID32896604.
^Birkmayer W, Hornykiewicz O (November 1961). "[The L-3,4-dioxyphenylalanine (DOPA)-effect in Parkinson-akinesia]". Wiener Klinische Wochenschrift. 73: 787–8. PMID13869404.
^Cotzias GC, Papavasiliou PS, Gellene R (July 1969). "L-dopa in parkinson's syndrome". The New England Journal of Medicine. 281 (5): 272. doi:10.1056/NEJM196907312810518. PMID5791298.
^Doggrell SA (2023). "Continuous subcutaneous levodopa-carbidopa for the treatment of advanced Parkinson's disease: is it an improvement on other delivery?". Expert Opin Drug Deliv. 20 (9): 1189–1199. doi:10.1080/17425247.2023.2253146. PMID37634938.
^Urso D, Chaudhuri KR, Qamar MA, Jenner P (November 2020). "Improving the Delivery of Levodopa in Parkinson's Disease: A Review of Approved and Emerging Therapies". CNS Drugs. 34 (11): 1149–1163. doi:10.1007/s40263-020-00769-7. PMID33146817.
^Cacciatore I, Ciulla M, Marinelli L, Eusepi P, Di Stefano A (April 2018). "Advances in prodrug design for Parkinson's disease". Expert Opin Drug Discov. 13 (4): 295–305. doi:10.1080/17460441.2018.1429400. PMID29361853.
^Salamone JD, Correa M (January 2024). "The Neurobiology of Activational Aspects of Motivation: Exertion of Effort, Effort-Based Decision Making, and the Role of Dopamine". Annu Rev Psychol. 75: 1–32. doi:10.1146/annurev-psych-020223-012208. hdl:10234/207207. PMID37788571.