Conservation genetics

Conservation genetics is an interdisciplinary subfield of population genetics that aims to understand the dynamics of genes in a population for the purpose of natural resource management, conservation of genetic diversity, and the prevention of species extinction. Scientists involved in conservation genetics come from a variety of fields including population genetics, research in natural resource management, molecular ecology, molecular biology, evolutionary biology, and systematics. The genetic diversity within species is one of the three fundamental components of biodiversity (along with species diversity and ecosystem diversity),[1] so it is an important consideration in the wider field of conservation biology.

Genetic diversity

Genetic diversity is the total amount of genetic variability within a species. It can be measured in several ways, including: observed heterozygosity, expected heterozygosity, the mean number of alleles per locus, the percentage of loci that are polymorphic, and estimated effective population size. Genetic diversity on the population level is a crucial focus for conservation genetics as it influences both the health of individuals and the long-term survival of populations: decreased genetic diversity has been associated with reduced average fitness of individuals, such as high juvenile mortality, reduced immunity,[2] diminished population growth,[3] and ultimately, higher extinction risk.[4][5]

Heterozygosity, a fundamental measurement of genetic diversity in population genetics, plays an important role in determining the chance of a population surviving environmental change, novel pathogens not previously encountered, as well as the average fitness within a population over successive generations. Heterozygosity is also deeply connected, in population genetics theory, to population size (which itself clearly has a fundamental importance to conservation). All things being equal, small populations will be less heterozygous – across their whole genomes – than comparable, but larger, populations. This lower heterozygosity (i.e. low genetic diversity) renders small populations more susceptible to the challenges mentioned above.[6]

In a small population, over successive generations and without gene flow, the probability of mating with close relatives becomes very high, leading to inbreeding depression – a reduction in average fitness of individuals within a population. The reduced fitness of the offspring of closely related individuals is fundamentally tied to the concept of heterozygosity, as the offspring of these kinds of pairings are, by necessity, less heterozygous (more homozygous) across their whole genomes than outbred individuals. A diploid individual with the same maternal and paternal grandfather, for example, will have a much higher chance of being homozygous at any loci inherited from the paternal copies of each of their parents' genomes than would an individual with unrelated maternal and paternal grandfathers (each diploid individual inherits one copy of their genome from their mother and one from their father).

High homozygosity (low heterozygosity) reduces fitness because it exposes the phenotypic effects of recessive alleles at homozygous sites. Selection can favour the maintenance of alleles which reduce the fitness of homozygotes, the textbook example being the sickle-cell beta-globin allele, which is maintained at high frequencies in populations where malaria is endemic due to the highly adaptive heterozygous phenotype (resistance to the malarial parasite Plasmodium falciparum).

Low genetic diversity also reduces the opportunities for chromosomal crossover during meiosis to create new combinations of alleles on chromosomes, effectively increasing the average length of unrecombined tracts of chromosomes inherited from parents. This in turn reduces the efficacy of selection, across successive generations, to remove fitness-reducing alleles and promote fitness-enhancing alleles from a population. A simple hypothetical example would be two adjacent genes – A and B – on the same chromosome in an individual. If the allele at A promotes fitness "one point", while the allele at B reduces fitness "one point", but the two genes are inherited together, then selection cannot favour the allele at A while penalising the allele at B – the fitness balance is "zero points". Recombination can swap out alternative alleles at A and B, allowing selection to promote the optimal alleles to the optimal frequencies in the population – but only if there are alternative alleles to choose between.

The fundamental connection between genetic diversity and population size in population genetics theory can be clearly seen in the classic population genetics measure of genetic diversity, the Watterson estimator, in which genetic diversity is measured as a function of effective population size and mutation rate. Given the relationship between population size, mutation rate, and genetic diversity, it is clearly important to recognise populations at risk of losing genetic diversity before problems arise as a result of the loss of that genetic diversity. Once lost, genetic diversity can only be restored by mutation and gene flow. If a species is already on the brink of extinction there will likely be no populations to use to restore diversity by gene flow, and any given population will be small and therefore diversity will accumulate in that population by mutation much more slowly than it would in a comparable, but bigger, population (since there are fewer individuals whose genomes are mutating in a smaller population than a bigger population).

Contributors to extinction

  1. Inbreeding and inbreeding depression[7][8]
  2. The accumulation of deleterious mutations[9]
  3. A decrease in frequency of heterozygotes in a population, or heterozygosity, which decreases a species' ability to evolve to deal with change in the environment
  4. Outbreeding depression
  5. Fragmented populations[10][11][12]
  6. Taxonomic uncertainties, which can lead to a reprioritization of conservation efforts[13]
  7. Genetic drift as the main evolutionary process, instead of natural selection
  8. Management units within species
  9. Hybridization with allochthonous species, with the progressive substitution of the initial endemic species

Techniques

Specific genetic techniques are used to assess the genomes of a species regarding specific conservation issues as well as general population structure.[14] This analysis can be done in two ways, with current DNA of individuals or historic DNA.[15]

Techniques for analysing the differences between individuals and populations include

  1. Alloenzymes
  2. Random fragment length polymorphisms
  3. Amplified fragment length polymorphisms
  4. Random amplification of polymorphic DNA
  5. Single strand conformation polymorphism
  6. Minisatellites
  7. Microsatellites
  8. Single-nucleotide polymorphisms
  9. DNA sequencing

These different techniques focus on different variable areas of the genomes within animals and plants. The specific information that is required determines which techniques are used and which parts of the genome are analysed. For example, mitochondrial DNA in animals has a high substitution rate, which makes it useful for identifying differences between individuals. However, it is only inherited in the female line, and the mitochondrial genome is relatively small. In plants, the mitochondrial DNA has very high rates of structural mutations, so is rarely used for genetic markers, as the chloroplast genome can be used instead. Other sites in the genome that are subject to high mutation rates such as the major histocompatibility complex, and the microsatellites and minisatellites are also frequently used.

These techniques can provide information on long-term conservation of genetic diversity and expound demographic and ecological matters such as taxonomy.[14]

Another technique is using historic DNA for genetic analysis. Historic DNA is important because it allows geneticists to understand how species reacted to changes to conditions in the past. This is a key to understanding the reactions of similar species in the future.[15]

Techniques using historic DNA include looking at preserved remains found in museums and caves.[16] Museums are used because there is a wide range of species that are available to scientists all over the world. The problem with museums is that, historical perspectives are important because understanding how species reacted to changes in conditions in the past is a key to understanding reactions of similar species in the future.[16] Evidence found in caves provides a longer perspective and does not disturb the animals.[16]

Another technique that relies on specific genetics of an individual is noninvasive monitoring, which uses extracted DNA from organic material that an individual leaves behind, such as a feather.[16] Environmental DNA (eDNA) can be extracted from soil, water, and air. Organisms deposit tissue cells into the environment and the degradation of these cells results in DNA being released into the environment.[17]This too avoids disrupting the animals and can provide information about the sex, movement, kinship and diet of an individual.[16]

Other more general techniques can be used to correct genetic factors that lead to extinction and risk of extinction. For example, when minimizing inbreeding and increasing genetic variation multiple steps can be taken. Increasing heterozygosity through immigration, increasing the generational interval through cryopreservation or breeding from older animals, and increasing the effective population size through equalization of family size all helps minimize inbreeding and its effects.[18] Deleterious alleles arise through mutation, however certain recessive ones can become more prevalent due to inbreeding.[18] Deleterious mutations that arise from inbreeding can be removed by purging, or natural selection.[18] Populations raised in captivity with the intent of being reintroduced in the wild suffer from adaptations to captivity.[19]

Inbreeding depression, loss of genetic diversity, and genetic adaptation to captivity are disadvantageous in the wild, and many of these issues can be dealt with through the aforementioned techniques aimed at increasing heterozygosity. In addition creating a captive environment that closely resembles the wild and fragmenting the populations so there is less response to selection also help reduce adaptation to captivity.[20]

Solutions to minimize the factors that lead to extinction and risk of extinction often overlap because the factors themselves overlap. For example, deleterious mutations are added to populations through mutation, however the deleterious mutations conservation biologists are concerned with are ones that are brought about by inbreeding, because those are the ones that can be taken care of by reducing inbreeding. Here the techniques to reduce inbreeding also help decrease the accumulation of deleterious mutations.

Applications

These techniques have wide-ranging applications. One example is in defining species and subspecies of salmonids.[14] Hybridization is an especially important issue in salmonids and this has wide-ranging conservation, political, social and economic implications.

More specific example, the Cutthroat Trout. In analysis of its mtDNA and alloenzymes, hybridization between native and non-native species has been shown to be one of the major factors contributing to the decline in its populations. This has led to efforts to remove some hybridized populations so native populations could breed more readily. Cases like these impact everything from the economy of local fishermen to larger companies, such as timber.

Defining species and subspecies has conservation implication in mammals, too. For example, the northern white rhino and southern white rhino were previously mistakenly identified as the same species given their morphological similarities, but recent mtDNA analyses showed that the species are genetically distinct.[21] As a result, the northern white rhino population has dwindled to near-extinction due to poaching crisis, and the prior assumption that it could freely breed with the southern population is revealed to be a misguided approach in conservation efforts.

More recent applications include using forensic genetic identification to identify species in cases of poaching. Wildlife DNA registers are used to regulate trade of protected species, species laundering, and poaching.[22] Conservation genetics techniques can be used alongside a variety of scientific disciplines. For example, landscape genetics has been used in conjunction with conservation genetics to identify corridors and population dispersal barriers to give insight into conservation management.[23]

Implications

New technology in conservation genetics has many implications for the future of conservation biology. At the molecular level, new technologies are advancing. Some of these techniques include the analysis of minisatellites and MHC.[14] These molecular techniques have wider effects from clarifying taxonomic relationships, as in the previous example, to determining the best individuals to reintroduce to a population for recovery by determining kinship. These effects then have consequences that reach even further. Conservation of species has implications for humans in the economic, social, and political realms.[14] In the biological realm increased genotypic diversity has been shown to help ecosystem recovery, as seen in a community of grasses which was able to resist disturbance to grazing geese through greater genotypic diversity.[24] Because species diversity increases ecosystem function, increasing biodiversity through new conservation genetic techniques has wider reaching effects than before.

A short list of studies a conservation geneticist may research include:

  1. Phylogenetic classification of species, subspecies, geographic races, and populations, and measures of phylogenetic diversity and uniqueness.
  2. Identifying hybrid species, hybridization in natural populations, and assessing the history and extent of introgression between species.
  3. Population genetic structure of natural and managed populations, including identification of Evolutionary Significant Units (ESUs) and management units for conservation.
  4. Assessing genetic variation within a species or population, including small or endangered populations, and estimates such as effective population size (Ne).
  5. Measuring the impact of inbreeding and outbreeding depression, and the relationship between heterozygosity and measures of fitness (see Fisher's fundamental theorem of natural selection).
  6. Evidence of disrupted mate choice and reproductive strategy in disturbed populations.
  7. Forensic applications, especially for the control of trade in endangered species.
  8. Practical methods for monitoring and maximizing genetic diversity during captive breeding programs and re-introduction schemes, including mathematical models and case studies.
  9. Conservation issues related to the introduction of genetically modified organisms.
  10. The interaction between environmental contaminants and the biology and health of an organism, including changes in mutation rates and adaptation to local changes in the environment (e.g. industrial melanism).
  11. New techniques for noninvasive genotyping, see noninvasive genotyping for conservation.
  12. Monitor genetic variability in populations and assess genes of fitness amongst organism populations.[25]

See also

Notes

  1. ^ Redford, Kent H.; Richter, Brian D. (December 1999). "Conservation of Biodiversity in a World of Use". Conservation Biology. 13 (6): 1246–1256. Bibcode:1999ConBi..13.1246R. doi:10.1046/j.1523-1739.1999.97463.x. ISSN 0888-8892. S2CID 85935177.
  2. ^ Ferguson, Moira M; Drahushchak, Lenore R (1990-06-01). "Heredity - Abstract of article: Disease resistance and enzyme heterozygosity in rainbow trout". Heredity. 64 (3): 413–417. doi:10.1038/hdy.1990.52. ISSN 0018-067X. PMID 2358369.
  3. ^ Leberg, P. L. (1990-12-01). "Influence of genetic variability on population growth: implications for conservation". Journal of Fish Biology. 37: 193–195. Bibcode:1990JFBio..37S.193L. doi:10.1111/j.1095-8649.1990.tb05036.x. ISSN 1095-8649.
  4. ^ Frankham, Richard (2005-11-01). "Genetics and extinction". Biological Conservation. 126 (2): 131–140. Bibcode:2005BCons.126..131F. doi:10.1016/j.biocon.2005.05.002.
  5. ^ Saccheri, Ilik; Kuussaari, Mikko; Kankare, Maaria; Vikman, Pia; Fortelius, Wilhelm; Hanski, Ilkka (1998-04-02). "Inbreeding and extinction in a butterfly metapopulation". Nature. 392 (6675): 491–494. Bibcode:1998Natur.392..491S. doi:10.1038/33136. ISSN 0028-0836. S2CID 4311360.
  6. ^ "Effective Population Size - an overview | ScienceDirect Topics". www.sciencedirect.com. Retrieved 2023-02-11.
  7. ^ Frankham, Richard (1995). "Conservation Genetics". Annual Review of Genetics. 29 (1995): 305–27. doi:10.1146/annurev.ge.29.120195.001513. PMID 8825477.
  8. ^ Charlesworth, D; Charlesworth, B (1987-11-01). "Inbreeding Depression and its Evolutionary Consequences". Annual Review of Ecology and Systematics. 18 (1): 237–268. doi:10.1146/annurev.es.18.110187.001321. ISSN 0066-4162.
  9. ^ Lynch, Michael; Conery, John; Burger, Reinhard (1995-01-01). "Mutation Accumulation and the Extinction of Small Populations". The American Naturalist. 146 (4): 489–518. doi:10.1086/285812. JSTOR 2462976. S2CID 14762497.
  10. ^ Ralls, K.; Brugger, K.; Ballou, J. (1979-11-30). "Inbreeding and juvenile mortality in small populations of ungulates". Science. 206 (4422): 1101–1103. Bibcode:1979Sci...206.1101R. doi:10.1126/science.493997. ISSN 0036-8075. PMID 493997.
  11. ^ Willi, Yvonne; van Buskirk, Josh; Hoffmann, Ary A. (2006-01-01). "Limits to the Adaptive Potential of Small Populations". Annual Review of Ecology, Evolution, and Systematics. 37: 433–458. doi:10.1146/annurev.ecolsys.37.091305.110145. JSTOR 30033839.
  12. ^ Vrijenhoek, R. C. (1994-01-01). "Genetic diversity and fitness in small populations". In Loeschcke, Dr V.; Jain, Dr S. K.; Tomiuk, Dr J. (eds.). Conservation Genetics. EXS. Birkhäuser Basel. pp. 37–53. doi:10.1007/978-3-0348-8510-2_5. ISBN 9783034896573.
  13. ^ Haig, Susan M. (1998). "Molecular Contributions to Conservation" (PDF). Ecology. 79 (2): 413–25. doi:10.1890/0012-9658(1998)079[0413:MCTC]2.0.CO;2.
  14. ^ a b c d e Haig
  15. ^ a b Wayne, Robert; Morin, Phillip (2004). "Conservation genetics in the new molecular age". Frontiers in Ecology and the Environment. 2 (2): 89–97. doi:10.1890/1540-9295(2004)002[0089:CGITNM]2.0.CO;2. ISSN 1540-9295.
  16. ^ a b c d e Robert, pp. 89–97
  17. ^ Barnes, Matthew A.; Turner, Cameron R. (2016-02-01). "The ecology of environmental DNA and implications for conservation genetics". Conservation Genetics. 17 (1): 1–17. Bibcode:2016ConG...17....1B. doi:10.1007/s10592-015-0775-4. hdl:2346/87600. ISSN 1572-9737. S2CID 254423410.
  18. ^ a b c (Frankham 1995)
  19. ^ Woodworth, Lynn M.; Montgomery, Margaret E.; Briscoe, David A.; Frankham, Richard (2002). "Rapid genetic deterioration in captive populations: causes and conservation implications". Conservation Genetics. 3 (3): 277–288. doi:10.1023/A:1019954801089. S2CID 43289886.
  20. ^ Montgomery
  21. ^ Groves, Colin P.; Cotterill, F. P. D.; Gippoliti, Spartaco; Robovský, Jan; Roos, Christian; Taylor, Peter J.; Zinner, Dietmar (2017-12-01). "Species definitions and conservation: a review and case studies from African mammals". Conservation Genetics. 18 (6): 1247–1256. Bibcode:2017ConG...18.1247G. doi:10.1007/s10592-017-0976-0. ISSN 1572-9737. S2CID 254419296.
  22. ^ Ogden, R; Dawnay, N; McEwing, R (2009-01-02). "Wildlife DNA forensics—bridging the gap between conservation genetics and law enforcement". Endangered Species Research. 9: 179–195. doi:10.3354/esr00144. hdl:20.500.11820/3de2f7b9-622e-4d9b-93d0-c8fd75b29db4. ISSN 1863-5407.
  23. ^ Keller, Daniela; Holderegger, Rolf; van Strien, Maarten J.; Bolliger, Janine (2015-06-01). "How to make landscape genetics beneficial for conservation management?". Conservation Genetics. 16 (3): 503–512. Bibcode:2015ConG...16..503K. doi:10.1007/s10592-014-0684-y. ISSN 1572-9737. S2CID 254413693.
  24. ^ Frankham, Richard (2005). "Ecosystem recovery enhanced by genotypic diversity" (PDF). Heredity. 95 (3): 183. doi:10.1038/sj.hdy.6800706. PMID 16049423. S2CID 8274476. Archived from the original (PDF) on 2016-07-01. Retrieved 2016-06-05.
  25. ^ Wayne, Robert K.; Morin, Phillip A. (March 2004). "Conservation genetics in the new molecular age". Frontiers in Ecology and the Environment. 2 (2): 89–97. doi:10.1890/1540-9295(2004)002[0089:CGITNM]2.0.CO;2. ISSN 1540-9295.

References

Read other articles:

1891-1893 U.S. Congress 52nd United States Congress51st ←→ 53rdUnited States Capitol (1906)March 4, 1891 – March 4, 1893Members88 senators332 representatives4 non-voting delegatesSenate majorityRepublicanSenate PresidentLevi P. Morton (R)House majorityDemocraticHouse SpeakerCharles F. Crisp (D)Sessions1st: December 7, 1891 – August 5, 18922nd: December 5, 1892 – March 3, 1893 The 52nd United States Congress was a meeting of the legislative branch of the United States ...

Junta Provisional Gubernativa del Reino a nombre de Fernando VII Escudo de armas del Rey LocalizaciónPaís Patria ViejaMunicipio Santiago de ChileInformación generalJurisdicción NacionalTipo Junta de GobiernoSede Palacio del Real Tribunal del Consulado de SantiagoSistema Monarquía absoluta bajo gobierno provisionalOrganizaciónPresidente Mateo de Toro Zambrano (18 de septiembre de 1810-26 de febrero de 1811)Juan Martínez de Rozas interino (26 de febrero-2 de abril de 1811)Fernando Márqu...

Kennzeichnung am Sächsischen Ständehaus am Dresdner Schloßplatz Die Liste der Kulturdenkmale in Dresden umfasst die Kulturdenkmale der sächsischen Landeshauptstadt. Diese Liste ist eine Teilliste der Liste der Kulturdenkmale in Sachsen. Inhaltsverzeichnis 1 Einführung 2 Legende 3 Liste der Dresdner Kulturdenkmale nach Gemarkungen 4 Siehe auch 5 Weblinks 6 Einzelnachweise Einführung Die Landeshauptstadt Dresden, nicht zuletzt wegen ihrer teils barocken und mediterranen Architektur in der...

James Weldon Johnson Información personalNacimiento 17 de junio de 1871 Jacksonville (Estados Unidos) Fallecimiento 26 de junio de 1938 (67 años)Wiscasset (Estados Unidos) Causa de muerte Accidente de tránsito Sepultura Cementerio de Green-Wood Nacionalidad EstadounidenseFamiliaCónyuge Grace Nail Johnson (1910-1938) EducaciónEducado en Universidad de ColumbiaUniversidad de FiskUniversidad Clark AtlantaStanton College Preparatory School Información profesionalOcupación Escritor, po...

Said NafaFaction represented in the Knesset2007–2013Balad Personal detailsBorn (1953-04-01) 1 April 1953 (age 70)Beit Jann, Israel Said Nafa (Arabic: سعيد نفاع, Hebrew: סעיד נפאע, also Said Naffaa, born 1 April 1953) is an Israeli Arab politician and lawyer. A Druze citizen of Israel, he served as a member of the Knesset for Balad between 2007 and 2013.[1] Biography Born into a family of the Druze faith in Beit Jann in 1953, Nafa joined the Communist Party Maki ...

American independent record label This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Matador Records – news · newspapers · books · scholar · JSTOR (January 2010) (Learn how and when to remove this template message) Matador RecordsParent companyBeggars GroupFounded1989 (1989)FounderChris LombardiDistributor...

معركة حصن إبين إميل (بالإنجليزية: Battle of Fort Eben-Emael)‏ كانت معركة وقعت بين القوات البلجيكية والألمانية ما بين 10 مايو و11 مايو 1940، شكلّت جزءًا من معركة بلجيكا والعملية الصفراء؛ الغزو الألماني للبلدان المنخفضة وفرنسا. وذلك حينما كُلفّت قوة هجومية من المظليين الألمان، (فالشيرم-يي�...

ويليام برنارد باري (بالإنجليزية: William Bernard Barry)‏    معلومات شخصية الميلاد 21 يوليو 1902  مقاطعة مايو  الوفاة 20 أكتوبر 1946 (44 سنة)   نيويورك  سبب الوفاة ذات الرئة  مواطنة الولايات المتحدة  الحياة العملية المدرسة الأم جامعة نيويورككلية الحقوق بجامعة نيويورك ...

E2F

Family of transcription factors E2F is a group of genes that encodes a family of transcription factors (TF) in higher eukaryotes. Three of them are activators: E2F1, 2 and E2F3a. Six others act as suppressors: E2F3b, E2F4-8. All of them are involved in the cell cycle regulation and synthesis of DNA in mammalian cells. E2Fs as TFs bind to the TTTCCCGC (or slight variations of this sequence) consensus binding site in the target promoter sequence. E2F family Schematic diagram of the amino acid s...

Organic reaction Shapiro reaction Named after Robert H. Shapiro Reaction type Coupling reaction Identifiers Organic Chemistry Portal shapiro-reaction RSC ontology ID RXNO:0000125 The Shapiro reaction or tosylhydrazone decomposition is an organic reaction in which a ketone or aldehyde is converted to an alkene through an intermediate hydrazone in the presence of 2 equivalents of organolithium reagent.[1][2][3] The reaction was discovered by Robert H. Shapiro in 1967. ...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Vizcaya Bridge – news · newspapers · books · scholar · JSTOR (February 2022) (Learn how and when to remove this template message) You can help expand this article with text translated from the corresponding article in Spanish. (January 2022) Click [show] f...

Elastic net redirects here. For the statistical regularization technique, see Elastic net regularization. Linear PCA versus nonlinear Principal Manifolds[1] for visualization of breast cancer microarray data: a) Configuration of nodes and 2D Principal Surface in the 3D PCA linear manifold. The dataset is curved and can not be mapped adequately on a 2D principal plane; b) The distribution in the internal 2D non-linear principal surface coordinates (ELMap2D) together with an estimation ...

Traditional folk song Young Hunting is a traditional folk song, Roud 47, catalogued by Francis James Child as Child Ballad number 68,[1] and has its origin in Scotland.[2] Like most traditional songs, numerous variants of the song exist worldwide, notably under the title of Henry Lee and Love Henry in the United States[3] and Earl Richard and sometimes The Proud Girl in the United Kingdom. The song, which can be traced back as far as the 18th century[citation neede...

Muzeum w Chrzanowie im. Ireny i Mieczysława Mazarakich Główny budynek muzeum. Państwo  Polska Miejscowość Chrzanów Adres ul. Mickiewicza 1332-500 Chrzanów Data założenia 22 lipca 1960 Zakres zbiorów malarstwo, rzeźba, sztuka użytkowa, judaika Wielkość zbiorów 33 654 eksponatów Dyrektor Kamil Bogusz Oddziały Dom Urbańczyka Położenie na mapie ChrzanowaMuzeum w Chrzanowie im. Ireny i Mieczysława Mazarakich Położenie na mapie PolskiMuzeum w Chrzanowie im. Ir...

Місце злочинуTatort Тип телесеріалТелеканал(и) Das Erste ORFЖанр драма, детектив, бойовикТривалість 90 хв.Керівник проєкту Gunther WittedРозробка  Німеччина Австрія ШвейцаріяУ головних ролях Klaus J. BehrendtdDietmar BärdMiroslav NemecdUdo WachtveitldFerdinand HoferdJörg HartmanndAnna SchudtdAylin TezeldRick OkondHans-Jochen WagnerdEva Löb...

Historic church in Massachusetts, United States This article is about the Christ Church in the City of Boston. For other places, see Old North. One if by land, two if by sea redirects here. For the restaurant, see One If By Land, Two If By Sea (restaurant). Church in U.S., United StatesOld North ChurchChrist Church in the City of BostonOld North Church in Boston in August 201942°21′59″N 71°3′16″W / 42.36639°N 71.05444°W / 42.36639; -71.05444LocationBoston, ...

Hugh StubbinsInformación personalNacimiento 11 de enero de 1912 Birmingham (Estados Unidos) Fallecimiento 5 de julio de 2006 (94 años)Cambridge (Estados Unidos) Nacionalidad EstadounidenseEducaciónEducado en Escuela de Graduados de Diseño de HarvardInstituto de Tecnología de Georgia Información profesionalOcupación Arquitecto Empleador Universidad de Harvard Obras notables Yokohama Landmark Tower Miembro de Academia Estadounidense de las Artes y las Ciencias [editar datos en Wikid...

For the series of battles resulting in British defeats during the Second Boer War, see Black Week. Black WeekPart of Hawaiian Rebellions (1887–1895)USRC Thomas Corwin, whose unexpected arrival caused the incidentDateDecember 14, 1893 – January 11, 1894LocationHonolulu, Hawaii21°18′25″N 157°51′30″W / 21.30694°N 157.85833°W / 21.30694; -157.85833Result United States political victory Provisional Government of Hawaii succeeded by the Republic of Hawaii Ann...

ダニエル・クロスビー・グリーン 生誕 1843年2月11日 アメリカ合衆国マサチューセッツ州ロクスベリー死没 1913年9月15日神奈川県葉山村墓地 同志社墓地(京都市左京区)[1]国籍 アメリカ合衆国出身校 ダートマス大学シカゴ神学校(英語版)アンドーヴァー神学校職業 宣教師、牧師、建築家団体 アメリカン・ボード配偶者 メリー・ジェイン・グリーンテンプレート...

I sette principi elettori eleggono re Enrico di Lussemburgo. Da sinistra a destra: arcivescovo di Colonia, arcivescovo di Magonza, arcivescovo di Treviri, conte palatino, duca di Sassonia, margravio del Brandeburgo e re di Boemia - dal Codex Balduineus (ca. 1340) Quella di principe elettore (in latino: princeps elector imperii o elector, in tedesco Kurfürst) era una carica del Sacro Romano Impero assegnata a un numero limitato di principi tedeschi componenti il collegio elettorale al quale, ...