This paleomammology list records new fossilmammaltaxa that were described during the year 2022, as well as notes other significant paleomammalogy discoveries and events which occurred during 2022.
A study on the landscape-scale patterns in diet of mammoths and mastodons is published by Pardi & DeSantis (2022), who report evidence indicating that mammoths had significant dietary preferences for grass, but also engaged in more mixed-feeding in the areas outside the most environmentally suitable parts of their distribution, while the dietary preferences for mastodons were less resolved.[3]
Partial skeleton of a specimen of "Mammut" borsoni, representing one of the most recent record of mammutids in Europe reported to date, is described from the Villafranchian of Kaltensundheim (Thuringia, Germany) by Koenigswald et al. (2022).[4]
A study on patterns of landscape use by "Buesching mastodon" (recovered in 1998 from a peat farm near Fort Wayne, Indiana, United States) during its life is published by Miller et al. (2022), who interpret their findings as indicative of shifts in landscape use by this individual during adolescence and following maturation to adulthood, including increased monthly movements and development of a summer-only range and mating ground.[5]
A study on the carbon and oxygen isotope ratios in teeth of a sub-adult mastodon found in southern Brazil is published by Lopes et al. (2022), who interpret their findings as indicative of a diet shift during the life of the animal, and indicating that mastodons were able to change their diets at shorter timescales than can be addressed from the analysis of isolated teeth.[6]
Fossil material of a member or a relative of the genus Sinomastodon is described from the Quaternary of the Kashmir Valley by Parray et al. (2022), representing the youngest record of a gomphothere from the Indian Subcontinent reported to date.[7]
A study on the osteological anomalies in the vertebrae of Notiomastodon platensis from a new late Pleistocene site at Anolaima (Cundinamarca, Colombia) is published by Zorro-Luján et al. (2022), who interpret the studied anomalies as the result of nutritional deficiencies in essential minerals, caused by environmental stresses which were possibly related to the late Pleistocene environmental instability.[8]
Mothé et al. (2022) describe new fossil material of Notiomastodon platensis from three Pleistocene sites in the Valle del Cauca Department (Colombia), and interpret the distribution of the fossil material of N. platensis as indicating that this proboscidean used the inter-Andean valleys as migratory corridors, avoiding more prominent Andean hills.[9]
A study on the origin, dispersal and ecology of gomphotheres in South America is published by Alberdi & Prado (2022).[10]
Evidence indicating that the shovel-tusked gomphotheres from Florida (Amebelodon floridanus, Konobelodon britti, Serbelodon barbourensis) were leaf browsers that also ingested bark and twigs, using their upper tusks for scraping and slicing and their lower tusks for shoveling substrate (S. barbourensis and K. britti) or stripping and scraping (A. floridanus), is presented by Semprebon, Pirlo & Dudek (2022).[11]
A study on the range of size variation in palaeoloxodont elephants from Sicily, Favignana and Malta, inhabiting the Siculo-Maltese Palaeoarchipelago during the Pleistocene, and on possible reasons for size differences of these elephants is published by Scarborough (2022).[12]
A study on the morphological variation of samples of steppe mammoth and woolly mammoth remains, focusing on ca. 240,000-126,000 samples from Britain and the adjacent continent, is published by Lister (2022), providing evidence of a complex pattern of change in the transition from the steppe mammoth to the woolly mammoth in Europe.[13]
Evidence from woolly mammoth genomes (including genomes of two new Siberian specimens), indicating that genomic insertions and large deletions likely contributed to adaptive phenotypic evolution of the woolly mammoths, is presented by van der Valk et al. (2022).[14]
A member of the family Protosirenidae. The type species is D. marocensis.
Sirenian research
A study on the phylogenetic relationships and evolutionary history of extant and fossil sirenians is published by Heritage & Seiffert (2022).[16]
Description of the anatomy of the skull of Sobrarbesiren cardieli and a study on the affinities of this taxon is published by Díaz-Berenguer et al. (2022).[17]
A study on the talar and calcaneal morphology in Eocene primates from the Vastan lignite mine (Gujarat, India), and on its implications for the knowledge of the locomotor capabilities of these primates, is published by Llera Martín, Rose & Sylvester (2022).[21]
A study on chipping patterns across the dentition of members of the genus Archaeolemur is published by Towle et al. (2022), who interpret their findings as indicating that members of this genus had a varied omnivorous diet and used their anterior teeth for extensive food processing.[22]
A study on the phylogenetic relationships of extant and fossil New World monkeys is published by Beck et al. (2022).[23]
A study on the internal nasal anatomy of Homunculus patagonicus, and on its implications for the knowledge of the phylogenetic affinities of this monkey, is published by Lundeen & Kay (2022).[24]
A study on the dental capabilities and potential dietary adaptations of Dolichopithecus ruscinensis is published by Plastiras et al. (2022), who interpret their findings as indicative of a more opportunistic feeding behavior for Dolichopithecus than characteristic of most extant colobines.[25]
Brasil et al. (2022) and Taylor et al. (2022) describe new assemblages of fossils of late Pleistocene Old World monkeys from the Middle Awash (Ethiopia), including fossils of the hamadryas baboons falling within the range of morphological variation observed for extant members of this species,[26] fossils of black-and-white colobuses with morphologies intermediate between Middle Pleistocene samples from the Asbole site and modern mantled guereza[27] and members or relatives of the genus Chlorocebus which might be ancestral to the monkeys currently living in the Afar region of Ethiopia.[28]
A study on the phylogenetic relationships for Middle-Late Miocene fossil apes is published by Pugh (2022).[29]
Rossie & Cote (2022) describe new fossil material of apes from the Miocene Lothidok Formation (Kenya), including a new mandible and an isolated molar of Turkanapithecus kalakolensis, expanding the knowledge of the lower molar morphology of the species; a new mandible of Simiolus enjiessi; and a new male specimen of Afropithecus turkanensis with unusual premolar morphology.[30]
Description of new fossil material of apes from the Miocene locality of Berg Aukas (Namibia) and new information on the locality of the ape mandible from the Miocene of Niger described by Pickfordet al. (2008)[31] is published by Mocke et al. (2022), who evaluate the implications of these fossils for the knowledge of the evolution of the African apes.[32]
A study on the occurrence and morphology of calcar femorale in extant and fossil hominids is published by Cazenave et al. (2022), who interpret their findings as indicating that this structure cannot be considered as a diagnostic feature of habitual bipedal locomotion.[34]
Dental remains of Gigantopithecus blacki, possibly belonging to one of the latest relict populations of Gigantopithecus, are described from the Upper Pleistocene deposits of the Lang Trang cave (Vietnam) by Lopatin, Maschenko & Dac (2022).[35]
A study on the paleoecology of fossil pongines, with a focus on Khoratpithecus ayeyarwadyensis is published by Habinger et al. (2022), who interpret the habitat of K. ayeyarwadyensis to be overall similar to that of modern orangutans, but with foraging at different levels in the canopy.[36]
A study on the locomotor behaviour of Sahelanthropus tchadensis, based on data from a femur and two ulnae from the Miocene of the Toros-Ménalla fossiliferous area (Chad), is published by Daver et al. (2022), who interpret the morphology of the femur as likely indicative of habitual bipedality, and the morphology of the ulnae as preserving evidence of substantial arboreal behaviour.[37]
Atypical tooth wear, similar to tooth wear previously reported in fossil hominins and regarded as possible evidence of early cultural habits, is reported in a sample of extant Japanese macaques from Koshima Island by Towle et al. (2022), who interpret the atypical wear patterns as likely caused by accidental ingestion of sand and oral processing of marine mollusks, and evaluate the implications of this finding for interpretations of similar wear in fossil hominins.[38]
A review aiming to determine the value of extant primates as models for reconstructions of fossil hominin stone tool culture is published by Bandini, Harrison & Motes-Rodrigo (2022).[39]
General paleoanthropology
Monson et al. (2022) present evidence indicative of an increase in prenatal growth rates of hominids over the last 6 million years, with significant increases aligning with major evolutionary changes (adaptation to bipedality, increase of brain size associated with the evolution of genus Homo, the evolution of Homo erectus), and with prenatal growth rates more similar to humans than to other extant apes evolving in members of the genus Homo ~0.25–0.75 million years ago.[40]
A study on the evolution of modern human brain size during the Pliocene and Pleistocene, combining fourteen previous studies that document the evolution of brain size in gracile hominins in a consensus time series, is published by Gingerich (2022) who identifies four successive phases of evolutionary stasis and change.[41]
Revision of the age of major South African hominin sites, based on faunal correlations of Old World monkeys from African Plio-Pleistocene sites, is published by Frost et al. (2022), who interpret their findings as indicating that there are no hominin sites in South Africa significantly older than ~2.8 million years.[42]
Pickford et al. (2022) describe new fossil material of Orrorin praegens and Praeanthropus afarensis from the Pliocene Mabaget Formation (Kenya), and study the paleoenvironment of both species, reporting that O. praegens was found alongside a forest-adapted fauna, while geologically younger P. afarensis was found alongside an open woodland to savannah-like fauna.[43]
A study on the likely diet of members of the genus Paranthropus is published by Sponheimer et al. (2022).[44]
A study aiming to determine whether it is possible to identify distinct groups of Paranthropus robustus consistently with their provenience from the sites of Kromdraai, Drimolen and Swartkrans (South Africa), based on data from new fossil material of P. robustus from Kromdraai and Drimolen, is published by Braga et al. (2022).[45]
A study on the origins of the complex birth pattern characteristic of modern humans, based on data from simulations of the birth process in australopithecines, is published by Frémondière et al. (2022).[46]
A study on the mechanical strength of the feeding apparatus of australopiths is published by Ledogar et al. (2022), who interpret their findings as indicating that the strength of gracile australopith crania overlaps substantially with that of chimpanzee crania, with some gracile australopith crania as strong as that of a robust australopith, and hypothesize that the evolution of cranial traits of australopiths that increased the efficiency of bite force production may have simultaneously weakened their face.[47]
A study on the habitat types at the Woranso-Mille site (Ethiopia) during the Pliocene, and on factors which allowed the coexistence of more than one species of Australopithecus at the site, is published by Denise Su & Yohannes Haile-Selassie (2022).[48]
A study on the morphology and affinities of two 3.7-million-year-old hominin mandibles from Woranso-Mille is published by Yohannes Haile-Selassie et al. (2022), who report that the studied mandibles show morphological similarities with both Australopithecus anamensis and Australopithecus afarensis, and interpret their age and morphology as lending support to the hypothesized ancestor–descendant relationship between the two species.[49]
A study comparing the distal portion of the fibula of Australopithecus afarensis and extant humans and apes, aiming to determine the correlates of distal fibular shape with arboreal behavior in extant hominids and fossil hominins is published by Marchi et al. (2022).[50]
A study on the age of the Australopithecus fossils from the richest hominin-bearing deposit (Member 4) at Sterkfontein (South Africa) is published by Granger et al. (2022), who interpret their findings as placing nearly the entire Australopithecus assemblage at Sterkfontein in the mid-Pliocene, contemporaneous with Australopithecus afarensis in East Africa.[51]
A calcaneus of an early hominin, with a morphology that is intermediate between humans and nonhuman apes, is described from the Kromdraai fossil site (South Africa) by Harper et al. (2022).[52]
Zanolli et al. (2022) revise the dental fossil record of hominins the southern African sites of Sterkfontein, Swartkrans, Drimolen and Kromdraai B, and interpret their findings as indicative of a paucity of Homo remains and of increased levels of dental variation in australopith taxa, with some specimens of unclear generic status approximating the Homo condition in terms of overall enamel–dentine junction shape but retaining Australopithecus-like dental traits.[53]
A study on the impact of climate variability on the evolution of early African Homo, Eurasian Homo erectus, Homo heidelbergensis, Neanderthals and modern humans is published by Timmermann et al. (2022).[54]
A study on tooth marks on bones recovered from the Early Pleistocene David's Site (Bed I, Olduvai Gorge, Tanzania) is published by Cobo-Sánchez et al. (2022), who interpret their findings as indicating that early humans from David's Site had mostly primary access to fleshed carcasses prior to any other carnivore, with hyenas intervening after the deposition of carcass remains.[55]
A vertebra of a juvenile hominin is described from the early Pleistocene site of 'Ubeidiya (Israel) by Barash et al. (2022), who estimate the adult size of this hominin as comparable to early Pleistocene large-bodied hominins from Africa, and interpret this finding as the earliest large-bodied hominin remains from the Levantine corridor reported to date, distinct from other early Eurasian hominins, sharing affinities to East African large-bodied hominins, and supporting the occurrence of several Pleistocene dispersals of hominins out of Africa.[56]
A study on the 2.6 to 1.2 million years old zooarchaeological record of eastern Africa, aiming to determine whether the zooarchaeological record preserves sustained increase in the amount of evidence for hominin carnivory after the appearance of Homo erectus, is published by Barr et al. (2022).[57]
A study on the lesions of Dmanisi skull D2280 is published by Margvelashvili et al. (2022), who interpret the studied pathologies as evidence of blunt force trauma possibly caused by interpersonal violence, as well as evidence of treponemal disease.[58]
A study on fish remains from the early Middle Pleistocene (~780,000-years-old) site of Gesher Benot Ya'aqov (Israel) is published by Zohar et al. (2022), who interpret their findings as indicating that hominins from this site cooked fish before consumption, representing the earliest evidence of cooking by hominins reported to date.[59]
Evidence from the Zhoukoudian Locality 1 interpreted as indicative of controlled use of fire by Peking Man is presented by Huang, Li & Gao (2022).[60]
Description of the cochlear morphology of two individuals of Homo erectus from the Indonesian site Sangiran (Sangiran 2 and 4), comparing them with a sample australopiths and Middle to Late Pleistocene and extant humans, is published by Urciuoli et al. (2022).[61]
A study on the dispersal of Homo erectus in Southeast Asia is published by Husson et al. (2022), who determine H. erectus from the Sangiran site to be approximately 1.8-million-years-old, argue that the appearance of H. erectus in Java marks the onset of continental conditions there rather than the timing of their migration across Southeast Asia, and consider early H. erectus peopling Sundaland to be contemporary with their Chinese and Georgian counterparts.[62]
A study on the morphological variability among Middle Pleistocene Chinese hominins, aiming to determine the evolutionary processes that shaped hominin variation in eastern Eurasia during the Middle Pleistocene, is published by Liu et al. (2022).[63]
A study on the external and internal tooth structure in Homo luzonensis, and on its implications for the knowledge of the affinities of this species, is published by Zanolli et al. (2022).[64]
The first reconstruction of a fairly complete hominin posterior cranium from the late Middle Pleistocene Xujiayao site (China), and a study on the endocranial capacity of this cranium, is published by Wu et al. (2022), who interpret this specimen as the earliest evidence of a brain size that falls in the upper range of Neanderthals and modern Homo sapiens, and evaluate its implications for the knowledge of the evolution of the hominin brain size.[65]
A study on the Late Pleistocene human population dynamics, aiming to determine how the process of the replacement of Eurasian archaic humans by anatomically modern human populations dispersing from Africa unfolded, is published by Vahdati et al. (2022).[66]
A study on the development of teeth in Pleistocene hominins from the Gran Dolina and the Sima de los Huesos sites of the Sierra de Atapuerca (Spain) is published by Modesto-Mata et al. (2022).[67]
A study on the taphonomic features of the hominin skull remains from the Sima de los Huesos sample, aiming to create a catalog of modifications to crania and mandibles (including antemortem, perimortem and postmortem skeletal disturbances) within this sample, is published by Sala et al. (2022).[68]
A study aiming to determine the degree to which cranial variation seen in the fossil record of late Pleistocene hominins from Western Eurasia corresponds with the genetic data indicative of hybridization between distinct hominin lineages is published by Harvati & Ackermann (2022), who identify individual fossils as possibly admixed, and suggest that different cranial regions may preserve hybridization signals differentially.[69]
A hominin molar which might belong to a Denisovan is described from the Tam Ngu Hao 2 limestone cave in the Annamite Mountains (Laos) by Demeter et al. (2022).[70]
A study on the impact of the sexual dimorphism, ancestry and lifestyle effects on lordosis in a large sample of modern humans and Neanderthals is published by Williams et al. (2022), who interpret their findings as casting doubt on proposed locomotor and postural differences between modern humans and Neanderthals based on inferred lumbar lordosis (or lack thereof), and indicating that future studies should not compare remains of fossil hominins and preindustrial modern humans to samples from sedentary, industrialized populations, but rather to the remains of individuals that engaged in more active, traditional lifestyles.[71]
Putative Neanderthal footprints from Matalascañas (Province of Huelva, Spain), initially considered to be approximately 106,000 years old,[72] are reinterpreted as Middle Pleistocene in age (dating to the MIS 9-MIS 8 transition) by Mayoral et al. (2022).[73]
Four teeth of Neanderthals, belonging to at least two individuals (an adult and a child) and representing the earliest evidence of Neanderthal spread into the Eastern Mediterranean Area reported to date, are described from the Chibanian of the Velika Balanica cave (Serbia) by Roksandic et al. (2022).[74]
Andreeva et al. (2022) present mitochondrial DNA and genome sequencing results from the study of a tooth of a Neanderthal woman from the Mezmaiskaya cave (Adygea, Russia), and interpret their findings as indicating that the studied individual was more closely related to Neanderthals from the Mezmaiskaya cave and from the Stajnia cave (Poland) associated with the Eastern Micoquien context than with Western European Neanderthals associated with other Middle Paleolithic cultural facies, and that the studied individual was the last member of the early Neanderthal branches which were replaced by genetically distant late Neanderthal populations 60–40 thousand years ago.[75]
Skov et al. (2022) present genetic data for 13 Neanderthals from two Middle Palaeolithic sites (Chagyrskaya Cave and Okladnikov Cave) in the Altai Mountains of southern Siberia (Russia), and interpret their findings as indicating that some Chagyrskaya individuals were closely related (including a father–daughter pair) and that the Chagyrskaya Neanderthals were part of a small community.[76]
Evidence from zinc isotope analysis of tooth enamel of a Neanderthal individual from the cave site Cueva de los Moros 1 (Gabasa, Pyrenees, Spain), interpreted as supporting the interpretation of Neanderthals as carnivores, is presented by Jaouen et al. (2022).[77]
A study on the impact of climatic effects on ecosystem productivity during the Middle to Upper Palaeolithic transition in the Iberian Peninsula is published by Vidal-Cordasco et al. (2022), who interpret their findings as providing evidence of the impact of Marine Isotope Stage 3 stadial–interstadial cycles on ecosystem productivity, as well as indicative of coincidence of changes of net primary productivity with the spatial and temporal replacement patterns of Neanderthals by modern humans in Iberia, and indicating that Neanderthals survived longer in the areas where changes of ecosystem productivity were small.[78]
A study on the impact of the single amino acid change in TKTL1 differentiating modern humans from extinct archaic humans and other primates on neocortex development is published by Pinson et al. (2022), who consider it likely that this change was responsible for greater neocortical neurogenesis in modern humans than in Neanderthals.[79]
Foerster et al. (2022) present a 620,000-year environmental record from Chew Bahir (Ethiopia), providing evidence of three distinct phases of climate variability in eastern Africa which coincided with shifts in hominin evolution and dispersal.[80]
A study on the age of the Omo remains is published by Vidal et al. (2022).[81]
A study on the anatomy of the brain, braincase and bony labyrinth of the Border Cave 1 cranium is published by Beaudet et al. (2022).[82]
A study on the endocranial development in early Homo sapiens, based on data from fossil material of child and adult individuals from Herto (Ethiopia), Skhul and Qafzeh (Israel), is published by Zollikofer et al. (2022), who interpret their findings as indicating that brain growth dynamics of Pleistocene H. sapiens might have had more in common with Neanderthals than with modern H. sapiens, as well as indicating that the brains of fossil and modern H. sapiens were probably structurally similar, and that the differences of shape of braincases between fossil and modern adult individuals of H. sapiens were not caused by different brain anatomy, and were more likely caused by factors such as effects of shift to softer diets and/or reduced metabolic demands on craniofacial size and shape.[83]
Reconstruction of the eastern African environments inhabited by early human populations during the Middle Stone Age, evaluating the role of shifting environmental conditions on the distribution and variability of dated Middle Stone Age assemblages, is published by Timbrell et al. (2022).[84]
Evidence of four periods of human occupation between c. 210,000 and 120,000 years ago is reported from Jebel Faya (United Arab Emirates) by Bretzke et al. (2022), who evaluate the implications of these findings for the knowledge of the impact of arid conditions on Paleolithic human populations in Arabia.[85]
A study on the range of hunter-gatherer presence across Central Africa over the past 120,000 years, inferred from paleoclimatic reconstructions and archaeological sites, is published by Padilla-Iglesias et al. (2022).[86]
Possible evidence of use of fruits and wood from olive trees by the early Homo sapiens around 100,000 years ago is reported from Morocco by Marquer et al. (2022).[87]
Evidence of the production of ostrich eggshell artefacts, long-distance transportation of marine molluscs and systematic use of heat shatter in stone tool production approximately 92–80 thousand years before the present is reported from the Varsche Rivier 003 site (South Africa) by Mackay et al. (2022), who evaluate the implications of these findings for the knowledge of the processes of innovation and cultural transmission in southern Africa during the Middle Stone Age.[88]
Hominin fossils interpreted as evidence of the earliest known arrival of modern humans in Europe (between 56,800 and 51,700 calibrated years before the present) are described from the Grotte Mandrin (France) by Slimak et al. (2022).[89]
A study on the microstructure and likely origin of the material used to produce the Venus of Willendorf is published by Weber et al. (2022).[90]
The earliest ochre-processing feature in Eastern Asia reported to date, a bone tool and a distinctive miniaturized lithic assemblage with bladelet-like tools bearing traces of hafting, representing a cultural assembly of traits that is unique for Eastern Asia, is described from the approximately 40,000-year-old Xiamabei site (China) by Wang et al. (2022).[91]
Maloney et al. (2022) report the discovery of remains of a young individual from the Liang Tebo cave (East Kalimantan, Indonesia) living at least 31,000 years ago, interpreted as surviving the surgical amputation of part of their leg and living for another 6–9 years.[92]
Zhang et al. (2022) sequence the genome of a Late Pleistocene hominin from Red Deer Cave (Yunnan, China), and interpret hominins from Red Deer Cave as members of an early diversified lineage of anatomically modern humans in East Asia with a link to the ancestry that contributed to First Americans.[93]
A study on patterns in the stratigraphic integrity of early North American archeological sites, and on their implications for the knowledge of the timing of human arrival to North America, is published by Surovell et al. (2022).[94]
Rowe et al. (2022) study the bone assemblage from the Hartley mammoth locality (Colorado, United States) dating to 38,900–36,250 calibrated years before the present, and interpret this assemblage as a butchery site.[95]
Davis et al. (2022) report the discovery of an assemblage of stemmed projectile points from Cooper's Ferry site (Idaho, United States), dating to ~16,000 years ago and predating stemmed points found previously at the site (as well as Clovis fluted points), and note the similarity of the studied projectile points with projectiles from late Upper Paleolithic sites in Hokkaido (Japan).[96]
A study on the authenticity of the potential Ice Age rock art of Serranía de la Lindosa (Colombia) is published by Iriarte et al. (2022), who argue that there are sound grounds to consider the studied paintings as ancient and likely representing now-extinct Ice Age megafauna.[97]
Lipson et al. (2022) present new genome-wide ancient DNA data from three Late Pleistocene and three early to middle Holocene individuals associated with Late Stone Age technologies from Kisese II and Mlambalasi Rockshelters in Tanzania, Fingira and Hora 1 Rockshelters in Malawi and Kalemba Rockshelter in Zambia, and study changes in regional- and continental-scale population structures in sub-Saharan Africa during the Late Pleistocene and early Holocene.[98]
Computational biologists report the largest detailed human genetic genealogy, unifying human genomes from many sources for insights about human history, ancestry and evolution. It demonstrates a novel computational method for estimating how human DNA is related, in specific as a series of 13 million linked trees along the genome, a tree-sequence, which has also been called "the largest human family tree".[99][100][101]
A study on the fossil record of rodents from the early Eocene to the early Oligocene in Central, East and South Asia is published by Li et al. (2022), who interpret the studied fossil material as indicative of faunal turnover of rodents in East Asia which was affected by paleoclimatic changes, as well as suggestive of faunal exchanges between South Asia and Africa during the Sharamurunian and Ergilian.[125]
A well-preserved skull of Miopetaurista crusafonti, with the cranial morphology almost identical to extant large flying squirrels but with the encephalization quotient lower than observed in extant flying squirrels, is described from the Miocene of Bavaria (Germany) by Grau-Camats et al. (2022).[126]
New estimates of body mass of extinct giant rodents, including estimates for Josephoartigasia monesi and Phoberomys pattersoni which are much lower than in previous studies, are presented by Engelman (2022).[127]
The first description of the postcranial remains of Bathyergoides neotertiarius from the Miocene of Namibia is published by Bento Da Costa & Senut (2022), who evaluate the implications of the studied fossils for the knowledge of the behaviour of this rodent.[130]
Description of new fossil material and a study on the taxonomic diversity of dinomyids from the late Miocene-early Pliocene Cerro Azul Formation (Argentina) is published by Sostillo et al. (2022).[131]
A study on the validity of the genus Gyriabrus, and a revision of the species assigned to this genus, is published by Rasia (2022).[132]
Revision of the fossil material assigned to members of the genus Cephalomyopsis, as well as a taxonomic revision of this genus, is published by Busker (2022).[133]
Description of cavioid, chinchilloid and erethizontoid rodents from the Miocene Pampa Castillo fauna (Chile) and a study on their biochronologic and paleoenvironmental implications is published by McGrath et al. (2022).[134]
A study on the enamel microstructure of lower incisors of eomyids is published by Kalthoff et al. (2022), who interpret the incisor enamel microstructure of these rodents as supporting their phylogenetic placement outside Geomorpha.[135]
Lechner & Böhme (2022) describe new fossil material of Steneofiber depereti from the Miocene Hammerschmiede clay pit (Germany), who interpret the studied material as representing a morphologically intermediate stage between S. depereti and Chalicomys jaegeri, and interpret the tooth wear stages of the studied premolars from Hammerschmiede as indicative of similarities in demography and ecology, including similar habitat requirements, between S. depereti and extant beavers.[136]
Mörs et al. (2022) describe fossil material of Euroxenomys minutus from the Miocene of the Tagay locality (Olkhon Island, Irkutsk Oblast, Russia), representing the first known record of this species from Asia and the northernmost record of Eurasian Miocene beavers reported to date.[137]
A study on the phylogenetic relationships of Paronychomys and Basirepomys is published by Kelly & Martin (2022).[138]
A study on the anatomy of the skull of Hispanomys moralesi is published by Carro-Rodríguez et al. (2022).[139]
Description of the anatomy of the holotype specimen of the Tenerife giant rat is published by Casanovas-Vilar & Luján (2022).[140]
A treeshrew. The type species is S. ramnagarensis.
Other euarchontoglire research
A study on the cranial traits of extant and extinct lagomorphs is published by Wood-Bailey, Cox & Sharp (2022), who argue that the last common ancestor of living leporids likely had an intracranial joint and some form of facial tilt, while these features were likely absent in the last common ancestor of all lagomorphs.[144]
A study on the evolution of the lower fourth premolars and lower second molars in microsyopineplesiadapiforms from the early Eocene of the Bighorn Basin (Wyoming, United States) is published by Selig & Silcox (2022), who report that the studied premorals became increasingly more similar to molars through time, but do not observe any associated change of the molars.[145]
A baleen whale of uncertain affinities. Genus includes new species J. pacificus. Published online in 2022, but the issue date is listed as January 2023.[153]
A member of the family Giraffidae, possibly a relative of the okapi. The type species is U. pilbeami. The generic name is shared with the hymenopteran genus Ua Girault (1929).[165]
Artiodactyl research
Revision of the systematics of the camelids belonging to the genera Gentilicamelus and Nothokemas is published by Marriott, Prothero & Beatty (2022).[166]
A study on the diet and habitat of specimens of Camelops hesternus, Hemiauchenia macrocephala and H. gracilis from two Pleistocene sites in west-central Mexico is published by Marín-Leyva et al. (2022).[167]
A study on the diet of Hemiauchenia paradoxa, guanaco and vicuña from the Pleistocene of southern Brazil is published by Carrasco et al. (2022).[168]
Description of camel remains from the Tsagaan Agui Cave and the Tugrug Shireet open-air site (Mongolia), including fossil material of Camelus knoblochi, is published by Klementiev et al. (2022), who interpret their findings as evidence of survival of C. knoblochi in the Gobi Desert until the Last Glacial Maximum.[169]
New fossil material of Miocene suids is described from the Siwaliks of Pakistan by Raza et al. (2022), providing new information on the diversification and evolution of suids from this area.[170]
A study on the relationship between functional occlusal traits, dental wear and increase in crown length in the third molars of Pliocene and Pleistocene African suids, aiming to determine the evolutionary trends of the functional occlusal traits in these suids in the context of their dietary ecology and potential selective pressures, is published by Yang et al. (2022).[171]
A study on the evolutionary history of ruminants, as inferred from their inner ear morphology, is published by Mennecart et al. (2022).[172]
Redescription of the first complete skull of Dorcatherium naui from the Miocene locality of Eppelsheim, comparing it with two new skulls from the late Miocene hominid locality Hammerschmiede (Germany), is published by Hartung & Böhme (2022), who interpret the studied fossils as indicative of significant sexual dimorphism on cranial features in D. naui.[173]
Review of the large-sized members of the genus Palaeotragus from the Vallesian of northern Greece, and a systematic revision of large-sized Late Miocene Eurasian members of the genus Palaeotragus, is published by Laskos & Kostopoulos (2022).[174]
Ríos et al. (2022) describe a new partial skull of Decennatherium rex from the Miocene site Batallones-10 (Madrid Basin, Spain), providing new information on the variability of the cranial appendages in this species.[175]
New fossil material of a member of the genus Acteocemas belonging or related to the species A. infans, providing evidence that protoantlers of Acteocemas were able to be cast and re-grown (but also indicating that the lifespan of these protoantlers could be longer than that of antlers of modern deer, preventing them from assuming a similar cycle), is described from the Miocene site of Sant Andreu de la Barca (Spain) by Azanza et al. (2022).[176]
A study on the biogeographic history of deer belonging to the subfamilies Cervinae and Capreolinae is published by Croitor (2022).[177]
New antler remains are described from the Upper Siwaliks in Pakistan by Croitor et al. (2022), who interpret the antler material as indicative of the presence of six cervid forms in the Upper Siwaliks, including the earliest paleontological record of the lineage of Panolia reported to date.[178]
A study on the histology of ribs of Candiacervus, and on its implications for the knowledge of the longevity of this deer, is published by Miszkiewicz & Van Der Geer (2022).[179]
A study aiming to reconstruct the body mass of the individual species belonging to the genus Candiacervus is published by Besiou et al. (2022).[180]
A study on the mechanical performances of the mandible of Sinomegaceros pachyosteus is published by Fu et al. (2022), who interpret this cervid as a likely grazer with a diet similar to those of horses or buffaloes.[181]
Evidence from the strontium isotope analysis of the tooth enamel of the Irish elk, interpreted as consistent with the presence of seasonal mobility in the specimen from Ballybetagh (Dublin, Republic of Ireland), is presented by Douw et al. (2022), who argue that the mobility of the Ballybetagh specimen might have been a response to the climatic deterioration of the Younger Dryas.[182]
A study on the evolutionary history of the Siberian roe deer, as indicated by data from four ancient mitochondrial genomes generated from roe deer fossil specimens from northeastern China, is published by Deng et al. (2022).[183]
A study on the evolutionary history of red deer in northern China, based on data from mitochondrial genomes of extant and late Pleistocene deer, is published by Xiao et al. (2022).[184]
Exceptionally preserved fossil material of "Pseudodama" nestii, providing new information on the anatomy and affinities of this cervid, is described from the Early Pleistocene locality of Pantalla (Italy) by Cherin et al. (2022), who report evidence of anomalies in two male crania from the sample from Pantalla interpreted as likely result of different traumas during the life of these individuals, and interpret the age and sex structure of the population from this site as likely indicating that the Pantalla deer died during or immediately after the rutting season.[185]
Description of new fossil material of Qurliqnoria cheni from the northern Tibetan Plateau, providing new information on the anatomy of this bovid, is published by Tseng et al. (2022), who evaluate the implications of this finding for the knowledge of the evolution of the Tibetan antelope.[186]
Redescription of Qurliqnoria hundesiensis, based on reexamination of the holotype and data from new fossil material, is published by Wang, Li & Tseng (2022), who consider it unlikely that the Pliocene Qurliqnoria was a direct ancestor of the Tibetan antelope.[187]
Vislobokova (2022) describes caprine fossil material from the Lower Pleistocene deposits of the Taurida Cave (Crimea), interpreted as fossil material of Soergelia minor and representing the first evidence of the presence of the genus Soergelia in Eastern Europe.[188]
Neto de Carvalho et al. (2022) describe large artiodactyl tracks from early Late Pleistocene sites in southwestern Spain, name a new ichnotaxon Bovinichnus uripeda, and interpret the studied tracks as produced by the aurochs, providing evidence of recurrent use of the coastal habitat by these bovids.[189]
The first complete skull of Bothriogenys fraasi from the Oligocene deposits of the Fayum Depression (Egypt) is described by Sileem & Abu El-Kheir (2022).[190]
A relatively complete cranium and mandible of Brachyodus onoideus, providing new information on the anatomy of this anthracothere, is described by Pickford & MacLaren (2022).[191]
Review of the systematics of the American anthracotheres is published by Prothero, Marriott & Welsh (2022).[192]
A study on the dental microwear and likely diet of Anthracotherium and Entelodon is published by Rivals et al. (2022), who interpret their findings as indicating that Entelodon had an omnivorous diet similar to that of the extant wild boar, while Anthracotherium was an opportunistic herbivore, with different individuals recovered as browsers, frugivores and grazers.[193]
A study comparing changes in the skull anatomy during the ontogeny in Hippopotamus gorgops and extant hippopotamus, based on data from the skull of a juvenile specimen of H. gorgops from the Early Pleistocene site of Buia (Eritrea), is published by Martínez-Navarro et al. (2022).[194]
A study on the functional morphology of the hindlimbs of the Cyprus dwarf hippopotamus is published by Georgitsis et al. (2022), who interpret their findings as indicative of specialized locomotion of this hippopotamus, resulting from modifications to its limbs influenced by the mountainous island environment and the body size reduction.[195]
A study aiming to reconstruct the drivers of shape variation, morphological diversity and evolutionary rate in the cetacean cranium throughout their evolutionary history is published by Coombs et al. (2022).[196]
A study on palates of living and fossil cetaceans and living terrestrial artiodactyls is published by Peredo, Pyenson & Uhem (2022), who interpret their findings as indicating that the presence of lateral palatal foramina alone cannot be used to infer the presence of baleen in mysticetes;[197] their conclusions are subsequently contested by Ekdale et al. (2024).[198]
A study aiming to quantify light-activation metrics in rhodopsin pigments of cetaceans throughout their evolutionary history is published by Dungan & Chang (2022), who interpret their findings as indicating that some of the first fully aquatic cetaceans could dive into the mesopelagic zone, and that this behavior arose before the divergence of toothed and baleen whales.[199]
A study on the evolution of the skull in mosasaurids and early cetaceans during the first 20 million years of their evolutionary histories, testing for possible instances of ecomorphologicalconvergence in the skulls and teeth between the groups, is published by Bennion et al. (2022).[200]
Chakraborty & Sengupta (2022) describe a nearly complete skull of Remingtonocetus harudiensis from the Eocene Harudi Formation (India), representing the largest skull of Remingtonocetus discovered to date, and providing new information on the skull morphology of this cetacean.[201]
Fossil material of a basilosaurid cetacean is described from the Eocene Beloglinskaya Formation (Krasnodar Krai, Russia) by Tarasenko (2022), representing the first record of a basilosaurid in the studied region.[202]
Redescription and a study on the phylogenetic affinities of Kekenodon onamata is published by Corrie & Fordyce (2022).[203]
A diverse assemblage of fossil cetaceans, preserving fossil of taxa which are characteristic of or unique to Oligocene deposits as well as taxa more typical of early or middle Miocene deposits, is described from the Oligocene-Miocene Belgrade Formation (North Carolina, United States) by Boessenecker (2022).[204]
A specimen of Xiphiacetus cristatus is described from the Miocene of Austria by Lambert et al. (2022), representing the first record of this species outside the North Atlantic proper, and the first unequivocal record of eurhinodelphinids from the Paratethys; Lambert et al. also study the anatomy of the bony labyrinth of X. cristatus, and interpret it as indicating that eurhinodelphinids likely employed narrow-band high-frequency echolocation.[205]
Description of a new specimen of an archaic dolphin (belonging or related to the species Prosqualodon davidis) from the Miocene Gee Greensand (New Zealand), and a study on the implications of this specimen for the knowledge of the evolution of the brain of toothed whales, is published by Tanaka, Ortega & Fordyce (2022).[206]
A study on the anatomy and phylogenetic affinities of Notocetus vanbenedeni is published by Viglino et al. (2022).[207]
Reappraisal of the systematics, phylogeny and feeding behavior of Orcinus citoniensis is published by Citron et al. (2022), who confirm the assignment of this species to the genus Orcinus.[208]
A study on tooth marks on physeteroid bones from the Miocene Pisco Formation (Peru) is published by Benites-Palomino et al. (2022), who interpret their findings as indicating that Miocene sharks were actively targeting the foreheads of physeteroids to feed on their lipid-rich nasal complexes, with the shape and distribution of the bite marks suggesting a series of consecutive scavenging events by members of different shark species.[209]
Revision of the Miocene cetacean assemblage from the Swiss Upper Marine Molasse is published by Aguirre-Fernández, Jost & Hilfiker (2022), who report hitherto unknown kentriodontid and squalodelphinid fossils from this assemblage.[210]
The second specimen of Casatia thermophila, providing new information on the anatomy of this monodontid, is described from the Pliocene locality of Arcille (Italy) by Merella et al. (2022).[211]
Review of the fundamental morphological transformations that occurred at the origin stage of the baleen whales is published by Bisconti & Carnevale (2022).[212]
A study on the evolution of the feeding strategies of members of the baleen whale clade Chaeomysticeti, as inferred from rostral morphologies of extant and fossil taxa, is published by Tanaka (2022), who argues that the feeding strategy of the earliest chaeomysticetes could be more similar to lunge feeding than to skim feeding, and that balaenids and the pygmy right whale shifted to skim feeding independently.[213]
Bisconti et al. (2022) describe a periotic of a basalrorqual from the Miocene (Tortonian) of Italy, argued to belong to an individual was longer than all the other contemporaneous rorquals, and interpreted as indicative of the early evolution of large body size in this family.[214]
A study on the evolution of feeding structures of baleen whales across the teeth-to-baleen transition is published by Gatesy et al. (2022), who name a new clade Kinetomenta containing the groups Aetiocetidae and Chaeomysticeti.[215]
A study on the fossils of carnivorans from the Miocene (Messinian) of Cava Monticino (Italy), including fossil material of Eucyon monticinensis representing one of the oldest, certain records of the genus Eucyon in the Old World and fossil material of Mellivora benfieldi representing the northernmost record of the species and the only certain record of the genus Mellivora outside of Africa, is published by Bartolini-Lucenti, Madurell-Malapeira & Rook (2022).[238]
Revision of the carnivoran fauna from Libakos in the Pliocene-Pleistocene Grevena–Neapolis Basin (Greece), including the first record of the mustelid Pannonictis nestii from Greece, and a study on the age of this fauna is published by Koufos & Tamvakis (2022).[239]
Descriptions of fossil material of carnivorans from the Early Pleistocene site of Palan-Tyukan (Azerbaijan), including, among others, some of the latest records of the raccoon dog Nyctereutes megamastoides and the badger Meles thorali, the first record of the otter Lutraeximia cf. umbra from a Transcaucasian Early Pleistocene site, two species of sabertoothed cats (Megantereon cf. cultridens and Homotherium cf. crenatidens), and fossil material of Panthera cf. gombaszoegensis representing one of the earliest records of the genus Panthera in all of Eurasia, are published by Sablin & Iltsevich (2022)[240] and Iltsevich & Sablin (2022).[241]
A study on the carnivoran activity in the Pleistocene site of Barranco León (Spain), focusing on tooth pits found on bones, is published by Courtenay et al. (2022), who report that, in addition to Homotherium latidens and Pachycrocuta brevirostris, other carnivorans were also active agents in the formation of the site.[242]
A study on the community structure and dynamics of the guilds of European large carnivorans throughout the Pleistocene is published by Konidaris (2022).[243]
A study on the morphology of the ossicles of carnivorans from the La Brea Tar Pits is published by Dickinson et al. (2022), who interpret their findings as indicating that large felids (Smilodon fatalis, the American lion) and canids (the dire wolf) from the La Brea Tar Pits likely had similar hearing abilities as extant large felids and canids, respectively, while the ossicles of Arctodus simus were substantially different from those of modern bears, potentially indicating differences in their hearing ranges.[244]
Fossil material of Amphicyon giganteus is described from a travertine above a layer dated to MN7/8 in the Karacalar Silver Travertine Quarry (Gebeceler Formation, Turkey) by van der Hoek et al. (2022), representing the youngest record of this species reported to date.[245]
Description of new fossil material of members of the genus Nyctereutes from the Dafnero-3 site (Greece) and previously unpublished specimens from Varshets (Bulgaria), providing the first known evidence of co-existence of Nyctereutes tingi and Nyctereutes megamastoides in Europe, and extending the record of N. tingi in southeastern Europe until the beginning of the middle Villafranchian, is published by Tamvakis et al. (2022).[247]
Description of new fossil material of Xenocyon lycaonoides from the Jinyuan Cave (China), confirming the presence of this species in eastern Asia during the early Middle Pleistocene, and a study on the affinities of this species is published by Jiangzuo et al. (2022).[248]
Description of a wolf skull from Ponte Galeria (Rome, Italy), representing the first reliable occurrence of this taxon in Europe and the largest skull of a Middle Pleistocene canid from Europe known to date, is published by Iurino et al. (2022), who evaluate the implications of this specimen for the knowledge of the turnover between Canis mosbachensis and modern wolves.[250]
Diedrich (2022) describes new fossil material of wolves from the Pleistocene of Europe, including a skull from the Srbsko Sluj IV Cave in the Bat Cave system (Czech Republic), interpreted as representing a new early middle Pleistocene taxon that was ancestral to warm climate grey wolves as well as Tundra and Arctic wolves, and a mid-Pleistocene skull of Canis mosbachensis/Canis lupus mosbachensis from the Gernsheim site in the Upper Rhine River Valley (Germany).[251]
A study on the evolutionary history of grey wolves, based on data from 72 ancient wolf genomes from Europe, Siberia and North America spanning the last 100,000 years, is published by Bergström et al. (2022), who report that none of the analysed ancient wolf genomes is a direct match for the domestic dog ancestries found by the authors, that dogs are overall more closely related to ancient wolves from eastern Eurasia than to those from western Eurasia, but also that dogs in the Near East and Africa derive up to half of their ancestry from a distinct population related to modern southwest Eurasian wolves, which might be caused by admixture from local wolves or by an independent domestication process.[252]
A study on the evolutionary history of the Japanese wolf, based on ancient DNA data from remains of Pleistocene and Holocene specimens, is published by Segawa et al. (2022).[253]
A study on the functional morphology of the skull of the Pleistocene badger Meles dimitrius is published by Savvidou et al. (2022).[254]
Fossil material of a panda possibly belonging to the species Ailurarctos lufengensis, preserving the earliest enlarged radial sesamoid (panda's false thumb) reported to date, is described from the late Miocene Shuitangba site (Zhaotong Basin; Yunnan, China) by Wanget al. (2022).[255]
Hu et al. (2022) describe new fossil material of Ailuropoda melanoleuca baconi from Yanjinggou (China), representing the best-preserved skull material of this subspecies reported to date, and interpret this taxon as a valid subspecies of the giant panda and the senior synonym of Ailuropoda fovealis/Ailuropoda melanoleuca fovealis.[256]
Fossil material of Ursus etruscus, expanding knowledge of the morphological diversity and evolution of this species, is described from the Taurida cave (Crimea) by Gimranov et al. (2022).[257]
A study on the skeletal morphology, affinities and likely paleoecology of small-sized cave bears (originally assigned to the taxon Ursus savini) from the Imanay Cave (Russia) is published by Gimranov et al. (2022).[258]
A study on the microwear of the non-occlusal surface of incisors of the small cave bear and Ural cave bear from the Pleistocene of the Middle and South Urals, and on its implications for the knowledge of the trophic specialization of these cave bears, is published by Gimranov, Zykov & Kosintsev (2022).[259]
Review of the knowledge of the taxonomy and phylogeny, biology, distribution, occurrence and extinction times, and interaction with humans of large and small cave bears in the Urals is published by Gimranov & Kosintsev (2022).[260]
A study on the upper and lower canines of cave bears from Medvezhiya Cave (Komi Republic, Russia), Kizel Cave (Perm Krai, Russia), Shiriaevo 1 Cave (Samara Oblast, Russia), Akhshtyrskaya Cave (Krasnodar Krai, Russia) and Kudaro 3 Cave (South Ossetia), evaluating the implications of these teeth for the knowledge of the ecology of cave bears from these sites, is published by Prilepskaya, Bachura & Baryshnikov (2022).[261]
A study on the evolutionary history and phylogeography of ancient and modern brown bears, based on data from mitochondrial genomes of four ancient (~4.5–40 thousand years old) bears from South Siberia and modern bears from South Siberia and the Russian Far East, is published by Molodtseva et al. (2022).[262]
Review of the historical distribution of ancient polar bear remains across the Arctic is published by Crockford (2022).[263]
A study on the evolutionary history of brown and polar bears, incorporating data from the genome of a Pleistocene polar bear specimen from the Svalbard Archipelago (Norway), is published by Lan et al. (2022).[264]
Evidence from paleogenome from an approximately 100,000-year-old polar bear from Arctic Alaska (United States), indicative of massive prehistoric, and mainly unidirectional, gene flow from polar bears into brown bears which was not visible from genomic data derived from living polar bears, is presented by Wang et al. (2022).[265]
A study on the diets of Arctodus simus, brown bears and American black bears from the Late Pleistocene of the Vancouver Island (Canada) is published by Kubiak et al. (2022), who interpret their findings as indicative of niche differentiation between these species.[266]
A study on the anatomy of the hindlimbs and locomotor abilities of Amphicynodon leptorhynchus is published by Gardin et al. (2022), who interpret their findings as indicative of A. leptorhynchus being an agile climber.[267]
A study aiming to determine possible patterns of morphological convergence in cranial shape between Kolponomos newportensis and sabretoothed cats is published by Modafferi et al. (2022).[268]
Fossil remains of a monachine seal are reported from the late Miocene–Pliocene sediments of Guafo Island (Chile) by Valenzuela-Toro & Pyenson (2022), extending the geographic range of the fossil record of seals in Chile by 1000 km and representing the southernmost occurrence of a fossil seal from the South Pacific.[269]
New phocine fossil material is described from the Miocene locality of Eldari I (Georgia) by Vanishvili (2022), who assigns the species "Phoca" procaspica to the genus Praepusa.[270]
Fossil material of members of the genus Palaeogale is described from the Oligocene John Day Formation (Oregon, United States) by Famoso & Orcutt (2022), representing the first known records of this genus from the Pacific Northwest of North America.[271]
A well-preserved skull of Stenoplesictis minor is described from the Oligocene Quercy Phosphorites Formation (France) by de Bonis et al. (2022), who present a reconstruction of brain endocast, stapes and bony labyrinths of this specimen.[272]
A mandible of the largest specimen belonging to the genus Pachycrocuta reported to date, with dental morphology similar to that of Pachycrocuta from Zhoukoudian, is described from the Middle Pleistocene loess in Luoning (Henan, China) by Jiangzuo et al. (2022).[273]
Review of the fossil record and a revision of the species-level taxonomy of the genus Crocuta is published by Lewis & Werdelin (2022).[274]
A study on the diets and ecological niches of cave hyenas from the Prolom 2 grotto (Crimea) and the Bukhtarminskaya Cave (eastern Kazakhstan) as well as Crocuta ultima ussurica from the Geographical Society Cave (Primorsky Krai, Russia), based on data from tooth microwear, is published by Rivals et al. (2022), who interpret their findings as indicative of overall similarity with the known diets of extant spotted hyenas, as well as indicative of differences between the adults exhibiting a bone crushing behavior, and the juveniles that may have included a larger proportion of meat in their diet.[275]
A study on the biting biomechanics of sabretoothed cats and nimravids is published by Chatar, Fischer & Tseng (2022), who interpret their findings as confirming that carnivorans with long upper canines had a better stress repartition and were adapted to bite at larger angles, but otherwise indicating that the mandibular architectures of sabretooth and non-sabretooth forms reacted similarly in a mechanical efficiency and strain energy framework, and consider this to be suggestive of the presence of a continuous rather than bipolar spectrum of hunting methods in cat-like carnivorans.[276]
A study on the fossil record of members of the genus Amphimachairodus in the Chinese Baode strata is published by Wang, Carranza-Castañeda & Tseng (2022), who interpret this record as evidence of anagenetic evolution of increasing size, and study the evolution of members of the genus Amphimachairodus on the basis of all Holarctic records.[277]
The best-preserved material of Nimravides catocopis is described by Jiangzuo, Li & Deng (2022), who argue that Nimravides was a North American endemic sabertoothed cat rather than an immigrant from Eurasia, that the Old World lineage of sabertoothed cats experienced a higher evolutionary rate of cranial traits, giving rise to a more derived genus Amphimachairodus, and that Amphimachairodus did not immediately replace Nimravides through direct competition after migrating to North America.[278]
Revised reconstruction of the soft tissue and life appearance of Homotherium latidens is proposed by Antón et al. (2022).[279]
A complete cranium of Homotherium, with morphology indicative of assignment to Homotherium crenatidens teilhardipiveteaui, is described from the Shigou locality in the Nihewan Basin (China) by Jiangzuo, Zhao & Chen (2022), who interpret this finding as indicative of a largely continuous gene flow within Eurasia during the evolution of Homotherium, and indicating that the subspecies delimitation within the genus Homotherium should be more chronological than geographical.[280]
Partial mandible of a felid from Taiwan (probably from the Pleistocene Chi-Ting Formation), originally interpreted as a fossil of a member of the genus Felis, is reinterpreted as a fossil of a member of the genus Homotherium by Tsai & Tseng (2022).[281]
A study on feeding damage from Xenosmilus hodsonae in the large mammalian fauna from the Irvingtonian paleo-sinkhole Haile 21A (Florida, United States), and on its implications for the knowledge of the carcass processing capabilities of Xenosmilus and of the sabertooth paleoecology in the Pleistocene, is published by Domínguez-Rodrigo et al. (2022).[282]
Description of postcranial remains of a large-bodied sabretooth felid from the Lower Pliocene site of Langebaanweg "E" Quarry (South Africa), interpreted as more similar in morphology and proportions to Machairodus aphanistus and Lokotunjailurus emageritus than to Amphimachairodus giganteus, is published by Rabe, Chinsamy & Valenciano (2022), who report pathologies in the foot and lumbar spine of the studied specimen interpreted as consistent with severe osteoarthritis, limiting limb mobility of the studied specimen and possibly making its long-term survival dependent on it being a social animal.[283]
New fossil material of a lynx belonging or related to the species Lynx issiodorensis is described from the Villafranchian site of La Puebla de Valverde (Spain) by Cuccu et al. (2022), who evaluate the implications of this finding for the knowledge of the European lynx fossil record.[284]
Description of Late Pleistocene remains of the Iberian lynx from Avenc del Marge del Moro (Garraf Massif, Catalonia, Spain) is published by Tura-Poch et al. (2022).[285]
Description of the fossil material of Miracinonyx trumani from the Next Door Cave, Rampart Cave and Stanton's Cave (Grand Canyon; Arizona, United States), and a study on the implications of these fossils for the knowledge of the ecology of M. trumani, is published by Hodnett et al. (2022).[286]
Figueirido et al. (2022) describe the anatomy of the brain of Miracinonyx trumani, report that the brain of M. trumani differed from the brain of extant cheetah, and argue that Miracinonyx might not have been as specialized as the cheetah in deploying a fast-running pursuit.[287]
Large felid remains assigned to the species Panthera fossilis are described from the Grotte de la Carrière in Eastern Pyrenees by Prat-Vericat et al. (2022), who evaluate the implications of these fossils for the knowledge of the paleobiology of P. fossilis.[288]
Two specimens of Panthera spelaea are described from the Middle and Late Pleistocene Songhua River fossil assemblages (China) by Sherani, Perng & Sherani (2022), representing the first records of this species from the Mammuthus-Coelodonta fauna from the Pleistocene assemblages of the Songhua River reported to date.[289]
Review of the fossil record of lions and lion-like felids from Ukraine is published by Marciszak et al. (2022), who interpret the studied fossils as confirming the gradual decrease in body size of Panthera spelaea.[290]
A study on the size and shape differences among lions and Pleistocene lion-like felids from Europe, Asia and North America is published by Sabol, Tomašových & Gullár (2022), who interpret their findings as indicating that Panthera fossilis and P. spelaea potentially belong to one chronospecies, while Panthera atrox differs from other lion forms and could be considered a separate taxon.[291]
A study on the anatomy and affinities of Panthera gombaszoegensis, based on data from a new skull from Belgium, is published by Chatar, Michaud & Fischer (2022), who interpret this felid as more closely related to the tiger than to the jaguar.[292]
Possibly a member of the family Onychonycteridae. The type species is V. simmonsae.
Chiropteran research
A study on the Late Pleistocene to the Late Holocene bat fossil record along the stratigraphical sequence of El Mirador (Burgos, Spain), preserving bats belonging to the current Iberian fauna but in an association with no extant equivalent, and providing evidence of high biodiversity among the Iberian Early Holocene bat communities, is published by Galán García et al. (2022).[295]
A shrew belonging to the subfamily Heterosoricinae. The type species is "Domnina" compressa Galbreath (1953); genus also includes "Trimylus" dakotensis Repenning (1967) and "Pseudotrimylus" metaxy Korth (2020).
A hedgehog. Genus includes new species S. wendusui.
Eulipotyphlean research
Fossil material of the erinaceidGalerix rutlandae and a talpid belonging to the subfamily Uropsilinae, representing the first known record of these families from the Miocene Siwalik exposures of India and the first record of an uropsiline from the Indian subcontinent, is described by Parmar, Norboo & Magotra (2022).[303]
Fossil material of Van Sung's shrew and Chodsigoa hoffmanni is described from the Pleistocene of the Tham Hai cave and Lang Trang cave (Vietnam) by Lopatin (2022), representing the first fossil records of these species and the first fossil remains of members of the genus Chodsigoa found outside China.[304]
A hyracodontid; a replacement name for Ulania Qi (1990).
Perissodactyl research
Revision of odd-toed ungulate taxa from the Eocene Lijiang Formation (China) is published by Bai (2022), who interprets Rhodopagus yunnanensis as a junior synonym of the palaeothere species Lijiangia zhangi, considers Lunania to be a palaeothere rather than a chalicothere, interprets Lophiohippus as a likely junior synonym of Lunania, and transfers Teleolophus xiangshanensis to the deperetellid genus Diplolophodon.[307]
A study on the evolutionary variation of shape in hindlimb long bones of members of Rhinocerotoidea, and on its relationship with mass, size and gracility, is published by Mallet et al. (2022).[308]
A study on the paleoecology of late Miocene rhinocerotids the Balkan-Iranian zoogeographic province, as inferred from tooth microwear, is published by Hullot et al. (2022),[309]
A study on the body mass of giant rhinos and its evolution, based on data from a skeleton of a member of the paracerathere genus Dzungariotherium from the Qingshuiying Formation (China), is published by Li, Jiangzuo & Deng (2022).[310]
Redescription of the holotype and a study on the affinities of Parelasmotherium schansiense is published by Kampouridis et al. (2022).[311]
Description of new fossil material of Pliorhinus megarhinus from the early Pliocene of the Vera Basin (Spain) and a study on the biochronology and biogeography of the Pliocene rhinocerotines from Spain is published by Pandolfi et al. (2022).[312]
Description of the fossil material of a woolly rhinoceros from the Middle Pleistocene Les Rameaux locality (France) is published by Uzunidis, Antoine & Brugal (2022), who refer this material to the subspecies Coelodonta antiquitatis praecursor, interpret their findings as supporting the identification of C. a. praecursor and C. a. antiquitatis as distinct and valid subspecies, refute the taxonomic assignment of the rhinocerotid skull from Bad Frankenhausen skull to the species Coelodonta tologoijensis, an propose the first comprehensive phylogeny for Coelodonta.[313]
Review of the Eocene fossil record of equoids from the Iberian Peninsula is published by Badiola et al. (2022).[314]
New fossil material of palaeotheriids, including the first known records of upper teeth of Franzenium durense and first known mandible and lower teeth of Cantabrotherium, is described from the Eocene (Bartonian) of Mazaterón (Soria, Almazán Basin, Spain) by Perales-Gogenola et al. (2022).[315]
Description of new fossil material of members of the genus Hippotherium from the Miocene of the Linxia Basin (China), providing new information on the skeletal anatomy of members of this genus, and a study on their locomotor capabilities and adaptations to their environment is published by Sun et al. (2022).[316]
A study on the systematic affinities and dietary behavior of Turolian hipparions from the Cioburciu site (Balta Formation; Moldova) is published by Răţoi et al. (2022).[317]
A study on the relationship between size and diet in hipparionins from Vallesian and Turolian circum-Mediterranean localities is published by Orlandi-Oliveras et al. (2022).[318]
Review of the latest occurrences of the hipparions in the Old World, and a study on the taxonomy of the last hipparions is published by van der Made et al. (2022).[319]
Fossil material of six taxa of equids is described from the Xinyaozi Ravine (Shanxi, China) by Dong et al. (2022), who report the presence of two hipparionine taxa interpreted as Neogene relics in an Early Pleistocene fauna.[320]
Revision of the fossil material of equids from the Khaprovskii Faunal Complex (Russia) is published by Eisenmann (2022).[321]
A study on metapodials of Pleistocene horses from eastern Beringia is published by Landry, Roloson & Fraser (2022), who report evidence of plasticity in metapodial morphology, indicating that metapodials do not reliably differentiate distinct species of Beringian horses.[322]
Revision of the taxonomy of equids from the late Middle Pleistocene to Early Holocene of Apulia (Italy) and a study on their biochronology is published by Mecozzi & Strani (2022).[323]
Revision of the fossil material of Equus stehlini from the Villafranchian of the Upper Valdarno Basin (Tuscany, Italy) is published by Cirilli (2022).[324]
A study on the phylogenetic affinities of members of the genus Equus belonging to the subgenus Sussemionus, timing of their divergence relative to other non-caballine equids, and their demographic trajectory until their extinction, based on data from genomes and radiocarbon dating of specimens of Equus ovodovi from northern China, is published by Cai et al. (2022), who interpret their findings as indicating that the Sussemionus lineage survived until ~3,500 years ago.[325]
Systematic revision of tridactyl and monodactyl horses from the Pliocene and Pleistocene, and a study on their evolution and associated paleoenvironments, is published by Cirilli et al. (2022).[326]
A study on footprints from the Miocene Vinchina Formation (Argentina) attributed to early toxodontids and macraucheniids is published by Vera & Krapovickas (2022), who name new ichnotaxa Macrauchenichnus troyana and Llastaya yesera, and interpret the facies of the studied footprint assemblage as indicating that the trackmakers inhabited mixed grassland-woodland ecosystems developed under warm and seasonal climates.[330]
A study on the fossil record of litopterns from the Cerro Azul Formation in localities of La Pampa and Buenos Aires provinces (Argentina) is published by Schmidt et al. (2022), who report the presence of eight taxa of Macraucheniidae and six of Proterotheriidae, interpreted as showing affinity with the assemblage from the Late Miocene levels of the Lower Member of the Ituzaingó Formation in Entre Ríos Province of Argentina.[331]
A study on the anatomy and paleoecology of Notostylops murinus, based on data from a nearly complete specimen, is published by Vera, Medina-González & Moreno (2022), who interpret their findings as indicating that early-diverging notoungulates Notostylops and Notopithecus had different locomotor capabilities, which were likely associated with early niche diversifications.[332]
New fossil material of Oligocene typotherian notoungulates is described from the Quebrada Fiera locality (Argentina) by Hernández Del Pino, Seoane & Cerdeño (2022), providing new information on the anatomy of "Prohegetotherium" schiaffinoi and completing known ontogenetic sequence of the species Archaeohyrax suniensis.[333]
Fragment of a mandible of a notoungulate belonging to the group Interatheriinae is described from the Messinian to Zanclean Tunuyán Formation (Argentina) by Vera & Romano (2022), representing the first record of an interatheriine from this formation and the youngest record of this group reported to date.[334]
Fernández-Monescillo et al. (2022) identify Pseudotypotherium pulchrum Ameghino (1904) as the type species of the genus Pseudotypotherium.[335]
Revision of the Early-Middle Pleistocene mesotheriine notoungulates is published by Fernández-Monescillo et al. (2022), who interpret the variation among the studied material as consistent with intraspecific and ontogenetic variation in a single species, recognised as Mesotherium cristatum.[336]
A study on the morphological tooth variation in Tremacyllus and on its systematic significance is published by Armella et al. (2022), who recognize Tremacyllus incipiens as a valid taxon.[337]
A study on carbon and oxygen isotopic values of tooth enamel of Toxodon platensis from two localities in the Brazilian Intertropical Region is published by Gomes et al. (2022) who interpret the studied samples as representing the record of at least three years under different climate regimes, and indicating that the feeding behaviour of the studied toxodonts was not significantly influenced by different climatic conditions.[338]
Matsui, Valenzuela-Toro & Pyenson (2022) describe a molar of a desmostylian belonging or related to the species Neoparadoxia cecilialina, originally collected in 1913 from the Miocene "Topanga" Formation near Corona (Riverside County, California, United States) and thus representing the historically oldest paleoparadoxiid specimen, and providing new information on the morphological variation in teeth of paleoparadoxiids.[339]
A study on the postcranial anatomy and likely locomotion of Patriofelis ulta, based on data from two partial skeletons, is published by Kort et al. (2022).[340]
Flink & Werdelin (2022) reconstruct digital endocasts of Quercygale angustidens and Gustafsonia cognita, and evaluate the implications of their anatomy for the knowledge of the evolution of the brain at the origin of Carnivora.[341]
Fossil remains of a juvenile pampathere belonging to the genus Holmesina are described from the Gruta do Urso cave (Brazil) by Avilla et al. (2022), providing new information on the anatomy of pampatheres at the early stages of their life.[343]
A study investigating the rates of morphological evolution of the skulls of the glyptodonts is published by Machado, Marroig & Hubbe (2022).[344]
Description of the most complete skull of Eleutherocercus antiquus from the Pliocene Monte Hermoso Formation, as well as the first description of the carapace of E. solidus from the late Miocene-Pliocene from Catamarca Province (Argentina), and a study on the phylogenetic relationships of doedicurine glyptodonts is published by Nuñez-Blasco et al. (2022).[345]
Description of new fossil material of Utaetus buccatus from the Eocene Guabirotuba Formation (Brazil), expanding known geographic distribution of this species and representing the first record semi-movable osteoderms in this species reported to date, is published by Sedor et al. (2022).[346]
A member of the family Nothrotheriidae. The type species is "Xyophorus" bondesioi Scillato-Yané (1979).
Pilosan research
A study on the phylogenetic relationships and the evolutionary history of sloths is published by Casali et al. (2022).[348]
A study on mandibles of extant and extinct sloths, aiming to determine stress patterns during the action of jaw-closing muscles and evaluating their implications for the knowledge of the feeding habits of extinct sloths, is published by Bomfim Melki, de Souza Barbosa & Paglarelli Bergqvist (2022).[349]
Description of the skull and jaw anatomy of a juvenile specimen of Acratocnus ye from the Holocene of Haiti, and a study on the ontogenetic changes in the skull of this sloth, is published by Gaudin & Scaife (2022).[350]
A study aiming to determine the diet of nine giant ground sloth species from the Brazilian Intertropical Region is published by Dantas & Santos (2022).[351]
Boscaini et al. (2022) describe new fossil material of Glossotherium chapadmalense from the Chapadmalal Formation (Argentina), providing information on the anatomy of this sloth, and confirm the assignment of this Pliocene species to the genus Glossotherium.[352]
Fossil material of Thalassocnus is reported from the Miocene–Pliocene Tafna Formation by Quiñones et al. (2022), representing the first record of this genus from Argentina, and extending its range from coastal environments to more terrestrial ones.[353]
A study on the pathological modifications on three articulated vertebrae of a specimen of Eremotherium laurillardi from the Toca das Onças cave (Brazil), and on their implications for the knowledge of the likely cause of death of the animal and on the incorporation mode of skeletal remains into the cave in general, is published by Barbosa et al. (2022).[354]
A study on an adult, a subadult and an infant specimen of Megalonyx jeffersonii from the Tarkio site (Iowa, United States) is published by Semken et al. (2022), who consider it most likely that the studied individuals represent a social unit (probably a mother and two offspring, with parental care in Megalonyx potentially extending beyond weaning of an older sibling) and died contemporaneously, and attempt to determine average lifespan, gestation time, the interbirth interval and the timing of sexual maturation in Megalonyx.[355]
General xenarthran research
New mylodontine sloth and glyptodont fossil material, possibly representing new taxa, is described from the Miocene (Tortonian) Letrero Formation (Ecuador) by Román-Carrión et al. (2022), who note the presence of morphological differences between xenarthrans from this formation and other Miocene xenarthran specimens, possibly indicative of isolation of xenarthrans from the Letrero Formation.[356]
A member of Leptictida. The type species is "Ictops" thomsoni Matthew (1903).
Miscellaneous eutherian research
A study on the life history of Pantolambda bathmodon, inferred from bone histology and geochemistry, is published by Funston et al. (2022), who interpret their findings as indicative of an approximately 7-months-long gestation, rapid dental development and an approximately 30–to-75-days-long suckling interval, and infer that, unlike non-placental mammals and known Mesozoic precursors, P. bathmodon was highly precocial, reproducing like a placental.[361]
A study on the teeth eruption sequence, the sequence of cusp mineralisation and the cranial growth of Alcidedorbignya inopinata, as well as on the mortality profile of the assemblage of members of this species from Tiupampa (Bolivia), is published by de Muizon & Billet (2022).[362]
A study on the age of fossil material, anatomy and phylogenetic relationships of Propyrotherium saxeum, based on data from the most complete specimen found to date, is published by Vera et al. (2022).[363]
A study on the affinities of extinct South American native ungulates, reassessing the study of Avilla & Mothé (2021) that recovered some of these ungulates were relatives of hyracoids,[364] is published by Kramarz & Macphee (2022), who recover all South American native ungulates as nested within Boreoeutheria.[365]
A study aiming to determine whether it is possible to identify the position of isolated sparassodont teeth using linear discriminant analysis is published by Engelman & Croft (2022).[371]
Description of new fossil material of Callistoe vincei from the Eocene Lower Lumbrera Formation (Argentina) is published by Babot et al. (2022), showing unexpected retention of plesiomorphic traits in the lower molars of this derived sparassodont species, and supports dietary inferences related to hypercarnivory in Callistoe.[372]
A study on the evolution and likely causes of extinction of sparassodonts is published by Tarquini, Ladevèze & Prevosti (2022).[373]
A study on the origination and extinction rates of sparassodonts, aiming to determine the cause of their extinction, is published by Pino et al. (2022).[374]
A study on the phylogenetic relationships of extant and fossil marsupials, based on morphological data consisting of craniodental characters of extant and fossil marsupials and on molecular data, is published by Beck, Voss & Jansa (2022).[375]
A study on the age of the fossil material of large-bodied marsupials from the Nombe rockshelter (Papua New Guinea) is published by Prideaux et al. (2022), who interpret their findings as indicating that Hulitherium tomasettii inhabited the upper montane forests around Nombe 55,000 years ago, and that Protemnodon tumbuna and a second large, now-extinct kangaroo (possibly Nombe nombe) persisted until at least 27–22,000 years ago, coexisting with humans for at least 30,000 years.[376]
A study on resistances of pedal bones of sthenurine and macropodine kangaroos to bending and cortical bone distribution, and on their implications for the knowledge of possible differences in locomotion of these kangaroos, is published by Wagstaffe et al. (2022).[377]
Richards et al. (2022) attempt to determine the ecology of palorchestids from their humeral and femoral shape, and argue that palorchestids used their forelimbs in a specialised manner that has no direct equivalence either with their extinct relatives or among extant mammals.[378]
New fossil material of Ramsayia magna, representing the most complete cranial remains attributable to a member of the genus Ramsayia reported to date, is described from the Lower Johansons Cave (Queensland, Australia) by Louys et al. (2022), who also study the phylogenetic affinities of Ramsayia, recovering it as closely related to Phascolonus and Sedophascolomys, and interpreting this result as indicative of a single origin of gigantism in wombats.[379]
Weaver et al. (2022) present evidence indicating that proportions of different bone tissue microstructures in the femoral cortices of small extant marsupials and placentals correlate with length of lactation period, study the bone histology of Late Cretaceous and Paleocene multituberculates, and argue that multituberculates likely had a similar reproductive strategy to placentals, with prolonged gestation and abbreviated lactation periods.[386]
Second specimen of Corriebaatar marywaltersae, providing new information on the anatomy of this species and confirming its multituberculate affinities, is described from the Early Cretaceous Flat Rocks fossil site (Eumeralla Formation, Australia) by Richet al. (2022).[387]
Description of new fossil material of Barbatodon oardaensis from Romania is published by Solomon et al. (2022).[388]
Review of the fossil record of kogaionids from Transylvania (Romania) is published Csiki-Sava et al. (2022), who report four new occurrences from the Hațeg Basin, and reassess the chronostratigraphical and geographical distribution of kogaionids and their evolutionary patterns.[389]
Description of a new specimen of Lactodens sheni from the Lower Cretaceous Jiufotang Formation (China), and a study comparing the morphology of the mandible and teeth of this species and Origolestes lii, is published by Mao, Liu & Meng (2022).[390]
A study on the mastication of Peligrotherium tropicalis is published by Harper, Adkins & Rougier (2022).[391]
A study on the phylogenetic relationships of extant and fossil mammals, including previously untested fossils from the Cretaceous-Paleogene transition, is published by Velazco et al. (2022), who recover a new eutheriansister group to Placentalia, and recover Deltatheridium as a marsupial, extending the minimum age of Marsupialia before the Cretaceous-Paleogene boundary.[393]
A study on the evolution of the brain size relative to the body size in placental mammals after the Cretaceous–Paleogene extinction event is published by Bertrand et al. (2022), who interpret their findings as indicating that during the Paleocene the majority of branches of placentals exhibited faster rates of body mass increase than brain volume increase, and that relative brain size in crown orders increased in the Eocene.[394]
A study on patterns and possible drivers of the evolution of placental skulls throughout the Cenozoic is published by Goswamiet al. (2022), who interpret their findings as indicative of an overall long-term decline in the rate of evolutionary change, punctuated by bursts of innovation that decreased in amplitude over the past 66 million years.[395]
A study on the evolution of terrestrial carnivorous mammal diversity in Europe during the Paleogene is published by Solé et al. (2022).[396]
New fossil material of Lagopsis penai and a member of the genus Cainotherium belonging or related to the species C. huerzeleri is described from the Miocene Ribesalbes-Alcora Basin (Spain) by Crespo et al. (2022), who compare the relative abundance of Miocene cainotheriids and lagomorphs in the area, and discuss possible direct interaction between members of both groups.[397]
A study on the diet and habitat of herbivorous mammals from the middle Miocene Maboko Formation (Kenya), inferred from stable carbon and oxygen isotope data from herbivore enamel, is published by Arney et al. (2022).[398]
Review of the mammalian dispersals from the Old World to the New World at the end of the Miocene is published by Jiangzuo & Wang (2022), who interpret their findings as suggestive of three phases of dispersals, with different environmental preferences of mammals from every phase, interpreted as reflecting the gradually increasing humidification in northeastern Asia at the end of the Miocene.[399]
A study on the environmental variability in Africa during the Pliocene and Pleistocene, and on the impact of this environmental variability on the evolution of African mammals, is published by Cohen et al. (2022).[400]
New marine mammal assemblage, including the youngest pre-Pleistocene earless seal record in South America, is described from the Pliocene Horcón Formation (Chile) by Benites-Palomino et al. (2022).[401]
A study aiming to determine whether the ungulate community associated with Australopithecus afarensis at the Pliocene site of Laetoli (Tanzania) shares similarities with extant communities, and evaluating the implications of this ungulate community for the knowledge of the paleoecology of A. afarensis, is published by Fillion, Harrison & Kwekason (2022).[402]
Systematic description of the Early Pleistocene large mammal fauna from the Maka'amitalu basin (lower Awash Valley, Ethiopia) is published by Rowan et al. (2022).[403]
Description of the fossil material of bovids from the Cooper's D site (South Africa), and a study on the implications of these fossils for paleoenvironmental reconstructions and for the knowledge of habitat preferences of Paranthropus robustus and early members of the genus Homo, is published by Hanon et al. (2022).[404]
Review of the small mammal fossils from the Dmanisi site (Georgia) is published by Agustí et al. (2022), who interpret the small mammal assemblage from this site as composed mainly by Western or Central Asian taxa with poor representation of European elements, and indicating that the habitat occupied by the hominids of Dmanisi was characterized by the prevalence of arid conditions.[405]
A study on the equid and suid fossil material from the Early Pleistocene site of Palan-Tyukan (Azerbaijan), and on the implications of these fossils for paleoenvironmental reconstructions, is published by Iltsevich & Sablin (2022).[406]
A study on the foraging ecology of mammals, including early Gigantopithecus blacki, from the Early Pleistocene of the Liucheng Gigantopithecus Cave (Guangxi, China), as indicated by calcium isotope data, is published by Hu et al. (2022).[407]
Revision of the Middle Pleistocene mammalian fauna from the Oumm Qatafa Cave in Palestine, and a study on the implications of this fauna for paleoenvironmental reconstructions, is published by Marom et al. (2022).[408]
A study on the abundance of megafauna from Eifel (Germany) during the last 60,000 years is published by Sirocko et al. (2022), who interpret their findings as indicating that the abundance of the studied megafauna was not affected by the presence of humans or by periods of active volcanism, and that the main cause of the decrease and eventual disappearance of megafauna from Eifel was the development of woodlands.[409]
A study on the fossil material of reindeers and rodents from the Jankovich Cave and Rejtek I Rock Shelter and on the fossil material of woolly mammoths from the Carpathian Basin (Hungary) is published by Magyari et al. (2022), who evaluate the hypothesis that rapid climate change during the last glacial termination was briefly optimal for grazing megafauna, but these brief optima were followed by rapid regional extinctions, and attempt to determine the order of faunistic and vegetation biome changes in East-Central Europe and its casual linkage.[410]
A study on the homogenization of North American mammalian assemblages throughout the past 30,000 years is published by Fraser et al. (2022), who interpret their findings as indicating that this homogenization commenced between 15,000 and 10,000 years before present for mammals larger than 1 kg and 10,000–5,000 years before present for all mammals.[411]
A study on the impact of the end-Pleistocene megafauna extinction on the mammal community from the Edwards Plateau (Texas, United States) is published by Smith et al. (2022), who present evidence indicative of a significant reorganization of the community and a loss of ecological complexity.[412]
A study aiming to determine whether brain size was a significant correlate of probability of extinction in Late Quaternary mammals is published by Dembitzer et al. (2022).[413]
A study aiming to determine whether some places, times and types of environment gave rise to abnormal numbers of new species of mammals, based on data from Late Cenozoic fossil record of mammals in Europe, is published by Toivonen, Fortelius & Žliobaitė (2022).[414]
A study on the individual dietary preferences of herbivorous mammals from the Miocene to the present, aiming to determine whether herbivorous generalist species were composed of generalist or specialist individuals, is published by DeSantis et al. (2022).[415]
Gibert et al. (2022) present a spatio-temporal framework that can be used to examine spatial dynamics of Neogene and Pleistocene Old World mammalian communities.[416]
A study on changes of the regional diversity of Asian mammals through time is published by Feijó et al. (2022), who interpret their findings as indicating that southern Asia was the main cradle of Asia's mammal diversity, that mountain biodiversity hotspots in the Himalayas and Hengduan Mountains acted mainly as accumulation centers rather than as centers of diversification, and that the diversification bursts and biotic turnovers of Asian mammals were temporally associated with tectonic events and drastic reorganization of climate during the Cenozoic.[417]
A study on changes to terrestrial mammal food webs over the past ~130,000 years is published by Fricke et al. (2022), who present evidence of a 53% decline in food web links globally, caused in part by extinctions and in part by range losses for extant species.[418]
References
^Wang, S.-Q.; Li, C.-X. (2022). "Attributing "Gomphotherium shensiense" to Platybelodon tongxinensis, and a new species of Platybelodon from the latest Middle Miocene". Vertebrata PalAsiatica. 60 (2): 117–133. doi:10.19615/j.cnki.2096-9899.220402.
^Lopes, R. P.; Pereira, J. C.; Sial, A. N.; Dillenburg, S. R. (2023). "Isotopic evidence for a diet shift in a Pleistocene sub-adult mastodon from the Brazilian Pampa". Historical Biology: An International Journal of Paleobiology. 35 (3): 388–402. Bibcode:2023HBio...35..388L. doi:10.1080/08912963.2022.2043293. S2CID247272150.
^Parray, K. A.; Jukar, A. M.; Paul, A. Q.; Ahmad, I.; Patnaik, R. (2022). "A gomphothere (Mammalia, Proboscidea) from the Quaternary of the Kashmir Valley, India". Papers in Palaeontology. 8 (2): e1427. Bibcode:2022PPal....8E1427P. doi:10.1002/spp2.1427. S2CID247653516.
^Zorro-Luján, C. M.; Noè, L. F.; Gómez-Pérez, M.; Grouard, S.; Chaparro, A.; Torres, S. (2022). "Vertebral lesions in Notiomastodon platensis, Gomphotheriidae, from Anolaima, Colombia". Quaternary Research. 112: 78–92. doi:10.1017/qua.2022.49. S2CID253148806.
^Mothé, D.; Jaramillo, C.; Krigsfeld Shuster, G.; Oikawa, N.; Escobar-Florez, S. (2022). "Ain't no mountain high enough? New records of Notiomastodon platensis (Mammalia, Proboscidea) from Colombia and the Quaternary dry corridor of the Cauca valley". Historical Biology: An International Journal of Paleobiology. 36 (2): 1–12. doi:10.1080/08912963.2022.2155955. S2CID255092592.
^Díaz-Berenguer, E.; Moreno-Azanza, M.; Badiola, A.; Canudo, J. I. (2022). "Neurocranial bones are key to untangling the sea cow evolutionary tree: osteology of the skull of Sobrarbesiren cardieli (Mammalia: Pan-Sirenia)". Zoological Journal of the Linnean Society. 196 (4): 1671–1703. doi:10.1093/zoolinnean/zlac021.
^Rossie, J. B.; Cote, S. M. (2022). "Additional hominoid fossils from the early Miocene of the Lothidok Formation, Kenya". American Journal of Biological Anthropology. 179 (2): 261–275. doi:10.1002/ajpa.24594. PMID36790670. S2CID251074838.
^Pickford, M.; Senut, B.; Morales, J.; Braga, J. (2008). "First hominoid from the Late Miocene of Niger". South African Journal of Science. 104 (9–10): 337–339. hdl:10520/EJC96845.
^Lopatin, A. V.; Maschenko, E. N.; Dac, L. X. (2022). "Gigantopithecus blacki (Primates, Ponginae) from the Lang Trang Cave (Northern Vietnam): The Latest Gigantopithecus in the Late Pleistocene?". Doklady Biological Sciences. 502 (1): 6–10. doi:10.1134/S0012496622010069. PMID35298746. S2CID247520846.
^Towle, I.; MacIntosh, A. J. J.; Hirata, K.; Kubo, M. O.; Loch, C. (2022). "Atypical tooth wear found in fossil hominins also present in a Japanese macaque population". American Journal of Biological Anthropology. 178: 171–181. doi:10.1002/ajpa.24500. S2CID247201199.
^Yohannes Haile-Selassie; Saylor, B. Z.; Mulugeta Alene; Deino, A.; Gibert, L.; Schwartz, G. T. (2022). "Comparative description and taxonomic affinity of 3.7-million-year-old hominin mandibles from Woranso-Mille (Ethiopia)". Journal of Human Evolution. 173. 103265. Bibcode:2022JHumE.17303265H. doi:10.1016/j.jhevol.2022.103265. PMID36306541. S2CID253152800.
^Zohar, I.; Alperson-Afil, N.; Goren-Inbar, N.; Prévost, M.; Tütken, T.; Sisma-Ventura, G.; Hershkovitz, I.; Najorka, J. (2022). "Evidence for the cooking of fish 780,000 years ago at Gesher Benot Ya'aqov, Israel". Nature Ecology & Evolution. 6 (12): 2016–2028. Bibcode:2022NatEE...6.2016Z. doi:10.1038/s41559-022-01910-z. PMID36376603. S2CID253522354.
^Sala, N.; Pantoja-Pérez, A.; Gracia, A.; Arsuaga, J. L. (2024). "Taphonomic-forensic analysis of the hominin skulls from the Sima de los Huesos". The Anatomical Record. 307 (7): 2259–2277. doi:10.1002/ar.24883. PMID35195943. S2CID247056897.
^Skov, L.; Peyrégne, S.; Popli, D.; Iasi, L. N. M.; Devièse, T.; Slon, V.; Zavala, E. I.; Hajdinjak, M.; Sümer, A. P.; Grote, S.; Bossoms Mesa, A.; López Herráez, D.; Nickel, B.; Nagel, S.; Richter, J.; Essel, E.; Gansauge, M.; Schmidt, A.; Korlević, P.; Comeskey, D.; Derevianko, A. P.; Kharevich, A.; Markin, S. V.; Talamo, S.; Douka, K.; Krajcarz, M. T.; Roberts, R. G.; Higham, T.; Viola, B.; Krivoshapkin, A. I.; Kolobova, K. A.; Kelso, J.; Meyer, M.; Pääbo, S.; Peter, B. M. (2022). "Genetic insights into the social organization of Neanderthals". Nature. 610 (7932): 519–525. Bibcode:2022Natur.610..519S. doi:10.1038/s41586-022-05283-y. PMC9581778. PMID36261548.
^Lipson, M.; Sawchuk, E. A.; Thompson, J. C.; Oppenheimer, J.; Tryon, C. A.; Ranhorn, K. L.; de Luna, K. M.; Sirak, K. A.; Olalde, I.; Ambrose, S. H.; Arthur, J. W.; Arthur, K. J. W.; Ayodo, G.; Bertacchi, A.; Cerezo-Román, J. I.; Culleton, B. J.; Curtis, M. C.; Davis, J.; Gidna, A. O.; Hanson, A.; Kaliba, P.; Katongo, M.; Kwekason, A.; Laird, M. F.; Lewis, J.; Mabulla, A. Z. P.; Mapemba, F.; Morris, A.; Mudenda, G.; Mwafulirwa, R.; Mwangomba, D.; Ndiema, E.; Ogola, C.; Schilt, F.; Willoughby, P. R.; Wright, D. K.; Zipkin, A.; Pinhasi, R.; Kennett, D. J.; Manthi, F. K.; Rohland, N.; Patterson, N.; Reich, D.; Prendergast, M. E. (2022). "Ancient DNA and deep population structure in sub-Saharan African foragers". Nature. 603 (7900): 290–296. Bibcode:2022Natur.603..290L. doi:10.1038/s41586-022-04430-9. PMC8907066. PMID35197631. S2CID247083477.
^ abBilgin, M.; Joniak, P.; Peláez Campomanes, P.; Göktaş, F.; Mayda, S.; Lorinser, C.; Wijbrans, J.; Kaya, T.; van den Hoek Ostende, L. W. (2022). "Beydere 3: a new early Miocene small mammal assemblage from the western Anatolia, Turkey". Historical Biology: An International Journal of Paleobiology. 35 (7): 1092–1111. doi:10.1080/08912963.2022.2077646. S2CID259139843.
^Calede, J. J. M.; Tse, Y. T.; Cairns, K. D. (2022). "The first evidence of Heosminthus from North America and the phylogenetics of Sminthidae (Mammalia, Rodentia, Dipodoidea): biogeographical implications". Journal of Systematic Palaeontology. 20 (1). 2111232. doi:10.1080/14772019.2022.2111232. S2CID252486684.
^ abcdPatnaik, R.; Singh, N. P.; Sharma, K. M.; Singh, N. A.; Choudhary, D.; Singh, Y. P.; Kumar, R.; Wazir, W. A.; Sahni, A. (2022). "New rodents shed light on the age and ecology of late Miocene ape locality of Tapar (Gujarat, India)". Journal of Systematic Palaeontology. 20 (1): Article 2084701. Bibcode:2022JSPal..2084701P. doi:10.1080/14772019.2022.2084701. S2CID251419771.
^Markova, E.; Borodin, A. (2022). "An advanced form of Microtus nivaloides Forsyth Major, 1902 (Arvicolinae, Rodentia) in the late Middle Pleistocene of West Siberia: facts and hypotheses". Historical Biology: An International Journal of Paleobiology. 35 (10): 1975–1991. doi:10.1080/08912963.2022.2130289. S2CID252799931.
^Wang, B.-Y. (2022). "A new species of Pararhizomys (Tachyoryctoidinae, Muroidea) from Linxia Basin of Gansu Province". Vertebrata PalAsiatica. 60 (4): 271–277. doi:10.19615/j.cnki.2096-9899.220403.
^ abcArnal, M.; Pérez, M. E.; Tejada Medina, L. M.; Campbell, K. E. (2022). "The high taxonomic diversity of the Palaeogene hystricognath rodents (Caviomorpha) from Santa Rosa (Peru, South America) framed within a new geochronological context". Historical Biology: An International Journal of Paleobiology. 34 (12): 2350–2373. Bibcode:2022HBio...34.2350A. doi:10.1080/08912963.2021.2017916. S2CID253500485.
^ abSinitsa, M. V.; Delinschi, A. (2022). "A revision of Sinotamias (Rodentia, Sciuridae, Xerinae) from eastern Europe, with a discussion of the evolutionary history of the genus". Historical Biology: An International Journal of Paleobiology. 35 (10): 1917–1934. doi:10.1080/08912963.2022.2127096. S2CID252802002.
^Tesakov, A.; Bondarev, A. (2022). "Down to the roots of lemmings: a new species of basal lemming from the upper Pliocene of West Siberia". Journal of Vertebrate Paleontology. 41 (5): e2036173. doi:10.1080/02724634.2021.2036173. S2CID247565907.
^Sostillo, R.; Cardonatto, M. C.; Kerber, L.; Montalvo, C. I. (2022). "Taxonomic and ontogenetic diversity of Dinomyidae (Rodentia) from the late Miocene-early Pliocene of La Pampa province (Argentina) based on cranio-dental remains". Journal of South American Earth Sciences. 114: Article 103704. Bibcode:2022JSAES.11403704S. doi:10.1016/j.jsames.2021.103704. S2CID245685455.
^Busker, F. (2022). "New insight of the genus Cephalomyopsis (Caviomorpha, Cephalomyidae): Systematic revision and paleobiogeographical implications". Journal of South American Earth Sciences. 121. 104145. doi:10.1016/j.jsames.2022.104145.
^Kelly, T. S.; Martin, R. A. (2022). "Phylogenetic positions of Paronychomys Jacobs and Basirepomys Korth and De Blieux relative to the tribe Neotomini (Rodentia, Cricetidae)". Journal of Paleontology. 96 (3): 692–705. Bibcode:2022JPal...96..692K. doi:10.1017/jpa.2021.121. S2CID246522323.
^Casanovas-Vilar, I.; Luján, À. H. (2022). "Description of the Type Specimen of the Extinct Tenerife Giant Rat (Canariomys bravoi)". Journal of Mammalian Evolution. 29 (3): 645–661. doi:10.1007/s10914-021-09594-1. S2CID246976356.
^Sehgal, R. K.; Singh, A. P.; Gilbert, C. C.; Patel, B. A.; Campisano, C. J.; Selig, K. R.; Patnaik, R.; Singh, N. P. (2022). "A new genus of treeshrew and other micromammals from the middle Miocene hominoid locality of Ramnagar, Udhampur District, Jammu and Kashmir, India". Journal of Paleontology. 96 (6): 1318–1335. Bibcode:2022JPal...96.1318S. doi:10.1017/jpa.2022.41. S2CID249138607.
^Selig, K. R.; Silcox, M. T. (2022). "Measuring Molarization: Change Through Time in Premolar Function in An Extinct Stem Primate Lineage". Journal of Mammalian Evolution. 29 (4): 947–956. doi:10.1007/s10914-022-09623-7. S2CID252135941.
^ abcSánchez, I. M.; Abbas, S. G.; Khan, M. A.; Babar, M. A.; Quiralte, V.; DeMiguel, D. (2022). "The first Asian record of the mouse-deer Afrotragulus (Ruminantia, Tragulidae) reassess its evolutionary history and offers insights on the influence of body size on Afrotragulus diversification". Historical Biology: An International Journal of Paleobiology. 34 (8): 1544–1559. Bibcode:2022HBio...34.1544S. doi:10.1080/08912963.2022.2050719. S2CID250533795.
^Peri, E.; Collareta, A.; Aringhieri, G.; Caramella, D.; Foresi, L. M.; Bianucci, G. (2022). "A new physeteroid cetacean from the Lower Miocene of southern Italy: CT imaging, retrodeformation, systematics and palaeobiology of a sperm whale from the Pietra leccese". Bollettino della Società Paleontologica Italiana. 61 (2): 187–206. doi:10.4435/BSPI.2022.15 (inactive 2024-11-20).{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
^Bisconti, M.; Ochoa, D.; Urbina, M.; Salas-Gismondi, R. (2022). "Archaebalaenoptera eusebioi, a new rorqual from the late Miocene of Peru (Cetacea, Mysticeti, Balaenopteridae) and its impact in reconstructing body size evolution, ecomorphology and palaeobiogeography of Balaenopteridae". Journal of Systematic Palaeontology. 19 (16): 1129–1160. doi:10.1080/14772019.2021.2017363. S2CID247125383.
^ abKimura, T.; Hasegawa, Y.; Suzuki, T. (2022). "A New Species of Baleen Whale (Isanacetus-Group) from the Early Miocene, Japan". Paleontological Research. 27 (1): 85–101. doi:10.2517/PR210009. S2CID252684197.
^Hernández-Cisneros, A. E. (2022). "A new aetiocetid (Cetacea, Mysticeti, Aetiocetidae) from the late Oligocene of Mexico". Journal of Systematic Palaeontology. 20 (1): Article 2100725. doi:10.1080/14772019.2022.2100725. S2CID251966097.
^Ríos, M.; Abbas, S. G.; Khan, M. A.; Solounias, N. (2022). "Distinction of Sivatherium from Libytherium and a new species of Libytherium (Giraffidae, Ruminantia, Mammalia) from the Siwaliks of Pakistan (Miocene)". Geobios. 74: 67–76. Bibcode:2022Geobi..74...67R. doi:10.1016/j.geobios.2022.06.002. S2CID251674336.
^Kimura, T.; Hasegawa, Y. (2022). "A New Physeteroid from the Lower Miocene of Japan". Paleontological Research. 26 (1): 87–101. doi:10.2517/PR200021. S2CID245478545.
^Solounias, N.; Smith, S.; Rios Ibàñez, M. (2022). "Ua pilbeami: a new taxon of Giraffidae (Mammalia) from the Chinji Formation of Pakistan with phylogenetic proximity to Okapia". Bollettino della Società Paleontologica Italiana. 61 (3): 319–326. doi:10.4435/BSPI.2022.19 (inactive 2024-11-20).{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
^Marín-Leyva, A. H.; Delgado-García, S.; García-Zepeda, M. L.; Arroyo-Cabrales, J.; López-García, J. R.; Plata-Ramírez, R. A.; Meléndez-Herrera, E. (2022). "Environmental inferences based on the dietary ecology of camelids from west-central Mexico during the Late Pleistocene". Historical Biology: An International Journal of Paleobiology. 35 (6): 1011–1027. doi:10.1080/08912963.2022.2073822. S2CID249006415.
^Carrasco, T. S.; Scherer, C. S.; Ribeiro, A. M.; Buchmann, F. S. (2022). "Paleodiet of Lamini camelids (Mammalia: Artiodactyla) from the Pleistocene of southern Brazil: insights from stable isotope analysis (δ13C, δ18O)". Paleobiology. 48 (3): 513–526. Bibcode:2022Pbio...48..513C. doi:10.1017/pab.2022.10. S2CID248140475.
^Raza, T.; Yasin, R.; Samiullah, K.; Fazal, R. M.; Hussain, K.; Abbas, A.; Rehman, A.; Ishaq, H. M.; Mehmood, M. (2022). "New collection of fossil remains of pigs (Mammalia: Artiodactyla: Suidae) from the Siwaliks of Pakistan". Historical Biology: An International Journal of Paleobiology. 35 (10): 1855–1870. doi:10.1080/08912963.2022.2124372. S2CID252553359.
^Ríos, M.; Cantero, E.; Estraviz-López, D.; Solounias, N.; Morales, J. (2022). "Anterior ossicone variability in Decennatherium rex Ríos, et al. 2017 (Late Miocene, Iberian Peninsula)". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 114 (1–2): 159–165. doi:10.1017/S1755691022000184. S2CID253040227.
^Croitor, R.; Khan, M. A.; Abbas, S. G.; Babar, M. A.; Asim, M.; Akhtar, M. (2022). "Description of new Pliocene to Early Pleistocene deer (Cervidae, Mammalia) remains from the Siwalik Hills in Pakistan with a discussion on paleobiogeography of cervids from the Indian subcontinent". Geobios. 74: 21–41. Bibcode:2022Geobi..74...21C. doi:10.1016/j.geobios.2022.08.001. S2CID252075996.
^Fu, J.; Zhang, J.; Wang, Y.; Jiangzuo, Q.; Wang, S.-Q. (2022). "Finite element analysis of the hemimandible of the giant deer, Sinomegaceros pachyosteus, revealing its feeding potentialities". Historical Biology: An International Journal of Paleobiology: 1–8. doi:10.1080/08912963.2022.2101368. S2CID250930319.
^Xiao, B.; Wang, T.; Lister, A. M.; Yuan, J.; Hu, J.; Song, S.; Lin, H.; Wang, S.; Wang, C.; Wei, D.; Lai, X.; Xing, X.; Sheng, G. (2022). "Ancient and modern mitogenomes of red deer reveal its evolutionary history in northern China". Quaternary Science Reviews. 301. 107924. doi:10.1016/j.quascirev.2022.107924. S2CID254965620.
^Tseng, Z. J.; Wang, X.; Li, Q.; Xie, G. (2022). "Qurliqnoria (Mammalia: Bovidae) fossils from Qaidam Basin, Tibetan Plateau and deep-time endemism of the Tibetan antelope lineage". Zoological Journal of the Linnean Society. 196 (3): 990–1012. doi:10.1093/zoolinnean/zlab117.
^Wang, X.; Li, Q.; Tseng, Z. J. (2022). "Primitive Tibetan antelope, Qurliqnoria hundesiensis (Lydekker, 1881) (Bovidae, Artiodactyla), from Pliocene Zanda and Kunlun Pass basins and paleoenvironmental implications". Journal of Mammalian Evolution. 30: 245–268. doi:10.1007/s10914-022-09632-6. S2CID253198804.
^Sileem, A. H.; Abu El-Kheir, G. A. (2022). "Complete skull of Bothriogenys fraasi (Mammalia, Artiodactyla, Anthracotheriidae) from the Early Oligocene, Fayum, Egypt". Geological Journal. 57 (11): 4833–4841. Bibcode:2022GeolJ..57.4833S. doi:10.1002/gj.4574. S2CID252244244.
^Pickford, M.; MacLaren, J. A. (2022). "The most complete skull of Brachyodus onoideus (Anthracotheriidae), Liège University collections". Historical Biology: An International Journal of Paleobiology. 34 (8): 1480–1493. Bibcode:2022HBio...34.1480P. doi:10.1080/08912963.2022.2043291. S2CID247347878.
^Georgitsis, M. K.; Liakopoulou, D. E.; Theodorou, G. E.; Tsiolakis, E. (2022). "Functional morphology of the hindlimb of fossilized pygmy hippopotamus from Ayia Napa (Cyprus)". Journal of Morphology. 283 (8): 1048–1079. doi:10.1002/jmor.21488. PMID35708268. S2CID249709335.
^Chakraborty, S.; Sengupta, D. P. (2022). "A new skull of early cetacean Remingtonocetus harudiensis from the Eocene of Kutch Basin, India". Palaeoworld. 32 (3): 509–522. doi:10.1016/j.palwor.2022.11.002. S2CID253492805.
^Tarasenko, K. K. (2022). "First Record of Basilosauridae (Mammalia, Cetacea) in the Eocene of the Krasnodar Territory (Apsheron District, Gorny Luch)". Doklady Biological Sciences. 502 (1): 11–14. doi:10.1134/S0012496622010094. PMID35298747. S2CID247521498.
^Corrie, J. E.; Fordyce, R. E. (2022). "A redescription and re-evaluation of Kekenodon onamata (Mammalia: Cetacea), a late-surviving archaeocete from the Late Oligocene of New Zealand". Zoological Journal of the Linnean Society. 196 (4): 1637–1670. doi:10.1093/zoolinnean/zlac019.
^Lambert, O.; Wanzenböck, G.; Pfaff, C.; Louwye, S.; Kriwet, J.; Marx, F. G. (2022). "First eurhinodelphinid dolphin from the Paratethys reveals a new family of specialised echolocators". Historical Biology: An International Journal of Paleobiology. 35 (7): 1074–1091. doi:10.1080/08912963.2022.2077645. S2CID249581934.
^Tanaka, Y.; Ortega, M.; Fordyce, R. E. (2023). "A new early Miocene archaic dolphin (Odontoceti, Cetacea) from New Zealand, and brain evolution of the Odontoceti". New Zealand Journal of Geology and Geophysics. 66 (1): 59–73. Bibcode:2023NZJGG..66...59T. doi:10.1080/00288306.2021.2021956. S2CID246053209.
^Citron, C.; Geisler, J. H.; Collareta, A.; Caramella, D. (2022). "Systematics, phylogeny and feeding behavior of the oldest killer whale: a reappraisal of Orcinus citoniensis (Capellini, 1883) from the Pliocene of Tuscany (Italy)". Bollettino della Società Paleontologica Italiana. 61 (2): 167–186. doi:10.4435/BSPI.2022.13 (inactive 2024-11-20).{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
^Gatesy, J.; Ekdale, E. G.; Deméré, T. A.; Lanzetti, A.; Randall, J.; Berta, A.; El Adli, J. J.; Springer, M. S.; McGowen, M. R. (2022). "Anatomical, Ontogenetic, and Genomic Homologies Guide Reconstructions of the Teeth-to-Baleen Transition in Mysticete Whales". Journal of Mammalian Evolution. 29 (4): 891–930. doi:10.1007/s10914-022-09614-8. S2CID247439651.
^ abJiangzuo, Q.; Werdelin, L.; Sun, Y. (2022). "A dwarf sabertooth cat (Felidae: Machairodontinae) from Shanxi, China, and the phylogeny of the sabertooth tribe Machairodontini". Quaternary Science Reviews. 284: Article 107517. Bibcode:2022QSRv..28407517J. doi:10.1016/j.quascirev.2022.107517.
^ abHafed, A. B.; Nance, J. R.; Koretsky, I. A.; Rahmat, S. J. (2022). "New seal mandibles belonging to the subfamilies Monachinae and Phocinae discovered in the Neogene of North Carolina (USA)". Historical Biology: An International Journal of Paleobiology. 35 (5): 705–720. doi:10.1080/08912963.2022.2063053. S2CID248248801.
^Jiangzuo, Q.; Li, S.; Fu, J.; Wang, S.; Ji, X.; Duan, M.; Che, D. (2022). "Fossil Felidae (Carnivora: Mammalia) from the Yuanmou hominid site, southern China (Late Miocene) and its significance in the living environment of the fossil ape". Zoological Journal of the Linnean Society. 196 (3): 1156–1174. doi:10.1093/zoolinnean/zlab116.
^Jianzuo, Q.; Li, L.; Madurell-Malapeira, J.; Wang, S.; Li, S.; Fu, J.; Chen, S. (2022). "The diversification of the lynx lineage during the Plio-Pleistocene—evidence from a new small Lynx from Longdan, Gansu Province, China". Biological Journal of the Linnean Society. 136 (4): 536–551. doi:10.1093/biolinnean/blac054.
^Valenciano, A.; Baskin, J. (2022). "Moralesictis intrepidus gen. et sp. nov., the long journey of a Miocene honey badger's relative to the New World". Historical Biology: An International Journal of Paleobiology. 34 (8): 1413–1422. Bibcode:2022HBio...34.1413V. doi:10.1080/08912963.2021.2023138. S2CID245949837.
^Deshmukh, U. B.; Valenciano, A. (2014). "Neoyunnanotherium nom. nov., a replacement name for the genus Yunnanotherium Qi, 2014 (Carnivora, Mephitidae) non Han, 1986 (Tragulidae)". Zootaxa. 5222 (3): 298–300. doi:10.11646/zootaxa.5222.3.7. PMID37044523. S2CID254922038.
^Jiangzuo, Q.; Wang, Y.; Ge, J.; Liu, S.; Song, Y.; Jin, C.; Jiang, H.; Liu, J. (2023). "Discovery of jaguar from northeastern China middle Pleistocene reveals an intercontinental dispersal event". Historical Biology: An International Journal of Paleobiology. 35 (3): 293–302. Bibcode:2023HBio...35..293J. doi:10.1080/08912963.2022.2034808. S2CID246693903.
^Hemmer, H. (2022). "The identity of the "lion", Panthera principialis sp. nov., from the Pliocene Tanzanian site of Laetoli and its significance for molecular dating the pantherine phylogeny, with remarks on Panthera shawi (Broom, 1948), and a revision of Puma incurva (Ewer, 1956), the Early Pleistocene Swartkrans "leopard" (Carnivora, Felidae)". Palaeobiodiversity and Palaeoenvironments. 103 (2): 465–487. doi:10.1007/s12549-022-00542-2.
^Wallace, S. C.; Lyon, L. M. (2021). "Systematic revision of the Ailurinae (Mammalia: Carnivora: Ailuridae): with a new species from North America". In Angela R. Glatston (ed.). Red Panda. Biology and Conservation of the First Panda (second ed.). Academic Press. pp. 31–52. doi:10.1016/B978-0-12-823753-3.00011-9. ISBN978-0-12-823753-3. S2CID243818007.
^ abcJiangzuo, Q.; Niu, K.; Li, S.; Fu, J.; Wang, S. (2022). "A Diverse Metailurine Guild from the Latest Miocene Xingjiawan Fauna, Yongdeng, Northwestern China, and Generic Differentiation of Metailurine Felids". Journal of Mammalian Evolution. 29 (4): 845–862. doi:10.1007/s10914-022-09622-8. S2CID252662658.
^Xiong, W. (2022). "New species of Percrocuta (Carnivora, Hyaenidae) from the early middle Miocene of Tongxin, China". Historical Biology: An International Journal of Paleobiology. 35 (5): 799–820. doi:10.1080/08912963.2022.2067757. S2CID248627038.
^Koufos, G. D.; Tamvakis, A. (2022). "Revising the Villafranchian carnivoran fauna from Libakos (Macedonia, Greece) with some implications for its age". Historical Biology: An International Journal of Paleobiology. 34 (8): 1399–1412. Bibcode:2022HBio...34.1399K. doi:10.1080/08912963.2021.2024179. S2CID245920336.
^Iltsevich, K. Yu.; Sablin, M. V. (2022). "Early Pleistocene Feliformia from Palan-Tyukan (Azerbaijan)". Historical Biology: An International Journal of Paleobiology. 35 (10): 1950–1957. doi:10.1080/08912963.2022.2130287. S2CID250096512.
^Courtenay, L. A.; Yravedra, J.; Herranz-Rodrigo, D.; Rodríguez-Alba, J. J.; Serrano-Ramos, A.; Estaca-Gómez, V.; González-Aguilera, D.; Solano, J. A.; Jiménez-Arenas, J. M. (2022). "Deciphering carnivoran competition for animal resources at the 1.46 Ma early Pleistocene site of Barranco León (Orce, Granada, Spain)". Quaternary Science Reviews. 300. 107912. doi:10.1016/j.quascirev.2022.107912. S2CID254528449.
^Tamvakis, A.; Savvidou, A.; Spassov, N.; Youlatos, D.; Merceron, G.; Kostopoulos, D. S. (2022). "New insights on Early Pleistocene Nyctereutes from the Balkans based on material from Dafnero-3 (Greece) and Varshets (Bulgaria)". Palaeoworld. 32 (3): 555–572. doi:10.1016/j.palwor.2022.09.006. S2CID252628366.
^Jiangzuo, Q.; Wang, Y.; Song, Y.; Liu, S.; Jin, C.; Liu, J. (2022). "Middle Pleistocene Xenocyon lycaonoides Kretzoi, 1938 in northeastern China and the evolution of Xenocyon-Lycaon lineage". Historical Biology: An International Journal of Paleobiology (in press): 1–13. doi:10.1080/08912963.2021.2022138.
^Bergström, A.; Stanton, D. W. G.; Taron, U. H.; Frantz, L.; Sinding, M.-H. S.; Ersmark, E.; Pfrengle, S.; Cassatt-Johnstone, M.; Lebrasseur, O.; Girdland-Flink, L.; Fernandes, D. M.; Ollivier, M.; Speidel, L.; Gopalakrishnan, S.; Westbury, M. V.; Ramos-Madrigal, J.; Feuerborn, T. R.; Reiter, E.; Gretzinger, J.; Münzel, S. C.; Swali, P.; Conard, N. J.; Carøe, C.; Haile, J.; Linderholm, A.; Androsov, S.; Barnes, I.; Baumann, C.; Benecke, N.; Bocherens, H.; Brace, S.; Carden, R. F.; Drucker, D. G.; Fedorov, S.; Gasparik, M.; Germonpré, M.; Grigoriev, S.; Groves, P.; Hertwig, S. T.; Ivanova, V. V.; Janssens, L.; Jennings, R. P.; Kasparov, A. K.; Kirillova, I. V.; Kurmaniyazov, I.; Kuzmin, Y. V.; Kosintsev, P. A.; Lázničková-Galetová, M.; Leduc, C.; Nikolskiy, P.; Nussbaumer, M.; O'Drisceoil, C.; Orlando, L.; Outram, A.; Pavlova, E. Y.; Perri, A. R.; Pilot, M.; Pitulko, V. V.; Plotnikov, V. V.; Protopopov, A. V.; Rehazek, A.; Sablin, M.; Seguin-Orlando, A.; Storå, J.; Verjux, C.; Zaibert, V. F.; Zazula, G.; Crombé, P.; Hansen, A. J.; Willerslev, E.; Leonard, J. A.; Götherström, A.; Pinhasi, R.; Schuenemann, V. J.; Hofreiter, M.; Gilbert, M. T. P.; Shapiro, B.; Larson, G.; Krause, J.; Dalén, L.; Skoglund, P. (2022). "Grey wolf genomic history reveals a dual ancestry of dogs". Nature. 607 (7918): 313–320. Bibcode:2022Natur.607..313B. doi:10.1038/s41586-022-04824-9. PMC9279150. PMID35768506.
^Savvidou, A.; Youlatos, D.; Spassov, N.; Tamvakis, A.; Kostopoulos, D. S. (2022). "Ecomorphology of the Early Pleistocene Badger Meles dimitrius from Greece". Journal of Mammalian Evolution. 29 (3): 585–607. doi:10.1007/s10914-022-09609-5. S2CID248077620.
^Gimranov, D.; Bocherens, H.; Kavcik-Graumann, N.; Nagel, D.; Rabeder, G. (2023). "The cave bears from Imanay Cave (Southern Urals, Russia)". Historical Biology: An International Journal of Paleobiology. 35 (4): 580–588. Bibcode:2023HBio...35..580G. doi:10.1080/08912963.2022.2056837. S2CID247823207.
^Gimranov, D. O.; Zykov, S. V.; Kosintsev, P. A. (2022). "First Data on Non-occlusal Surface Incisor Microwear of Cave Bears from the Urals". Doklady Biological Sciences. 503 (1): 51–53. doi:10.1134/S0012496622020028. PMID35437734. S2CID248242327.
^Prilepskaya, N. E.; Bachura, O. P.; Baryshnikov, G. F. (2022). "Season-of-death and age-at-death of the easternmost European cave bears: Cementum and dentine increment analysis provides new insight into the cave bear ecology". Boreas. 51 (4): 810–823. Bibcode:2022Borea..51..810P. doi:10.1111/bor.12590. S2CID248793491.
^Molodtseva, A. S.; Makunin, A. I.; Salomashkina, V. V.; Kichigin, I. G.; Vorobieva, N. V.; Vasiliev, S. K.; Shunkov, M. V.; Tishkin, A. A.; Grushin, S. P.; Anijalg, P.; Tammeleht, E.; Keis, M.; Boeskorov, G. G.; Mamaev, N.; Okhlopkov, I. M.; Kryukov, A. P.; Lyapunova, E. A.; Kholodova, M. V.; Seryodkin, I. V.; Saarma, U.; Trifonov, V. A.; Graphodatsky, A. S. (2022). "Phylogeography of ancient and modern brown bears from eastern Eurasia". Biological Journal of the Linnean Society. 135 (4): 722–733. doi:10.1093/biolinnean/blac009. PMC8943912. PMID35359699.
^Wang, M.-S.; Murray, G. G. R.; Mann, D.; Groves, P.; Vershinina, A. O.; Supple, M. A.; Kapp, J. D.; Corbett-Detig, R.; Crump, S. E.; Stirling, I.; Laidre, K. L.; Kunz, M.; Dalén, L.; Green, R. E.; Shapiro, B. (2022). "A polar bear paleogenome reveals extensive ancient gene flow from polar bears into brown bears". Nature Ecology & Evolution. 6 (7): 936–944. Bibcode:2022NatEE...6..936W. doi:10.1038/s41559-022-01753-8. PMID35711062. S2CID249747066.
^Gardin, A.; Salesa, M. J.; Siliceo, G.; Antón, M.; Pastor, J. F.; de Bonis, L. (2022). "The hindlimb of Amphicynodon leptorhynchus from the lower Oligocene of the Quercy Phosphorites (France): Highlight of new climbing adaptations of this early arctoid". Journal of Mammalian Evolution. 29 (4): 815–843. doi:10.1007/s10914-022-09621-9. S2CID251862008.
^Modafferi, M.; Melchionna, M.; Castiglione, S.; Tamagnini, D.; Maiorano, L.; Sansalone, G.; Profico, A.; Girardi, G.; Raia, P. (2022). "One among many: the enigmatic case of the Miocene mammal, Kolponomos newportensis". Biological Journal of the Linnean Society. 136 (3): 477–487. doi:10.1093/biolinnean/blac052.
^Valenzuela-Toro, A. M.; Pyenson, N. D. (2022). "New seal (Carnivora, Phocidae) record from the late Miocene-Pliocene of Guafo Island, southern Chile". Ameghiniana. 59 (5): 355–365. doi:10.5710/AMGH.06.07.2022.3498. S2CID250403877.
^de Bonis, L.; Grohé, C.; Surault, J.; Gardin, A. (2022). "Description of the first cranium and endocranial structures of Stenoplesictis minor (Mammalia, Carnivora), an early aeluroid from the Oligocene of the Quercy Phosphorites (southwestern France)". Historical Biology: An International Journal of Paleobiology. 34 (8): 1672–1684. Bibcode:2022HBio...34.1672D. doi:10.1080/08912963.2022.2045980. S2CID248580144.
^Jiangzuo, Q.; Liu, J.; Jiang, H.; Wang, Y. (2022). "A huge Pachycrocuta from the Middle Pleistocene loess in Luoning County, central China, and the evolution of mandible within Pliocrocuta-Pachycrocuta lineage". Historical Biology: An International Journal of Paleobiology (in press): 1–7. doi:10.1080/08912963.2022.2056839. S2CID247885999.
^Jiangzuo, Q.; Zhao, H.; Chen, X. (2022). "The first complete cranium of Homotherium (Machairodontinae, Felidae) from the Nihewan Basin (northern China)". The Anatomical Record. doi:10.1002/ar.25029. PMID35819068. S2CID250454227.
^Sherani, S.; Perng, L.; Sherani, M. (2022). "Evidence of cave lion (Panthera spelaea) from Pleistocene Northeast China". Historical Biology: An International Journal of Paleobiology. 35 (6): 988–996. doi:10.1080/08912963.2022.2071711. S2CID248634853.
^Lopatin, A. V. (2022). "Early Pleistocene Horseshoe Bat Rhinolophus macrorhinus cimmerius subsp. nov. (Rhinolophidae, Chiroptera) from the Taurida Cave in Crimea". Doklady Biological Sciences. 506 (1): 119–127. doi:10.1134/S0012496622050076. PMID36301417. S2CID253155578.
^Galán García, J.; Bañuls-Cardona, S.; Cuenca-Bescós, G.; Vergès, J. M. (2022). "Understanding the biogeography of Western European bats: the latest Pleistocene to Middle Holocene assemblage of El Mirador site (Sierra de Atapuerca, Spain)". Historical Biology: An International Journal of Paleobiology. 35 (9): 1686–1700. doi:10.1080/08912963.2022.2107430. S2CID251679747.
^Jiménez-Hidalgo, E.; Guerrero-Arenas, R.; Crespo, V. D. (2022). "First galericine erinaceid (Mammalia: Eulipotyphla) from the early Oligocene of tropical North America". Historical Biology: An International Journal of Paleobiology. 35 (6): 935–940. doi:10.1080/08912963.2022.2070018. S2CID248467861.
^ abKorth, W. W. (2022). "The Hedgehog Ocajila Macdonald, 1963 (Mammalia, Lipotyphla, Erinaceidae) from the Oligocene (Orellan to Arikareean) of North America". Annals of Carnegie Museum. 87 (3): 207–220. doi:10.2992/007.087.0302. S2CID250223143.
^Li, L. (2022). "New species of Plesiosorex (Eulipotyphla) from the middle Miocene of Gansu: the first record of Plesiosoricidae in China". Historical Biology: An International Journal of Paleobiology. 35 (9): 1556–1563. doi:10.1080/08912963.2022.2102912. S2CID250974897.
^Li, L.; Cailleux, F.; Mutu, E.; Van den Hoek Ostende, L. W.; Qiu, Z. (2022). "Sonidolestes wendusui, a new genus of Erinaceinae (Eulipotyphla, Mammalia) from the Lower Miocene of Inner Mongolia, China". Historical Biology: An International Journal of Paleobiology. 36: 1–11. doi:10.1080/08912963.2022.2141628. S2CID253439599.
^Bai, B.; Qi, T. (2022). "Ulanodon, a new name for the hyracodontid Ulania Qi, 1990 (Perissodactyla, Mammalia)". Vertebrata PalAsiatica. 60 (4): 328–329. doi:10.19615/j.cnki.2096-9899.220722.
^Bai, B. (2022). "Reappraisal of some perissodacyl fossils from the Middle Eocene of the Lijiang Basin, Yunnan, China with a revision of tapiroid Diplolophodon". Vertebrata PalAsiatica. 61 (1): 26–42. doi:10.19615/j.cnki.2096-9899.220721.
^Mallet, C.; Billet, G.; Cornette, R.; Houssaye, A. (2022). "Adaptation to graviportality in Rhinocerotoidea? An investigation through the long bone shape variation in their hindlimb". Zoological Journal of the Linnean Society. 196 (3): 1235–1271. doi:10.1093/zoolinnean/zlac007.
^Li, S.; Jiangzuo, Q.; Deng, T. (2022). "Body mass of the giant rhinos (Paraceratheriinae, Mammalia) and its tendency in evolution". Historical Biology: An International Journal of Paleobiology: 1–12. doi:10.1080/08912963.2022.2095908. S2CID250366746.
^Kampouridis, P.; Hartung, J.; Ferreira, G. S.; Böhme, M. (2022). "Reappraisal of the late Miocene elasmotheriine Parelasmotherium schansiense from Kutschwan (Shanxi Province, China) and its phylogenetic relationships". Journal of Vertebrate Paleontology. 41 (6): e2080556. doi:10.1080/02724634.2021.2080556. S2CID251369275.
^Badiola, A.; Perales-Gogenola, L.; Astibia, H.; Pereda-Suberbiola, X. (2022). "A synthesis of Eocene equoids (Perissodactyla, Mammalia) from the Iberian Peninsula: new signs of endemism". Historical Biology: An International Journal of Paleobiology. 34 (8): 1623–1631. Bibcode:2022HBio...34.1623B. doi:10.1080/08912963.2022.2060098. S2CID248164842.
^Perales-Gogenola, L.; Badiola, A.; Pereda Suberbiola, X.; Astibia, H. (2022). "New Eocene fossil remains of Palaeotheriidae (Perissodactyla, Mammalia) from Mazaterón (Soria, Castile and Leon, Spain)". Historical Biology: An International Journal of Paleobiology. 34 (8): 1388–1398. Bibcode:2022HBio...34.1388P. doi:10.1080/08912963.2021.2025363. S2CID245845873.
^van der Made, J.; Boulaghraief, K.; Chelli-Cheheb, R.; Cáceres, I.; Harichane, Z.; Sahnouni, M. (2022). "The last North African hipparions – hipparion decline and extinction follows a common pattern". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 303 (1): 39–87. doi:10.1127/njgpa/2022/1037. S2CID246465182.
^Dong, W.; Bai, W.-P.; Liu, W.-H.; Zhang, L.-M. (2022). "The first description of Equidae (Perissodactyla, Mammalia) from Xinyaozi Ravine in Shanxi, North China". Vertebrata PalAsiatica: 1. doi:10.19615/j.cnki.2096-9899.220926.
^Ferrero, B. S.; Schmidt, G. I.; Pérez-García, M. I.; Perea, D.; Ribeiro, A. M. (2022). "A new Toxodontidae (Mammalia, Notoungulata) from the upper Pliocene–lower Pleistocene of Uruguay". Journal of Vertebrate Paleontology. 41 (5): e2023167. doi:10.1080/02724634.2021.2023167. S2CID247089081.
^Zimicz, N.; Fernández, M.; Bond, M.; Chornogubsky, L.; Fernicola, J. C. (2022). "A new SANU (Mammalia, Panperissodactyla) from the early Eocene levels of the Lumbrera Formation at Los Cardones National Park (Salta Province, Northwestern Argentina)". Historical Biology: An International Journal of Paleobiology. 35 (11): 2193–2205. doi:10.1080/08912963.2022.2138373. S2CID253208445.
^Vera, R. B.; Krapovickas, V. (2022). "Paleobiology and paleoecology of ungulates from the Miocene of South America based on an ichnological analysis". Palaeogeography, Palaeoclimatology, Palaeoecology. 606. 111247. Bibcode:2022PPP...60611247V. doi:10.1016/j.palaeo.2022.111247. S2CID252487435.
^Vera, B.; Medina-González, P.; Moreno, K. (2022). "Paleobiological inferences on middle Eocene native ungulates from South America: Functional morphological analysis of Notostylops and Notopithecus". Journal of Morphology. 283 (9): 1231–1256. doi:10.1002/jmor.21499. PMID35915873. S2CID251255699.
^Vera, B.; Romano, C. O. (2022). "Youngest Interatheriinae (Mammalia, Notoungulata) from lower Pliocene Tunuyán Formation (Mendoza, Argentina)". Journal of Vertebrate Paleontology. 41 (6): e2023556. doi:10.1080/02724634.2021.2023556. S2CID247971405.
^Fernández-Monescillo, M.; Croft, D. A.; Pujos, F.; Antoine, P.-O. (2022). "Resolution of the long-standing controversy over the type species of the genus Pseudotypotherium (Mesotheriidae, Notoungulata)". Palaeoworld. doi:10.1016/j.palwor.2022.09.009. S2CID252770733.
^Fernández-Monescillo, M.; Croft, D. A.; Pujos, F.; Antoine, P.-O. (2022). "Taxonomic history and intraspecific analysis of Mesotherium cristatum (Mammalia, Notoungulata, Mesotheriidae) from the Early-Middle Pleistocene of Buenos Aires Province, Argentina". Historical Biology: An International Journal of Paleobiology. 35 (6): 1028–1040. doi:10.1080/08912963.2022.2074844. S2CID249531139.
^Gomes, V. S.; Lessa, C. M. B.; de Oliveira, G. R.; Bantim, R. A. M.; Sayão, J.; Bocherens, H.; de Araújo-Júnior, H. I.; Dantas, M. A. T. (2022). "Seasonal variations in diet (δ13C) and climate (δ 18O) inferred through toxodonts enamel teeth during the Late Pleistocene in the Brazilian Intertropical Region". Journal of South American Earth Sciences. 121. 104148. doi:10.1016/j.jsames.2022.104148. S2CID254530135.
^Kort, A. E.; Ahrens, H.; Polly, P. D.; Morlo, M. (2022). "Postcrania and paleobiology of Patriofelis ulta (Mammalia, Oxyaenodonta) of the Bridgerian (lower-middle Eocene) of North America". Journal of Vertebrate Paleontology. 41 (6): e2045491. doi:10.1080/02724634.2021.2045491. S2CID247985479.
^Barasoain, D.; Zurita, A. E.; Croft, D. A.; Montalvo, C. I.; Contreras, V. H.; Miño-Boilini, Á. R.; Tomassini, R. L. (2022). "A New Glyptodont (Xenarthra: Cingulata) from the Late Miocene of Argentina: New Clues About the Oldest Extra-Patagonian Radiation in Southern South America". Journal of Mammalian Evolution. 29 (2): 263–282. doi:10.1007/s10914-021-09599-w. S2CID245945029.
^Avilla, L. S.; Góis, F.; Soibelzon, E.; Muniz de Abreu, G.; Rotti, A. (2022). "A multi-proxy study of an extinct giant armadillo juvenile unveils the initial life of pampatheres (Cingulata: Xenarthra: Mammalia)". Journal of South American Earth Sciences. 118: Article 103928. Bibcode:2022JSAES.11803928A. doi:10.1016/j.jsames.2022.103928. S2CID250589266.
^Nuñez-Blasco, A.; Miño-Boilini, Á. R.; Bonini, R. A.; de S. Barbosa, F. H.; Tomassini, R. L.; Zurita, A. E. (2022). "New remains of Eleutherocercus (Xenarthra, Cingulata, Glyptodontidae) from the Pampean and Northwestern regions of Argentina: morphology and phylogeny of late Neogene Doedicurinae". Historical Biology: An International Journal of Paleobiology. 35 (8): 1274–1287. doi:10.1080/08912963.2022.2087521. S2CID250028511.
^Sedor, F. A.; Klimeck, T. D. F.; Dias, E. V.; Oliveira, E. V.; Ciancio, M. R.; Vieira, K. T. P.; Fernandes, L. A.; Angulo, R. J. (2022). "The Eocene armadillo Utaetus buccatus (Euphractinae) in the Guabirotuba Formation (Curitiba basin) and carapace morphological implications". Journal of South American Earth Sciences. 114: Article 103694. Bibcode:2022JSAES.11403694S. doi:10.1016/j.jsames.2021.103694.
^Casali, D. M.; Boscaini, A.; Gaudin, T. J.; Perini, F. A. (2022). "Reassessing the phylogeny and divergence times of sloths (Mammalia: Pilosa: Folivora), exploring alternative morphological partitioning and dating models". Zoological Journal of the Linnean Society. 196 (4): 1505–1551. doi:10.1093/zoolinnean/zlac041.
^Bomfim Melki, L.; de Souza Barbosa, F. H.; Paglarelli Bergqvist, L. (2022). "On the Eating Habits of Sloths: Finite Element Analysis and Niche Specialization". Journal of Mammalian Evolution. 29 (4): 763–772. doi:10.1007/s10914-022-09618-4. S2CID250250829.
^Gaudin, T. J.; Scaife, T. (2022). "Cranial osteology of a juvenile specimen of Acratocnus ye (Mammalia, Xenarthra, Folivora) and its ontogenetic and phylogenetic implications". The Anatomical Record. 306 (3): 607–637. doi:10.1002/ar.25062. PMID36054593. S2CID251779213.
^Dantas, M. A. T.; Santos, A. M. A. (2022). "Inferring the paleoecology of the Late Pleistocene giant ground sloths from the Brazilian Intertropical Region". Journal of South American Earth Sciences. 117: Article 103899. Bibcode:2022JSAES.11703899D. doi:10.1016/j.jsames.2022.103899.
^Boscaini, A.; Toledo, N.; Pérez, L. M.; Taglioretti, M. L.; McFee, R. K. (2022). "New well-preserved materials of Glossotherium chapadmalense (Xenarthra, Mylodontidae) from the Pliocene of Argentina shed light on the origin and evolution of the genus". Journal of Vertebrate Paleontology. 42 (2). e2128688. Bibcode:2022JVPal..42E8688B. doi:10.1080/02724634.2022.2128688. S2CID253286158.
^Quiñones, S. I.; Zurita, A. E.; Miño-Boilini, Á. R.; Candela, A. M.; Luna, C. A. (2022). "Unexpected record of the aquatic sloth Thalassocnus (Mammalia, Xenarthra, Folivora) in the upper Neogene of the Puna (Jujuy, Argentina)". Journal of Vertebrate Paleontology. 42 (1). e2109973. Bibcode:2022JVPal..42E9973Q. doi:10.1080/02724634.2022.2109973. S2CID252327107.
^Román-Carrión, J. E.; Madden, R.; Miño-Boilini, Á. R.; Zurita, A. E. (2022). "New data on the diversity and chronology of the late Miocene Xenarthra (Mammalia) from Ecuador". Journal of Vertebrate Paleontology. 41 (6): e2088293. doi:10.1080/02724634.2021.2088293. S2CID250594374.
^Korth, W. W. (2022). "New Material of Leptictids (Mammalia: Leptictida) from the Late Eocene (Duchesnean–Chadronian) of Southwestern Montana". Annals of Carnegie Museum. 87 (4): 309–326. doi:10.2992/007.087.0403. S2CID255547100.
^Vera, B.; Folino, M.; Soechting, W.; Böttcher, N. (2022). "New data on Propyrotherium (Mammalia, Pyrotheria) from the middle Eocene age (Chubut, Argentina): anatomy, age constraints, and phylogeny". The Science of Nature. 109 (5): Article number 40. Bibcode:2022SciNa.109...40V. doi:10.1007/s00114-022-01810-z. PMID35939154. S2CID251401349.
^Kramarz, A. G.; Macphee, R. D. E. (2022). "Did some extinct South American native ungulates arise from an afrothere ancestor? A critical appraisal of Avilla and Mothé's (2021) Sudamericungulata – Panameridiungulata hypothesis". Journal of Mammalian Evolution. 30: 67–77. doi:10.1007/s10914-022-09633-5. S2CID253433775.
^ abTravouillon, K. J.; Butler, K.; Archer, M.; Hand, S. J. (2022). "Two new species of the genus Gumardee (Marsupialia, Macropodiformes) reveal the repeated evolution of bilophodonty in kangaroos". Alcheringa: An Australasian Journal of Palaeontology. 46 (1): 105–128. Bibcode:2022Alch...46..105T. doi:10.1080/03115518.2021.2012595. S2CID246819547.
^Kerr, I. A. R.; Prideaux, G. J. (2022). "A new genus of kangaroo (Marsupialia, Macropodidae) from the late Pleistocene of Papua New Guinea". Transactions of the Royal Society of South Australia. 146 (2): 295–318. Bibcode:2022TRSAu.146..295K. doi:10.1080/03721426.2022.2086518. S2CID250189771.
^Pino, K.; Vallejos-Garrido, P.; Espinoza-Aravena, N.; Cooper, R. B.; Silvestro, D.; Hernández, C. E.; Rodríguez-Serrano, E. (2022). "Regional landscape change triggered by Andean uplift: The extinction of Sparassodonta (Mammalia, Metatheria) in South America". Global and Planetary Change. 210: Article 103758. Bibcode:2022GPC...21003758P. doi:10.1016/j.gloplacha.2022.103758. S2CID246764027.
^Richards, H. L.; Rovinsky, D. S.; Adams, J. W.; Evans, A. R. (2022). "Inferring the palaeobiology of palorchestid marsupials through analysis of mammalian humeral and femoral shape". Journal of Mammalian Evolution. 30: 47–66. doi:10.1007/s10914-022-09640-6. S2CID255081555.
^ abMao, F.; Brewer, P.; Hooker, J. J.; Meng, J. (2022). "New allotherian specimens from the Middle Jurassic Woodeaton Quarry (Oxfordshire) and implications for haramiyidan diversity and phylogeny". Journal of Systematic Palaeontology. 20 (1): 1–37. doi:10.1080/14772019.2022.2097021. S2CID251708147.
^Jin, X.; Mao, F.; Du, T.; Yang, Y.; Meng, J. (2022). "A new multituberculate from the latest Cretaceous of central China and its implications for multituberculate tooth homologies and occlusion". Journal of Mammalian Evolution. 30: 1–20. doi:10.1007/s10914-022-09636-2. S2CID253192551.
^Weaver, L. N.; Fulghum, H. Z.; Grossnickle, D. M.; Brightly, W. H.; Kulik, Z. T.; Wilson Mantilla, G. P.; Whitney, M. R. (2022). "Multituberculate Mammals Show Evidence of a Life History Strategy Similar to That of Placentals, Not Marsupials". The American Naturalist. 200 (3): 383–400. doi:10.1086/720410. PMID35977786. S2CID250653859.
^Solé, F.; Fischer, V.; Le Verger, K.; Mennecart, B.; Speijer, R. P.; Peigné, S.; Smith, T. (2022). "Evolution of European carnivorous mammal assemblages through the Palaeogene". Biological Journal of the Linnean Society. 135 (4): 734–753. doi:10.1093/biolinnean/blac002.
^Crespo, V. D.; Ríos, M.; Ruiz-Sánchez, F. J.; Montoya, P. (2022). "Cainotheriids vs. lagomorphs: study of their ecological niche partitioning during the early Miocene of the Ribesalbes-Alcora Basin (Castelló, Spain)". Historical Biology: An International Journal of Paleobiology. 34 (8): 1509–1519. Bibcode:2022HBio...34.1509C. doi:10.1080/08912963.2022.2042809. hdl:10550/90599. S2CID247513211.
^Arney, I.; Benefit, B. R.; McCrossin, M. L.; MacLatchy, L.; Kingston, J. D. (2022). "Herbivore isotopic dietary ecology of the middle Miocene Maboko Formation, Kenya". Palaeogeography, Palaeoclimatology, Palaeoecology. 601: Article 111061. Bibcode:2022PPP...60111061A. doi:10.1016/j.palaeo.2022.111061. S2CID248974509.
^Benites-Palomino, A.; Valenzuela-Toro, A. M.; Figueroa-Bravo, C.; Varas-Malca, R. M.; Nielsen, S. N.; Gutstein, C. S.; Carrillo-Biceño, J. D. (2022). "A new marine mammal assemblage from central Chile reveals the Pliocene survival of true seals in South America". Historical Biology: An International Journal of Paleobiology. 34 (11): 2205–2217. Bibcode:2022HBio...34.2205B. doi:10.1080/08912963.2021.2007528. S2CID245685603.