2019 in paleontology

List of years in paleontology (table)
In paleobotany
2016
2017
2018
2019
2020
2021
2022
In arthropod paleontology
2016
2017
2018
2019
2020
2021
2022
In paleoentomology
2016
2017
2018
2019
2020
2021
2022
In paleomalacology
2016
2017
2018
2019
2020
2021
2022
In paleoichthyology
2016
2017
2018
2019
2020
2021
2022
In reptile paleontology
2016
2017
2018
2019
2020
2021
2022
In archosaur paleontology
2016
2017
2018
2019
2020
2021
2022
In mammal paleontology
2016
2017
2018
2019
2020
2021
2022

Paleontology or palaeontology is the study of prehistoric life forms on Earth through the examination of plant and animal fossils.[1] This includes the study of body fossils, tracks (ichnites), burrows, cast-off parts, fossilised feces (coprolites), palynomorphs and chemical residues. Because humans have encountered fossils for millennia, paleontology has a long history both before and after becoming formalized as a science. This article records significant discoveries and events related to paleontology that occurred or were published in the year 2019.

Flora

Plants

Fungi

Name Novelty Status Authors Age Type locality Country Notes Images

Chaetosphaeria elsikii[2]

Sp. nov

Valid

Pound et al.

Miocene

Brassington Formation

 United Kingdom

A fungus, a species of Chaetosphaeria.

Meliolinites neogenicus[3]

Sp. nov

Valid

Khan, Bera & Bera

Late Pliocene to early Pleistocene

Kimin Formation

 India

A fungus belonging to the family Meliolaceae.

Meliolinites pliocenicus[4]

Sp. nov

Valid

Bera, Khan & Bera

Pliocene

Subansiri Formation

 India

A fungus belonging to the family Meliolaceae.

Ophiocordyceps dominicanus[5]

Sp. nov

Valid

Poinar & Vega

Burdigalian

Dominican amber

 Dominican Republic

A fungus, a species of Ophiocordyceps. Announced in 2019; the final version of the article naming it was published in 2020.

Ourasphaira[6]

Gen. et sp. nov

Valid

Loron et al.

MesoproterozoicNeoproterozoic transition

Grassy Bay Formation

 Canada

A process-bearing multicellular eukaryotic microorganism. Argued to be an early fungus by Loron et al. (2019).[7] Genus includes new species O. giraldae.

Palaeoglomus strotheri[8]

Sp. nov

Valid

Retallack

Ordovician (Darriwilian)

Lenoir Formation

 United States
( Tennessee)

Phomites neogenicus[9]

Sp. nov

Valid

Vishnu, Khan & Bera in Vishnu et al.

Neogene

 India

A fungus similar to members of the genus Phoma.

Phomites siwalicus[9]

Sp. nov

Valid

Vishnu, Khan & Bera in Vishnu et al.

Neogene

 India

A fungus similar to members of the genus Phoma.

Polycephalomyces baltica[5]

Sp. nov

Valid

Poinar & Vega

Priabonian

Baltic amber

 Russia
( Kaliningrad Oblast)

A fungus belonging to the family Ophiocordycipitaceae. Announced in 2019; the final version of the article naming it was published in 2020.

Priscadvena[10]

Gen. et sp. nov

Valid

Poinar & Vega

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A kickxellomycotine trichomycete in the new order Priscadvenales.
Type species P. corymbosa.

Prototaxites honeggeri[8]

Sp. nov

Valid

Retallack

Ordovician (Darriwilian)

Lenoir Formation

 United States
( Tennessee)

Rhexoampullifera stogieana[2]

Sp. nov

Valid

Pound et al.

Miocene

Brassington Formation

 United Kingdom

A fungus belonging to the group Ascomycota.

Rhexoampullifera sufflata[2]

Sp. nov

Valid

Pound et al.

Miocene

Brassington Formation

 United Kingdom

A fungus belonging to the group Ascomycota.

Paleomycological research

Sponges

Research

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Acanthochaetetes huauclillensis[17]

Sp. nov

Valid

Sánchez-Beristain, García-Barrera & Moreno-Bedmar

Early Cretaceous (late Hauterivian to early Barremian)

 Mexico

A chaetetid sponge.

Allosacus pedunculatus[18]

Sp. nov

Valid

Carrera & Sumrall

Ordovician

Lenoir Limestone

 United States
( Tennessee)

A member of the family Streptosolenidae.

Auraeopirania[19]

Gen. et comb. et 3 sp. nov

Valid

Botting et al.

Ordovician

Fezouata Formation
Llanfallteg Formation
Ningkuo Formation

 China
 Morocco
 United Kingdom

A member of Protomonaxonida belonging to the family Piraniidae. The type species is "Pirania" auraeum Botting (2007); genus also includes new species A. pinwyddeni, A. pykitia and A. sciurucauda.

Cannapirania[19]

Gen. et 2 sp. et comb. nov

Valid

Botting et al.

Ordovician

Llanfawr Mudstones Formation
Wenchang Formation

 China
 United Kingdom

A member of Protomonaxonida belonging to the family Piraniidae. The type species is C. canna; genus also includes new species C. vermiformis', as well as "Pirania" llanfawrensis Botting (2004).

Carduispongia[20]

Gen. et sp. nov

Valid

Nadhira et al.

Silurian (Wenlock)

Coalbrookdale Formation

 United Kingdom

A sponge, possibly a calcareous sponge. The type species is C. pedicula.

Centrosia clavata[21]

Sp. nov

Valid

Świerczewska-Gładysz, Jurkowska & Niedźwiedzki

Late Cretaceous (late Turonian)

Opole Basin

 Poland

A hexactinellid sponge belonging to the family Callodictyonidae.

Crateromorpha opolensis[21]

Sp. nov

Valid

Świerczewska-Gładysz, Jurkowska & Niedźwiedzki

Late Cretaceous (late Turonian and early Coniacian)

Opole Basin

 Poland

A hexactinellid sponge belonging to the family Rossellidae.

Cystostroma primordia[22]

Sp. nov

Valid

Jeon et al.

Ordovician (Floian to Darriwilian)

Duwibong Formation
Hunghuayuan Formation

 China
 South Korea

A member of Stromatoporoidea.

Eoghanospongia[23]

Gen. et sp. nov

Valid

Botting et al.

Silurian (Telychian)

 United Kingdom

A hexactinellid sponge. Genus includes new species E. carlinslowpensis. Announced in 2019; the final version of the article naming it was published in 2020.

Hamptonia jianhensis[24]

Sp. nov

Valid

Wang et al.

Cambrian Stage 4

 China

A sponge.

Jianhella[25]

Gen. et sp. nov

Valid

Wang et al.

Cambrian Stage 4

Balang Formation

 China

A leptomitid sponge. Genus includes new species J. obconica.

Monoplectroninia malonei[26]

Sp. nov

Valid

McSweeney, Buckeridge & Kelly

Early Miocene

Batesford Limestone

 Australia

A calcareous sponge belonging to the family Minchinellidae.

Pachastrella rara[21]

Sp. nov

Valid

Świerczewska-Gładysz, Jurkowska & Niedźwiedzki

Late Cretaceous (late Turonian)

Opole Basin

 Poland

A demosponge belonging to the family Pachastrellidae.

Palaeorossella[27]

Gen. et sp. nov

Valid

Li et al.

Latest Ordovician

 China

A rossellid hexactinellid sponge. Genus includes new species P. sinensis.

Pellipirania[19]

Gen. et sp. nov

Valid

Botting et al.

Ordovician (Tremadocian)

Fezouata Formation

 Morocco

A member of Protomonaxonida belonging to the family Piraniidae. The type species is P. gloria.

Pirania? ericia[19]

Sp. nov

Valid

Botting et al.

Ordovician (Tremadocian)

Dol-Cyn-Afon Formation

 United Kingdom

A member of Protomonaxonida belonging to the family Piraniidae.

Pirania? peregrinata[19]

Sp. nov

Valid

Botting et al.

Ordovician (Floian)

Ningkuo Formation

 China

A member of Protomonaxonida belonging to the family Piraniidae.

Pseudoleptomitus[28]

Gen. et sp. nov

Valid

Botting et al.

Early Triassic

 United States

A sponge belonging to the group Protomonaxonida and to the family Leptomitidae. Genus includes new species P. advenus.

Rugocoelia loudonensis[18]

Sp. nov

Valid

Carrera & Sumrall

Ordovician

Lenoir Limestone

 United States
( Tennessee)

A member of the family Anthaspidellidae.

Subsphaerospongia[29]

Gen. et comb. nov

Valid

Bizzarini

Late Triassic

 Italy

A sponge; a new genus for "Stellispongia" subsphaerica Dieci, Antonacci & Zardini (1970).

Teganiella finksi[30]

Sp. nov

Valid

Mouro et al.

Carboniferous (Pennsylvanian)

Mecca Quarry Shale

 United States

Vasispongia[31]

Gen. et sp. nov

Valid

Tang & Xiao in Tang et al.

Cambrian Stage 2

Hetang Formation

 China

A sponge of uncertain phylogenetic placement. The type species is V. sinensis.

Vauxia leioia[32]

Sp. nov

Valid

Luo, Zhao & Zeng

Cambrian Stage 3

 China

A vauxiid sponge.

Cnidarians

Research

  • A study on the growth characteristics of three species of Ordovician corals belonging to the genus Agetolites from the Xiazhen Formation (China), and on their implications for inferring phylogenetic relationships of this genus, is published by Sun, Elias & Lee (2019).[33]
  • A study on a large colonial rugose coral from the Ordovician Kope Formation (Kentucky, United States) is published by Harris et al. (2019).[34]
  • A study on the morphology, growth characteristics and phylogenetic relationships of the Silurian tabulate coral Halysites catenularius is published by Liang, Elias & Lee (2019).[35]
  • Fossils of tabulate corals without septa, representing the first evidence that unmetamorphosed, slightly indurated Paleozoic sandstones crop out amidst the deposits of the Atlantic Coastal Plain Province of the United States, are reported from South Carolina by Landmeyer et al. (2019).[36] This finding is strongly disputed because all other rocks of Paleozoic age in the study area are greatly metamorphosed, the rocks where the fossils were found are traditionally mapped as the Cretaceous Middendorf Formation, and it is suggested that the fossils in question are the bark of Cretaceous conifers in Cretaceous sandstone, instead of Paleozoic corals in Paleozoic sandstone.[37]
  • A study aiming to determine whether ecological selection based on physiology, behavior, habitat, etc. played a role in the long-term survival of corals during the late Paleocene and early Eocene is published by Weiss & Martindale (2019).[38]
  • Fossils of Acropora prolifera dating back to the Pleistocene are reported by Precht et al. (2019).[39]
  • A study on the distribution of reef corals during the last interglacial is published by Jones et al. (2019), who also evaluate the utility of fossil reef coral data for predictions of impact of future climate changes on reef corals.[40]
  • A study on a problematic fossil specimen from the Devonian Ponta Grossa Formation (Brazil), assigned by different authors to the species Serpulites sica or Euzebiola clarkei, is published by Van Iten et al. (2019), who interpret this fossil as a medusozoan capable of clonal budding, and transfer it to the genus Sphenothallus.[41]
  • The oldest mesophotic coral ecosystems, dating back to middle Silurian, from the Lower Visby Beds on Gotland have been described by Zapalski & Berkowski.[42] These communities, dominated by platy corals give also clues about the onset of coral-algal symbiosis.
  • Mihaljević (2019) describes new fossil coral collections from the Oligocene and Miocene of Sarawak (Malaysia), Negros Island and Cebu (the Philippines).[43]
  • A study on the anatomy, ontogeny and taxonomy of the Norian hydrozoan Heterastridium, based on data from fossil specimens from central Iran and south Turkey, is published by Senowbari-Daryan & Link (2019).[44]

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Amygdalophylloides omarai[45]

Sp. nov

Valid

Kora, Herbig & El Desouky

Carboniferous (Moscovian)

Rod El Hamal Formation

 Egypt

A rugose coral.

Antillia coatesi[46]

Sp. nov

Valid

Budd & Klaus in Budd et al.

Late Miocene–late Pliocene

Bowden Formation
Gurabo Formation
Mao Formation
Old Bank Formation

 Dominican Republic
 Jamaica
 Panama

A coral belonging to the subfamily Mussinae.

Aulopora chiharai[47]

Sp. nov

Valid

Niko, Ibaraki & Tazawa

Devonian

 Japan

Bothrophyllum cylindricum[45]

Sp. nov

Valid

Kora, Herbig & El Desouky

Carboniferous (Moscovian)

Rod El Hamal Formation

 Egypt

A rugose coral.

Bothrophyllum suezensis[45]

Sp. nov

Valid

Kora, Herbig & El Desouky

Carboniferous (Moscovian)

Rod El Hamal Formation

 Egypt

A rugose coral.

Ceratophyllum simplex[48]

Sp. nov

Valid

Liao & Liang

Devonian (Givetian)

Wenglai Formation

 China

A rugose coral.

Conopora alloporoides[49]

Sp. nov

Valid

Cairns

Miocene (Messinian)

 Spain

A member of the family Stylasteridae.

Conopora forticula[49]

Sp. nov

Valid

Cairns

Miocene (Messinian)

 Spain

A member of the family Stylasteridae.

Crypthelia ingens[49]

Sp. nov

Valid

Cairns

Miocene (Messinian)

 Spain

A member of the family Stylasteridae.

Crypthelia zibrowii[49]

Sp. nov

Valid

Cairns

Miocene (Messinian)

 Spain

A member of the family Stylasteridae.

Cyathophyllum wenglaiense[48]

Sp. nov

Valid

Liao & Liang

Devonian (Givetian)

Wenglai Formation

 China

A rugose coral.

Cystiphylloides marennense[50]

Sp. nov

Valid

Coen-Aubert

Devonian (Givetian)

Mont d'Haurs Formation

 Belgium

A rugose coral belonging to the family Cystiphyllidae. Originally described as a species of Cystiphylloides, but subsequently made the type species of the separate genus Marennophyllum.[51]

Devonodiscus[52]

Gen. et 2 sp. et comb. nov

Valid

Pedder

Devonian

 Canada
 Colombia
 Russia
 Australia?
 China?
 United States?
 Vietnam?

A coral. The type species is D. latisubex; genus also includes new species D. pedderi,[53] "Combophyllum" multiradiatum Meek (1868), "Glossophyllum" discoideum Soshkina (1936) and possibly also "Hadrophyllum" wellingtonense Packham (1954) and "Glossophyllum" clebroseptatum Kravtsov (1975).

Dirimia[54]

Gen. et 6 sp. nov

Valid

Fedorowski & Ohar

Carboniferous (Bashkirian)

 Ukraine

A rugose coral belonging to the family Kumpanophyllidae. The type species is D. multiplexa; genus also includes D. similis, D. recessia, D. composita, D. extrema and D. nana.

Distichopora patula[49]

Sp. nov

Valid

Cairns

Miocene (Messinian)

 Spain

A member of the family Stylasteridae.

Gyanyimaphyllum[55]

Gen. et sp. nov

Valid

Wang et al.

Permian (Changhsingian)

 China

A rugose coral. Genus includes new species G. crassiseptatum.

Heritschioides simplex[56]

Sp. nov

Valid

Fedorowski, Bamber & Richards

Carboniferous (Bashkirian)

Mattson Formation

 Canada
( Northwest Territories)

A rugose coral belonging to the group Stauriida and the family Aulophyllidae.

Hispaniastraea ousriorum[57]

Sp. nov

Valid

Boivin, Vasseur & Lathuilière in Boivin et al.

Early Jurassic (Pliensbachian)

 Morocco

An anthozoan, possibly a member of Hexanthiniaria.

Ipciphyllum floricolumellum[55]

Sp. nov

Valid

Wang et al.

Permian (Changhsingian)

 China

A rugose coral.

Ipciphyllum naoticum[55]

Sp. nov

Valid

Wang et al.

Permian (Changhsingian)

 China

A rugose coral.

Ipciphyllum zandaense[55]

Sp. nov

Valid

Wang et al.

Permian (Changhsingian)

 China

A rugose coral.

Isophyllia jacksoni[46]

Sp. nov

Valid

Budd & Klaus in Budd et al.

Late Miocene–early Pleistocene

Cercado Formation
Gurabo Formation
Los Haitises Formation
Mao Formation
Seroe Domi Formation

 Curaçao
 Dominican Republic

A species of Isophyllia.

Isophyllia maoensis[46]

Sp. nov

Valid

Budd & Klaus in Budd et al.

Late Miocene–early Pleistocene

Cercado Formation
Gurabo Formation
Isla Colón Formation
Mao Formation

 Dominican Republic
 Panama

A species of Isophyllia.

Kumpanophyllum columellatum[58]

Sp. nov

Valid

Fedorowski

Carboniferous (Bashkirian)

 Ukraine

A rugose coral belonging to the family Kumpanophyllidae.

Kumpanophyllum decessum[58]

Sp. nov

Valid

Fedorowski

Carboniferous (Bashkirian)

 Ukraine

A rugose coral belonging to the family Kumpanophyllidae.

Kumpanophyllum levis[58]

Sp. nov

Valid

Fedorowski

Carboniferous (Bashkirian)

 Ukraine

A rugose coral belonging to the family Kumpanophyllidae.

Kumpanophyllum praecox[58]

Sp. nov

Valid

Fedorowski

Carboniferous (Bashkirian)

 Ukraine

A rugose coral belonging to the family Kumpanophyllidae.

Lepidopora fistulosa[49]

Sp. nov

Valid

Cairns

Miocene (Messinian)

 Spain

A member of the family Stylasteridae.

Nemistium liardense[56]

Sp. nov

Valid

Fedorowski, Bamber & Richards

Carboniferous (Bashkirian)

Mattson Formation

 Canada
( Northwest Territories)

A rugose coral belonging to the group Stauriida and the family Lithostrotionidae.

Neorylstonia[59]

Nom. nov

Valid

Vasseur et al.

Early Jurassic (Sinemurian to Pliensbachian)

 Morocco

A stony coral belonging to the group Caryophylliina and the superfamily Volzeioidea; a replacement name for Mesophyllum Beauvais (1986).

Octapyrgites[60]

Gen. et sp. nov

Valid

Guo et al.

Cambrian Stage 2

Yanjiahe Formation

 China

An olivooid medusozoan. Genus includes new species O. elongatus.

Paraconularia kikapu[61]

Sp. nov

Valid

Quiroz-Barroso, Sour-Tovar & Quiroz-Barragán

Permian

Las Delicias Formation

 Mexico

A member of Conulariida.

Paraconularia kingii[61]

Sp. nov

Valid

Quiroz-Barroso, Sour-Tovar & Quiroz-Barragán

Permian

Las Delicias Formation

 Mexico

A member of Conulariida.

Pliobothrus nielseni[49]

Sp. nov

Valid

Cairns

Miocene (Messinian)

 Spain

A member of the family Stylasteridae.

Pliobothrus striatus[49]

Sp. nov

Valid

Cairns

Miocene (Messinian)

 Spain

A member of the family Stylasteridae.

Procteria (Granulidictyum) alechinskyi[53]

Sp. nov

In press

Plusquellec

Devonian (Emsian)

Floresta Formation

 Colombia

A tabulate coral belonging to the group Favositida and the family Micheliniidae.

Scolymia meederi[46]

Sp. nov

Valid

Budd & Klaus in Budd et al.

Late Pliocene

Tamiami Formation

 United States

A species of Scolymia.

Scolymia tamiamiensis[46]

Sp. nov

Valid

Budd & Klaus in Budd et al.

Late Pliocene

Tamiami Formation

 United States

A species of Scolymia.

Septuconularia[62]

Gen. et sp. nov

Valid

Guo et al.

Cambrian Stage 2

Yanjiahe Formation

 China

A hexangulaconulariid. Genus includes new species S. yanjiaheensis.

Sinkiangopora kawanoi[63]

Sp. nov

Valid

Niko & Fujikawa

Permian

Zomeki Limestone

 Japan

A tabulate coral.

Stephanocoenia annae[64]

Sp. nov

Valid

Löser

Early Cretaceous (Albian)

 Mexico
 United States

A stony coral belonging to the group Astrocoeniina.

Stylaster digitiformis[49]

Sp. nov

Valid

Cairns

Miocene (Messinian)

 Spain

A species of Stylaster.

Stylaster multicavus[49]

Sp. nov

Valid

Cairns

Miocene (Messinian)

 Spain

A species of Stylaster.

Stylaster tuberosus[49]

Sp. nov

Valid

Cairns

Miocene (Messinian)

 Spain

A species of Stylaster.

Thamnophyllum godefroidi[50]

Sp. nov

Valid

Coen-Aubert

Devonian (Givetian)

Mont d'Haurs Formation

 Belgium

A rugose coral belonging to the family Phillipsastreidae.

Thamnopora sumitaensis[65]

Sp. nov

Valid

Niko

Middle Devonian

Kamiarisu Formation

 Japan

A tabulate coral belonging to the order Favositida and the family Pachyporidae.

Trachyphyllia mcneilli[46]

Sp. nov

Valid

Budd & Klaus in Budd et al.

Late Miocene–late Pliocene

Cercado Formation
Gurabo Formation
Mao Formation
Old Bank Formation
Seroe Domi Formation

 Curaçao
 Dominican Republic
 Panama

A relative of the open brain coral.

Waagenophyllum clisicolumellum[55]

Sp. nov

Valid

Wang et al.

Permian (Changhsingian)

 China

A rugose coral.

Waagenophyllum gyanyimaense[55]

Sp. nov

Valid

Wang et al.

Permian (Changhsingian)

 China

A rugose coral.

Waagenophyllum intermedium[55]

Sp. nov

Valid

Wang et al.

Permian (Changhsingian)

 China

A rugose coral.

Arthropods

Bryozoans

Name Novelty Status Authors Age Type locality Country Notes Images

Adeonellopsis keralaensis[66]

Sp. nov

Valid

Sonar & Badve

Miocene (Burdigalian)

Quilon Beds

 India

A cheilostome bryozoan.

Aluis[67]

Gen. et sp. nov

Valid

López-Gappa & Pérez

Miocene (Burdigalian)

Chenque Formation
Monte León Formation
Puesto del Museo Formation

 Argentina

A cheilostome bryozoan belonging to the family Chaperiidae. Genus includes new species A. spinettai.

Atlantisina mylaensis[68]

Sp. nov

Valid

Rosso & Sciuto

Early Pleistocene (Gelasian)

 Italy

Ceriocava scholzi[69]

Sp. nov

Valid

Martha et al.

Late Cretaceous (Santonian)

 Germany

A putative cerioporine cyclostome.

Characodoma multiavicularia[70]

Sp. nov

Valid

Di Martino & Taylor in Di Martino et al.

Miocene

 Indonesia

A species of Characodoma.

Charixa bispinata[71]

Sp. nov

Valid

Martha, Taylor & Rader

Early Cretaceous (Albian)

 United States

A member of Cheilostomata.

Charixa emanuelae[71]

Sp. nov

Valid

Martha, Taylor & Rader

Early Cretaceous (Albian)

 United States

A member of Cheilostomata.

Charixa sexspinata[71]

Sp. nov

Valid

Martha, Taylor & Rader

Early Cretaceous (Albian)

 United States

A member of Cheilostomata.

Devonavictoria[72]

Nom. nov

Valid

Hernández

Devonian

 Russia

A rhabdomesid bryozoan; a replacement name for Salairella Mesentseva (2015).

Evactinopora mangeri[73]

Sp. nov

Valid

Yancey et al.

Carboniferous (Mississippian)

North America

A member of Cystoporata.

Gigantopora vartonensis[74]

Sp. nov

Valid

Pedramara et al.

Miocene

Qom Formation

 Iran

Homotrypa niagarensis[75]

Sp. nov

Valid

Ernst, Brett & Wilson

Silurian (Aeronian)

Reynales Formation

 United States

A trepostome bryozoan.

Hyporosopora keera[76]

Sp. nov

Valid

Martha, Taylor & Rader

Early Cretaceous (Albian)

 United States

A member of Cyclostomatida.

Iyarispora[71]

Gen. et 2 sp. nov

Valid

Martha, Taylor & Rader

Early Cretaceous (Albian)

 United States

A member of Cheilostomata. Genus includes new species I. ikaanakiteeh and I. chiass.

Lacrimula patriciae[70]

Sp. nov

Valid

Di Martino & Taylor in Di Martino et al.

Miocene

 Indonesia

An ascophoran-grade cheilostome.

Leioclema adsuetum[75]

Sp. nov

Valid

Ernst, Brett & Wilson

Silurian (Aeronian)

Reynales Formation

 United States

A trepostome bryozoan.

Leptotrypa lipovkiensis[77]

Sp. nov

Valid

Tolokonnikova & Pakhnevich

Devonian (Famennian)

Zadonsk Formation

 Russia

A trepostome bryozoan.

Mesonopora bernardwalteri[76]

Sp. nov

Valid

Martha, Taylor & Rader

Early Cretaceous (Albian)

 United States

A member of Cyclostomatida.

Micropora stellata[78]

Sp. nov

Valid

Di Martino, Taylor & Portell

Pliocene (Piacenzian)

Tamiami Formation

 United States

A species of Micropora.

Microporella sarasotaensis[78]

Sp. nov

Valid

Di Martino, Taylor & Portell

Pliocene (Piacenzian)

Tamiami Formation

 United States

A member of Ascophora belonging to the family Microporellidae.

Microporella tamiamiensis[78]

Sp. nov

Valid

Di Martino, Taylor & Portell

Pliocene (Piacenzian)

Tamiami Formation

 United States

A member of Ascophora belonging to the family Microporellidae.

Moyerella parva[75]

Sp. nov

Valid

Ernst, Brett & Wilson

Silurian (Aeronian)

Reynales Formation

 United States

A rhabdomesine cryptostome bryozoan.

Oncousoecia khirar[76]

Sp. nov

Valid

Martha, Taylor & Rader

Early Cretaceous (Albian)

 United States

A member of Cyclostomatida.

Pinegopora chilensis[79]

Sp. nov

Valid

Carrera et al.

Permian

Cerro El Árbol Formation

 Chile

A member of Cryptostomata belonging to the group Rhabdomesina and to the family Nikiforovellidae.

Pourtalesella chiarae[78]

Sp. nov

Valid

Di Martino, Taylor & Portell

Pliocene (Piacenzian)

Tamiami Formation

 United States

A member of Ascophora belonging to the family Celleporidae.

Pseudidmonea debodeae[80]

Sp. nov

Valid

Di Martino & Taylor

Early Miocene

Forest Hill Limestone

 New Zealand

A pseudidmoneid cyclostome.

Pseudidmonea oretiensis[80]

Sp. nov

Valid

Di Martino & Taylor

Early Miocene

Forest Hill Limestone

 New Zealand

A pseudidmoneid cyclostome.

Pseudobathystomella mira[81]

Sp. nov

Valid

Koromyslova, Martha & Pakhnevich

Late Cretaceous (late Maastrichtian)

 Turkmenistan

A cheilostome bryozoan belonging to the superfamily Lepralielloidea.

Ptilotrypa bajpaii[82]

Sp. nov

Valid

Swami et al.

Ordovician (Katian)

Yong Limestone

 India

A member of Cryptostomata.

Reptomultisparsa mclemoreae[76]

Sp. nov

Valid

Martha, Taylor & Rader

Early Cretaceous (Albian)

 United States

A member of Cyclostomatida.

Rhammatopora glenrosa[71]

Sp. nov

Valid

Martha, Taylor & Rader

Early Cretaceous (Albian)

 United States

A member of Cheilostomata.

Simplicidium jontoddi[71]

Sp. nov

Valid

Martha, Taylor & Rader

Early Cretaceous (Albian)

 United States

A member of Ctenostomatida.

Skylonia malabarica[66]

Sp. nov

Valid

Sonar & Badve

Miocene (Burdigalian)

Quilon Beds

 India

A cheilostome bryozoan.

Spiniflabellum laurae[78]

Sp. nov

Valid

Di Martino, Taylor & Portell

Pliocene (Piacenzian)

Tamiami Formation

 United States

A member of Ascophora belonging to the family Cribrilinidae.

Stenosipora? cribrata[70]

Sp. nov

Valid

Di Martino & Taylor in Di Martino et al.

Miocene

 Indonesia

An ascophoran-grade cheilostome.

Stylopoma warkhalensis[66]

Sp. nov

Valid

Sonar & Badve

Miocene (Burdigalian)

Quilon Beds

 India

A cheilostome bryozoan.

Tobolocella[83]

Gen. et sp. nov

Valid

Koromyslova, Pakhnevich & Fedorov

Late Cretaceous (Maastrichtian)

 Kazakhstan

A cheilostome bryozoan. Genus includes new species T. levinae.

Trypostega composita[78]

Sp. nov

Valid

Di Martino, Taylor & Portell

Pliocene (Piacenzian)

Tamiami Formation

 United States

A member of Ascophora belonging to the family Trypostegidae.

Uzbekipora[81]

Gen. et comb. nov

Valid

Koromyslova, Martha & Pakhnevich

Late Cretaceous (late Campanian)

 Uzbekistan

A cheilostome bryozoan belonging to the superfamily Lepralielloidea. The type species is "Porina" anplievae Favorskaya (1992).

Vincularia taylori[66]

Sp. nov

Valid

Sonar & Badve

Miocene (Burdigalian)

Quilon Beds

 India

A cheilostome bryozoan.

Brachiopods

Molluscs

Echinoderms

Research

  • A study on the morphology and phylogenetic relationships of the putative stem-echinoderm Yanjiahella biscarpa is published by Topper et al. (2019);[84] the study is subsequently criticized by Zamora et al. (2020).[85][86]
  • Soft tissue traces found in conjunction with skeletal molds are described in stylophorans by Lefebvre et al. (2019), who interpret their findings as supporting echinoderm and not hemichordate-like affinities of stylophorans.[87]
  • A study on the morphology and phylogenetic relationships of the lepidocystoid echinoderm Vyscystis is published by Nohejlová et al. (2019).[88]
  • A study on the phylogenetic relationships of diploporitan blastozoans is published by Sheffield & Sumrall (2019).[89]
  • A study on the morphology of the feeding ambulacral system in the Ordovician diploporitan Eumorphocystis, as indicated by data from well-preserved specimens from the Bromide Formation (Oklahoma, United States), is published by Sheffield & Sumrall (2019), who interpret their findings as indicating that Eumorphocystis was closely related to crinoids and that crinoids are nested within blastozoans;[90] their conclusions about the relationship between Eumorphocystis and crinoids are subsequently contested by Guensburg et al. (2020).[91]
  • A study on the morphology and phylogenetic relationships of Macurdablastus uniplicatus is published by Bauer, Waters & Sumrall (2019).[92]
  • A study on the morphology and phylogenetic relationships of Hexedriocystis is published online by Zamora & Sumrall (2019), who consider this taxon to be a blastozoan.[93]
  • A study on the paleoecology of the specimens of the edrioasteroid Neoisorophusella lanei preserved in limestone slabs from the Carboniferous (Chesterian) Kinkaid Formation (Illinois, United States) is published by Shroat-Lewis, Greenwood & Sumrall (2019).[94]
  • A study on the morphology of Cupulocrinus and on its implications for inferring the origin of the flexible crinoids is published by Peter (2019).[95]
  • A study on the phylogenetic relationships of diplobathrid crinoids is published by Cole (2019).[96]
  • A study on the biological and ecological controls on duration of diplobathrid crinoid genera is published online by Cole (2019).[97]
  • A study on the macro-evolutionary patterns of body-size trends of cyrtocrinid crinoids is published by Brom (2019).[98]
  • A study on patterns of paleocommunity structure and niche partitioning in crinoids from the Ordovician (Katian) Brechin Lagerstätte (Ontario, Canada) is published by Cole, Wright & Ausich (2019).[99]
  • A study on the anatomy of the nervous and circulatory systems of the Cretaceous crinoid Decameros ricordeanus and on the phylogenetic relationships of this species is published online by Saulsbury & Zamora (2019).[100]
  • A study on the substrate preference in stem group sea urchins during the Carboniferous Period will be published by Thompson & Bottjer (2019).[101]
  • A study on Early Triassic recovery of sea urchins after the Permian–Triassic extinction event is published by Pietsch et al. (2019).[102]
  • A fossil brittle star belonging to the genus Ophiopetra, representing the first record of articulated brittle star from the Mesozoic of South America reported so far, is described from the Lower Cretaceous Agua de la Mula Member of the Agrio Formation (Argentina) by Fernández et al. (2019), who transfer the genus Ophiopetra to the family Ophionereididae within the order Amphilepidida.[103]

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Acanthocrinus carsli[104]

Sp. nov

Valid

Ausich & Zamora

Devonian (Emsian)

Mariposas Formation

 Spain

A camerate crinoid.

Applinocrinus striatus[105]

Sp. nov

Valid

Gale

Late Cretaceous

 France
 United Kingdom

A crinoid belonging to the group Roveacrinida and the family Saccocomidae.

Archaeocidaris ivanovi[106]

Sp. nov

Valid

Thompson & Mirantsev in Thompson et al.

Carboniferous

 Russia

A sea urchin.

Astrosombra[107]

Gen. et sp. nov

Valid

Thuy, Gale & Numberger-Thuy

Late Cretaceous (Maastrichtian)

 Germany

A brittle star belonging to the family Amphilimnidae. The type species is A. rammsteinensis.

Athenacrinus[108]

Gen. et sp. nov

Valid

Guensburg et al.

Ordovician

Fillmore Formation

 United States
( Utah)

A crinoid belonging to the group Disparida. The type species is A. broweri.

Becsciecrinus groulxi[109]

Sp. nov

Valid

Ausich & Cournoyer

Ordovician-Silurian boundary

 Canada

A crinoid.

Binocalix[110]

Gen. et sp. nov

Valid

McDermott & Paul

Late Ordovician

 United Kingdom

An aristocystitid diploporite. Genus includes new species B. dichotomus.

Bucucrinus isotaloi[109]

Sp. nov

Valid

Ausich & Cournoyer

Ordovician-Silurian boundary

 Canada

A crinoid.

Carstenicrinus[111]

Gen. et comb. nov

Valid

Roux, Eléaume & Améziane

Late Cretaceous (Campanian and Maastrichtian) and Paleocene (Danian)

 Denmark
 Germany
 Turkmenistan

A crinoid. The type species is "Apiocrinus" constrictus von Hagenow in Quenstedt (1876); genus also includes "Bourgueticrinus" baculatus Klikushin (1982) and "Bourgueticrinus" danicus Brünnich Nielsen (1913).

Caveacrinus[105]

Gen. et 2 sp. nov

Valid

Gale

Late Cretaceous (Turonian)

 France
 United Kingdom

A crinoid belonging to the group Roveacrinida and the family Roveacrinidae. The type species is C. asymmetricus; genus also includes C. serratus.

Cholaster whitei[112]

Sp. nov

Valid

Blake & Nestell

Carboniferous (Chesterian)

Bangor Limestone

 United States

A brittle star.

Conocrinus cahuzaci[111]

Sp. nov

Valid

Roux, Eléaume & Améziane

Eocene (Bartonian)

 France

A crinoid.

Costatocrinus elegans[105]

Sp. nov

Valid

Gale

Late Cretaceous

 France
 United Kingdom

A crinoid belonging to the group Roveacrinida and the family Saccocomidae.

Costatocrinus erismus[105]

Sp. nov

Valid

Gale

Late Cretaceous

 France
 United Kingdom

A crinoid belonging to the group Roveacrinida and the family Saccocomidae.

Costatocrinus rostratus[105]

Sp. nov

Valid

Gale

Late Cretaceous (Santonian)

 France
 United Kingdom

A crinoid belonging to the group Roveacrinida and the family Saccocomidae.

Crassicoma cretacea[105]

Sp. nov

Valid

Gale

Late Cretaceous (Turonian)

 France
 United Kingdom

A crinoid belonging to the group Roveacrinida and the family Saccocomidae.

Crassicoma veulesensis[105]

Sp. nov

Valid

Gale

Late Cretaceous (Santonian)

 France

A crinoid belonging to the group Roveacrinida and the family Saccocomidae.

Culicocrinus breimeri[104]

Sp. nov

Valid

Ausich & Zamora

Devonian (Emsian)

Mariposas Formation

 Spain

A camerate crinoid.

Dendrocrinus simcoensis[113]

Sp. nov

Valid

Wright, Cole & Ausich

Ordovician (Katian)

Brechin Lagerstätte

 Canada
( Ontario)

A crinoid belonging to the group Cladida.

Dentatocrinus[105]

Gen. et 4 sp. nov

Valid

Gale

Late Cretaceous (Turonian)

 France
 United Kingdom

A crinoid belonging to the group Roveacrinida and the family Roveacrinidae. The type species is D. dentatus; genus also includes D. minutus, D. compactus and D. hoyezi.

Drepanocrinus marocensis[105]

Sp. nov

Valid

Gale

Late Cretaceous (Turonian)

 France
 Morocco
 United Kingdom

A crinoid belonging to the group Roveacrinida and the family Roveacrinidae. Originally described as a species of Drepanocrinus, but subsequently transferred to the genus Striacrinus.[114]

Drepanocrinus striatulus[105]

Sp. nov

Valid

Gale

Late Cretaceous (Turonian)

 France
 United Kingdom

A crinoid belonging to the group Roveacrinida and the family Roveacrinidae. Originally described as a species of Drepanocrinus, but subsequently transferred to the genus Striacrinus.[114]

Echinolampas veracruzensis[115]

Sp. nov

Valid

Buitrón-Sánchez et al.

Oligocene

Coatzintla formation

 Mexico

A sea urchin belonging to the family Echinolampadidae.

Echinosphaerites dianae[116]

Sp. nov

In press

Zamora et al.

Late Ordovician

 Morocco

A rhombiferan blastozoan. Announced in 2019; the final version of the article naming it is not published yet.

Eotiaris teseroensis[117]

Sp. nov

Valid

Thompson et al.

Permian-Triassic boundary (latest Changhsingian–early Induan)

Werfen Formation

 Italy

A sea urchin belonging to the group Cidaroida and to the family Miocidaridae.

Euglyphocrinus[105]

Gen. et comb. nov

Valid

Gale

Cretaceous (Albian and Cenomanian)

 Morocco
 United States
( Texas)

A crinoid belonging to the group Roveacrinida and the family Roveacrinidae. The type species is "Roveacrinus" euglypheus Peck (1943); genus also includes "R." pyramidalis Peck (1943).

Euspirocrinus hintsae[118]

Sp. nov

Valid

Ausich, Wilson & Toom

Silurian (Rhuddanian)

 Estonia

A eucladid crinoid.

Falloaster[119]

Gen. et sp. nov

Valid

Blake, Gahn & Guensburg

Ordovician (Floian)

Garden City Formation

 United States
( Idaho)

A member of Asterozoa of uncertain phylogenetic placement. Genus includes new species F. anquiroisitus.

Gamiroaster[120]

Gen. et sp. nov

Valid

Reid et al.

Early Devonian

Voorstehoek Formation

 South Africa

A brittle star belonging to the family Protasteridae. The type species is G. tempestatis.

Heloambocolumnus[121]

Gen. et sp. nov

Valid

Donovan & Doyle

Carboniferous (Bashkirian)

Clare Shale Formation

 Ireland

A crinoid. Genus includes new species Heloambocolumnus (col.) harperi.

Hessicrinus primus[105]

Sp. nov

Valid

Gale

Late Cretaceous (Turonian)

 France
 United Kingdom

A crinoid belonging to the group Roveacrinida and the family Roveacrinidae.

Hessicrinus robustus[105]

Sp. nov

Valid

Gale

Late Cretaceous (Coniacan)

 France
 United Kingdom

A crinoid belonging to the group Roveacrinida and the family Roveacrinidae.

Hessicrinus thoracifer[105]

Sp. nov

Valid

Gale

Late Cretaceous (Turonian and Coniacan)

 France
 United Kingdom

A crinoid belonging to the group Roveacrinida and the family Roveacrinidae.

Homocystites adidiensis[116]

Sp. nov

In press

Zamora et al.

Late Ordovician

 Morocco

A rhombiferan blastozoan. Announced in 2019; the final version of the article naming it is not published yet.

Hyattechinus anglicus[122]

Sp. nov

Valid

Thompson & Ewin

Devonian (Famennian)

Pilton Mudstone Formation

 United Kingdom

A sea urchin.

Jovacrinus clarki[109]

Sp. nov

Valid

Ausich & Cournoyer

Ordovician-Silurian boundary

 Canada

A crinoid.

Kalanacrinus[123]

Gen. et sp. nov

Valid

Ausich, Wilson & Tinn

Silurian (Aeronian)

 Estonia

A camerate crinoid. Genus includes new species K. mastikae.

Konieckicrinus[113]

Gen. et 2 sp. nov

Valid

Wright, Cole & Ausich

Ordovician (Katian)

Brechin Lagerstätte

 Canada
( Ontario)

A crinoid belonging to the group Cladida. Genus includes new species K. brechinensis and K. josephi.

Lateranicrinus[109]

Gen. et sp. nov

Valid

Ausich & Cournoyer

Ordovician-Silurian boundary

 Canada

A crinoid. Genus includes new species L. saintlaurenti.

Lebenharticrinus[124]

Gen. et 3 sp. nov

Valid

Žítt et al.

Late Cretaceous (Cenomanian to Santonian)[105]

Bohemian-Saxonian Cretaceous Basin

 Czech Republic
 France[125]
 Germany
 Morocco[125]
 Tunisia[125]
 United Kingdom[125]

A crinoid belonging to the group Roveacrinida. Genus includes new species L. canaliculatus, L. incisurus and L. ultimus.[105]

Lucernacrinus oculus[105]

Sp. nov

Valid

Gale

Late Cretaceous (Santonian)

 France
 United Kingdom

A crinoid belonging to the group Roveacrinida and the family Roveacrinidae.

Magnofossacrinus[126]

Gen. et sp. nov

Valid

Mirantsev

Carboniferous (Moscovian)

 Russia

A crinoid belonging to the family Poteriocrinidae. Genus includes new species M. domodedovoensis.

Monostychia glenelgensis[127]

Sp. nov

Valid

Sadler, Holmes & Gallagher

Miocene

 Australia

A sand dollar.

Monostychia merrimanensis[127]

Sp. nov

Valid

Sadler, Holmes & Gallagher

Miocene

 Australia

A sand dollar.

Multisievertsia[128]

Gen. et sp. nov

Valid

Müller & Hahn

Early Devonian

 Germany

A member of Echinozoa belonging to the group Cyclocystoidea. The type species is M. eichelei.

Oepikicrinus[118]

Gen. et sp. nov

Valid

Ausich, Wilson & Toom

Silurian (Aeronian)

 Estonia

A camerate crinoid. Genus includes new species O. perensae.

Orthogonocrinus cantabrigensis[105]

Sp. nov

Valid

Gale

Late Cretaceous (Cenomanian)

 Germany
 Morocco
 United Kingdom

A crinoid belonging to the group Roveacrinida and the family Roveacrinidae.

Paraconocrinus[111]

Gen. et comb. et sp. nov

Valid

Roux, Eléaume & Améziane

Eocene

 Italy
 France
 Spain

A crinoid. The type species is "Eugeniacrinus" pyriformis Münster in Goldfuss (1826); genus also includes "Conocrinus" cazioti Valette (1924), "Conocrinus" handiaensis Roux (1978) and "Conocrinus" romanensis Roux & Plaziat (1978), as well as a new species P. pellati.

Perforocycloides[129]

Gen. et sp. nov

Valid

Ewin et al.

Silurian (Telychian)

Jupiter Formation

 Canada
( Quebec)

A member of Echinozoa belonging to the group Cyclocystoidea. The type species is P. nathalieae.

Platyhexacrinus santacruzensis[104]

Sp. nov

Valid

Ausich & Zamora

Devonian (Emsian)

Mariposas Formation

 Spain

A camerate crinoid.

Plicodendrocrinus martini[109]

Sp. nov

Valid

Ausich & Cournoyer

Ordovician-Silurian boundary

 Canada

A crinoid.

Plicodendrocrinus petryki[109]

Sp. nov

Valid

Ausich & Cournoyer

Ordovician-Silurian boundary

 Canada

A crinoid.

Pliotoxaster buitronae[130]

Sp. nov

Valid

Forner

Early Cretaceous (Aptian)

Margas del Forcall Formation

 Spain

A sea urchin belonging to the family Toxasteridae.

Pseudoconocrinus[111]

Gen. et comb. nov

Valid

Roux, Eléaume & Améziane

Paleocene and Eocene

Crimean Peninsula
 Denmark
 France

A crinoid. The type species is "Conocrinus" doncieuxi Roux (1978); genus also includes "Democrinus" maximus Brünnich Nielsen (1915) and "Conocrinus" tauricus Klikushin (1982).

Rhenopyrgus viviani[131]

Sp. nov

Valid

Ewin et al.

Silurian (Telychian)

Jupiter Formation

 Canada
( Quebec)

A member of Edrioasteroidea.

Roveacrinus bifidus[105]

Sp. nov

Valid

Gale

Late Cretaceous (Cenomanian)

 United Kingdom

A crinoid belonging to the group Roveacrinida and the family Roveacrinidae.

Roveacrinus falcifer[105]

Sp. nov

Valid

Gale

Late Cretaceous (Turonian)

 France
 United Kingdom

A crinoid belonging to the group Roveacrinida and the family Roveacrinidae.

Roveacrinus ferrei[105]

Sp. nov

Valid

Gale

Late Cretaceous (Turonian)

 France
 United Kingdom

A crinoid belonging to the group Roveacrinida and the family Roveacrinidae.

Roveacrinus labyrinthus[105]

Sp. nov

Valid

Gale

Late Cretaceous (Turonian)

 France
 United Kingdom

A crinoid belonging to the group Roveacrinida and the family Roveacrinidae.

Rozhnovicrinus[118]

Gen. et sp. nov

Valid

Ausich, Wilson & Toom

Silurian (Aeronian)

 Estonia

A eucladid crinoid. Genus includes new species R. isakarae.

Sagittacrinus transiens[105]

Sp. nov

Valid

Gale

Late Cretaceous

 France
 United Kingdom

A crinoid belonging to the group Roveacrinida and the family Saccocomidae.

Sagittacrinus tricostatus[105]

Sp. nov

Valid

Gale

Late Cretaceous (Santonian)

 France
 United Kingdom

A crinoid belonging to the group Roveacrinida and the family Saccocomidae.

Shoshonura[132]

Gen. et sp. nov

Valid

Thuy et al.

Early Triassic

 United States

A brittle star. Genus includes new species S. brayardi.

Simcoecrinus[113]

Gen. et sp. nov

Valid

Wright, Cole & Ausich

Ordovician (Katian)

Brechin Lagerstätte

 Canada
( Ontario)

A crinoid belonging to the group Cladida. Genus includes new species S. mahalaki.

Sollasina cthulhu[133]

Sp. nov

Valid

Rahman et al.

Silurian (Wenlock)

Coalbrookdale Formation

 United Kingdom

A member of Ophiocistioidea belonging to the family Sollasinidae.

Stellacrinus angelicus[105]

Sp. nov

Valid

Gale

Late Cretaceous (Santonian)

 United Kingdom

A crinoid belonging to the group Roveacrinida and the family Roveacrinidae.

Stellacrinus delicatus[105]

Sp. nov

Valid

Gale

Late Cretaceous (Santonian)

 France
 United Kingdom

A crinoid belonging to the group Roveacrinida and the family Roveacrinidae.

Stellacrinus stapes[105]

Sp. nov

Valid

Gale

Late Cretaceous (Coniacian)

 France
 United Kingdom

A crinoid belonging to the group Roveacrinida and the family Roveacrinidae.

Tartucrinus[123]

Gen. et sp. nov

Valid

Ausich, Wilson & Tinn

Silurian (Aeronian)

 Estonia

A disparid crinoid. Genus includes new species T. kalanaensis.

Thalamocrinus daoustae[109]

Sp. nov

Valid

Ausich & Cournoyer

Ordovician-Silurian boundary

 Canada

A crinoid.

Totiglobus spencensis[134]

Sp. nov

Valid

Wen et al.

Cambrian (Wuliuan)

Spence Shale

 United States

A member of Edrioasteroidea belonging to the family Totiglobidae.

Conodonts

Research

  • A study on the feeding habits of conodonts, as indicated by data from calcium stable isotopes, is published by Balter et al. (2019).[135]
  • A study on the variation of conodont element crystal structure throughout their evolutionary history is published online by Medici et al. (2019).[136]
  • A study on the evolution of platform-like P1 elements in conodonts, evaluating its possible link to ecology of conodonts, is published by Ginot & Goudemand (2019).[137]
  • A study on the impact of early Paleozoic environmental changes on evolution and paleoecology of conodonts from the Canadian part of Laurentia is published online by Barnes (2019).[138]
  • A study on the morphology, occurrences and biostratigraphical value of Paroistodus horridus is published online by Mestre & Heredia (2019).[139]
  • A revision of the taxonomy and evolutionary relationships of the Late Ordovician genera Tasmanognathus and Yaoxianognathus is published by Yang et al. (2019).[140]
  • A study on the composition and architecture of the apparatus of Erismodus quadridactylus is published by Dhanda et al. (2019).[141]
  • A study on the ontogeny of the Lochkovian conodont species Ancyrodelloides carlsi is published by Corriga & Corradini (2019).[142]
  • A study on fossils of members of the genus Alternognathus from the Upper Devonian of the Kowala quarry (central Poland), attempting to calibrate the course of their ontogeny in days and documenting cyclic mortality events, is published by Świś (2019).[143]
  • The apparatus of Vogelgnathus simplicatus is reconstructed from discrete elements from a sample of limited diversity from the Carboniferous strata from Ireland by Sanz-López, Blanco-Ferrera & Miller (2019).[144]
  • Neospathodid conodont elements with partly preserved basal body (one of two main parts of conodont elements, besides the crown) are reported from the Lower Triassic of Oman by Souquet & Goudemand (2019), who interpret their finding as indicating that the absence of basal bodies in post-Devonian conodonts was due to a preservational bias only.[145]
  • Natural assemblages of conodonts, preserving possible impressions of "eyes", are described from the Lower Triassic pelagic black claystones of the North Kitakami Belt (Japan) by Takahashi, Yamakita & Suzuki (2019).[146]
  • A study on the composition of the apparatus of Nicoraella, based on data from clusters from the Middle Triassic Luoping Biota (Yunnan, China), is published by Huang et al. (2019).[147]
  • The architecture of apparatus of Nicoraella kockeli is reconstructed by Huang et al. (2019), who also evaluate proposed functional interpretations of the conodont feeding apparatus.[148]
  • A study on Middle Triassic conodont assemblages from Jenzig section of the Jena Formation and Troistedt section of the Meissner Formation (Germany) is published by Chen et al. (2019), who also study the morphology of the apparatuses of Neogondolella haslachensis and Nicoraella germanica, and review and revise the species Neogondolella mombergensis.[149]
  • A study evaluating the quantitative morphological variation of P1 conodont elements within and between seven conodont morphospecies from the Pizzo Mondello section (Sicily, Italy) and their evolution within 7 million years around the Carnian/Norian boundary is published by Guenser et al. (2019).[150]
  • A study on the taphonomy of basal tissue of conodont elements is published online by Suttner & Kido (2019).[151]

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Gnathodus lanei[152]

Sp. nov

Valid

Lane et al.

Carboniferous

Bird Spring Formation

 United States

Icriodella iberiensis[153]

Sp. nov

Valid

Voldman & Toyos

Ordovician (Katian)

Casaio Formation

 Spain

Palmatolepis chaemensis[154]

Sp. nov

Valid

Savage

Late Devonian

 Thailand

Palmatolepis thamensis[154]

Sp. nov

Valid

Savage

Late Devonian

 Thailand

Parapetella? guanyinensis[155]

Sp. nov

Valid

Jiang et al.

Late Triassic (Carnian)

 China

Polygnathus serriformis[156]

Sp. nov

Valid

Plotitsyn & Gatovsky

Devonian (Famennian)

 Russia

Polygnathus sharyuensis[157]

Nom. nov

Valid

Ovnatanova et al.

Devonian (Famennian)

Sortomael' Formation

 Australia
 Russia

A replacement name Polygnathus mawsonae Ovnatanova et al. (2017).

Polygnathus tenellus surinensis[154]

Subsp. nov

Valid

Savage

Late Devonian

 Thailand

Polygnathus tsygankoi[156]

Sp. nov

Valid

Plotitsyn & Gatovsky

Devonian (Famennian)

 Russia

Protophragmodus[158]

Gen. et comb. nov

Valid

Zhen

Ordovician (Darriwilian and Sandbian)

Canning Basin
Glenwood Beds

 Australia
 United States

A new genus for "Phragmodus" polystrophos Watson, "Phragmodus" spicatus Watson and "Phragmodus" cognitus Stauffer.

Siberigondolella[159]

Gen. et comb. nov

Valid

Kiliç & Hirsch

Early Triassic

 Canada
 Russia

A member of the family Gondolellidae. The type species is "Neogondolella" composita Dagys (1984); genus also includes "Neogondolella" griesbachensis Orchard (2007), "Neogondolella" mongeri Orchard (2007); Siberigondolella altera (Klets), S. siberica (Dagys) and S. jakutensis (Dagys).

Zieglerodina schoenlaubi[160]

Sp. nov

Valid

Corradini et al.

Devonian (Lochkovian)

 Italy

Fishes

Amphibians

Reptiles

Synapsids

Non-mammalian synapsids

Research

  • A study on the morphological diversity and morphological changes of the humeri of Paleozoic and Triassic synapsids through time is published by Lungmus & Angielczyk (2019).[161]
  • A study on the diversity of patterns of skull shape (focusing on the relative lengths of the face and braincase regions of the skull) in non-mammalian synapsids is published by Krone, Kammerer & Angielczyk (2019).[162]
  • Two pathologically fused tail vertebrae of a varanopid, likely affected by a metabolic bone disease closely resembling Paget's disease of bone, are described from the early Permian Richards Spur locality (Oklahoma, United States) by Haridy et al. (2019).[163]
  • Description of new skull remains of Echinerpeton intermedium and a study on the phylogenetic relationships of this species is published online by Mann & Paterson (2019).[164]
  • Fossil material of a large carnivorous synapsid belonging to the family Sphenacodontidae is described from the Torre del Porticciolo locality (Italy) by Romano et al. (2019), representing the first carnivorous non-therapsid synapsid from the Permian of Italy reported so far, and one of the few known from Europe.[165]
  • Description of the morphology and histology of a small neural spine from the Early Permian Richards Spur locality (Oklahoma, United States) attributable to Dimetrodon is published by Brink, MacDougall & Reisz (2019), who also report evidence from fossil teeth indicative of presence of a derived species of Dimetrodon (otherwise typical of later, Kungurian localities of Texas and Oklahoma) at the Richards Spur locality.[166]
  • A study on the histology of the skull roof of burnetiamorph biarmosuchians is published by Kulik & Sidor (2019).[167]
  • Femur of a specimen of the titanosuchid species Jonkeria parva affected by osteomyelitis is described from the Permian of Karoo Basin (South Africa) by Shelton, Chinsamy & Rothschild (2019).[168]
  • A study on the adaptations to herbivory in the teeth of members of the family Tapinocephalidae is published by Whitney & Sidor (2019).[169]
  • An almost complete skeleton of Tapinocaninus pamelae, providing new information on the anatomy of the appendicular skeleton of this species (including the first accurate vertebral count for a dinocephalian), is described from the lowermost Beaufort Group of South Africa by Rubidge, Govender & Romano (2019).[170]
  • Romano & Rubidge (2019) present body mass estimates for a well preserved and complete skeleton of Tapinocaninus pamelae from the lowermost Beaufort Group of South Africa.[171]
  • A study on the skull anatomy and phylogenetic relationships of Styracocephalus platyrhynchus is published by Fraser-King et al. (2019).[172]
  • A study on the evolution of the sacral vertebrae of dicynodonts is published by Griffin & Angielczyk (2019).[173]
  • A study on the diversity of dicynodonts from the Upper Permian Naobaogou Formation (China) is published by Liu (2019).[174]
  • A study on skulls of South American dicynodonts, aiming to determine whether the differences in skull morphology were related to differences in feeding function, is published by Ordonez et al. (2019).[175]
  • New fossil material of Endothiodon tolani is described from the Permian K5 Formation of the Metangula Graben (Mozambique) by Macungo et al. (2019).[176]
  • A study on the anatomy of the postcranial skeleton of Endothiodon bathystoma, based on data from a new specimen from the uppermost Pristerognathus Assemblage Zone of the Karoo Supergroup (South Africa), is published online by Maharaj, Chinsamy & Smith (2019).[177]
  • Small dicynodont skull assigned to the genus Digalodon is described from the Lopingian upper Madumabisa Mudstone Formation (Zambia) by Angielczyk (2019), expanding known geographic range of this genus.[178]
  • Digital endocast of Rastodon procurvidens is reconstructed by de Simão-Oliveira, Kerber & Pinheiro (2019), who evaluate biological implications of the endocast morphology of this species.[179]
  • Mancuso & Irmis (2019) describe an ulna of a member of the genus Stahleckeria from the Chañares Formation (Argentina), and evaluate the implications of this finding for the knowledge of the Triassic Gondwanan biostratigraphy and biogeography.[180]
  • A study on the body mass of Lisowicia bojani is published online by Romano & Manucci (2019).[181]
  • A study on fossils of a putative Cretaceous dicynodont from Australia reported by Thulborn & Turner (2003)[182] is published online by Knutsen & Oerlemans (2019), who consider these fossils to be of Pliocene-Pleistocene age, and reinterpret it as fossils of a large mammal, probably a diprotodontid.[183]
  • A study aiming to determine patterns of morphological and phylogenetic diversity of therocephalians throughout their evolutionary history is published by Grunert, Brocklehurst & Fröbisch (2019).[184]
  • A study on variation in rates of body size evolution of therocephalians is published by Brocklehurst (2019).[185]
  • A study on the morphology of the manus of a new therocephalian specimen referable to the genus Tetracynodon from the Early Triassic of South Africa, and on the evolution of the manus morphology of therocephalians, is published by Fontanarrosa et al. (2019).[186]
  • A study on patterns of nonmammalian cynodont species richness and the quality of their fossil record is published by Lukic-Walther et al. (2019).[187]
  • A study on the morphology and bone histology of the postcranial skeleton of Galesaurus planiceps is published by Butler, Abdala & Botha-Brink (2019).[188]
  • Redescription of the anatomy of the skull of Galesaurus planiceps is published by Pusch, Kammerer & Fröbisch (2019).[189]
  • Description of teeth of all known diademodontid and trirachodontid cynodont taxa is published by Hendrickx, Abdala & Choiniere (2019), who also propose a standardized list of anatomical terms and abbreviations in the study of gomphodont teeth, assign Sinognathus and Beishanodon to the family Trirachodontidae, and consider all specimens previously referred to the species Cricodon kannemeyeri to be younger individuals of Trirachodon berryi.[190]
  • A study on the bone histology of the traversodontid cynodonts Protuberum cabralense and Exaeretodon riograndesis is published by Veiga, Botha-Brink & Soares (2019).[191]
  • Hypsodont postcanine teeth of Menadon besairiei are described by Melo et al. (2019), who also study patterns of dental growth and replacement in this species.[192]
  • Digital endocasts of Massetognathus ochagaviae and Probelesodon kitchingi are reconstructed by Hoffmann et al. (2019).[193]
  • A skull of a member of the species Massetognathus ochagaviae is described from the Carnian Santacruzodon Assemblage Zone of the Santa Maria Supersequence (Rio Grande do Sul, Brazil) by Schmitt et al. (2019).[194]
  • Description of brain endocasts of Siriusgnathus niemeyerorum and Exaeretodon riograndensis, using virtual models based on computed tomography scan data, is published by Pavanatto, Kerber & Dias-da-Silva (2019).[195]
  • Description of new fossil material of Siriusgnathus niemeyerorum from the Upper Triassic Caturrita Formation (Brazil) and a study on the age of its fossils is published online by Miron et al. (2019).[196]
  • A study on the evolution of infraorbital maxillary canal in probainognathian cynodonts and on its implications for the knowledge of evolution of mobile whiskers in non-mammalian synapsids, as indicated by data from skulls of non-mammalian probainognathian cynodonts and early mammaliaforms, is published online by Benoit et al. (2019).[197]
  • Digital skull endocast of a specimen of Riograndia guaibensis is reconstructed by Rodrigues et al. (2019).[198]
  • Description of the anatomy of the first postcranial specimens referable to Riograndia guaibensis is published by Guignard, Martinelli & Soares (2019).[199]
  • A study on the anatomy of the postcranial skeleton of Brasilodon quadrangularis is published by Guignard, Martinelli & Soares (2019).[200]
  • A study on tooth wear patterns of members of the family Tritylodontidae and on their possible diet is published by Kalthoff et al. (2019).[201]
  • Possible cynodont teeth, which might be the most recent non-mammaliaform cynodont fossils from Africa reported so far, are described from the Late Jurassic or earliest Cretaceous locality of Ksar Metlili (Anoual Syncline, eastern Morocco) by Lasseron (2019).[202]
  • A study on the origin of the mammalian middle ear ossicles, as indicated by the anatomy of the jaw-otic complex in 43 synapsid taxa, is published by Navarro-Díaz, Esteve-Altava & Rasskin-Gutman (2019).[203]
  • A study on the evolution of the morphological complexity of the mammalian vertebral column, as indicated by data from mammals and non-mammalian synapsids, is published by Jones, Angielczyk & Pierce (2019).[204]

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Arisierpeton[205]

Gen. et sp. nov

Valid

Reisz

Permian (Artinskian)

 United States

A member of the family Caseidae. The type species is A. simplex.

Bohemiclavulus[206]

Gen. et comb. nov

Valid

Spindler, Voigt & Fischer

Carboniferous (Gzhelian)

Slaný Formation

 Czech Republic

A member of the family Edaphosauridae; a new genus for "Naosaurus" mirabilis Fritsch (1895). Announced in 2019; the final version of the article naming it was published in 2020.

Cabarzia[207]

Gen. et sp. nov

Valid

Spindler, Werneburg & Schneider

Permian (Asselian or Sakmarian)

Goldlauter Formation

 Germany

A member of Varanopidae belonging to the subfamily Mesenosaurinae. The type species is C. trostheidei.

Counillonia[208]

Gen. et sp. nov

Valid

Olivier et al.

Most likely Early Triassic

Luang Prabang Basin
(Purple Claystone Formation)

 Laos

A Dicynodon-grade dicynodont. Genus includes new species C. superoculis.

Dendromaia[209]

Gen. et sp. nov

In press

Maddin, Mann & Hebert

Carboniferous

 Canada
( Nova Scotia)

A member of Varanopidae. Genus includes new species D. unamakiensis. Announced in 2019; the final version of the article naming it is scheduled to be published in 2020.

Dicynodon angielczyki[210]

Sp. nov

Valid

Kammerer

Late Permian

Usili Formation

 Tanzania

Gorynychus sundyrensis[211]

Sp. nov

Valid

Suchkova & Golubev

Middle Permian

 Russia

A therocephalian belonging to the family Lycosuchidae.

G. sundyrensis (bottom)

Hypselohaptodus[212]

Gen. et comb. nov

Valid

Spindler

Permian (Cisuralian)

 United Kingdom

An early member of Sphenacodontia; a new genus for "Haptodus" grandis. Announced in 2019; the final version of the article naming it was published in 2020.

Jiufengia[213]

Gen. et sp. nov

Valid

Liu & Abdala

Late Permian

Naobaogou Formation

 China

A therocephalian belonging to the family Akidnognathidae. The Type species is J. jiai.

Julognathus[214]

Gen. et sp. nov

Valid

Suchkova & Golubev

Middle Permian

 Russia

A therocephalian belonging to the family Scylacosauridae. Genus includes new species J. crudelis.

Kembawacela[215]

Gen. et sp. nov

Valid

Angielczyk, Benoit & Rubidge

Late Permian

Madumabisa Mudstone Formation

 Zambia

A dicynodont belonging to the family Cistecephalidae. Genus includes new species K. kitchingi.

Lisowicia[216]

Gen. et sp. nov

Sulej & Niedźwiedzki

Late Triassic (late Norian-earliest Rhaetian)

 Poland

A gigantic dicynodont reaching an estimated body mass of 9 tons. The type species is L. bojani. Announced in 2018; the final version of the article naming it was published in 2019.

Mesenosaurus efremovi[217]

Sp. nov

Valid

Maho, Gee & Reisz

Early Permian

 United States
( Oklahoma)

A member of Varanopidae.

Pseudotherium[218]

Gen. et sp. nov

Valid

Wallace, Martínez & Rowe

Late Triassic (Carnian)

Ischigualasto Formation

 Argentina

A probainognathian cynodont closely related to tritylodontids. The type species is P. argentinus.

Remigiomontanus[206]

Gen. et sp. nov

Valid

Spindler, Voigt & Fischer

CarboniferousPermian transition

Saar–Nahe Basin

 Germany

A member of the family Edaphosauridae. Genus includes new species R. robustus. Announced in 2019; the final version of the article naming it was published in 2020.

Repelinosaurus[208]

Gen. et sp. nov

Valid

Olivier et al.

Most likely Early Triassic

Luang Prabang Basin
(Purple Claystone Formation)

 Laos

A kannemeyeriiform dicynodont. Genus includes new species R. robustus.

Thliptosaurus[219]

Gen. et sp. nov

Valid

Kammerer

Late Permian (Changhsingian)

Daptocephalus Assemblage Zone

 South Africa

A late-surviving small dicynodont of the family Kingoriidae. Genus includes the new species T. imperforatus.

Ufudocyclops[220]

Gen. et sp. nov

Valid

Kammerer et al.

Probably Middle Triassic

Burgersdorp Formation

 South Africa

A stahleckeriid dicynodont. Genus includes new species U. mukanelai.

Vetusodon[221]

Gen. et sp. nov

Valid

Abdala et al.

Permian (Lopingian)

Karoo Supergroup (Daptocephalus Assemblage Zone)

 South Africa

A cynodont closely related to the group Eucynodontia. Genus includes the new species V. elikhulu.

Mammals

Other animals

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Adelochaeta[222]

Gen. et sp. nov

Han, Conway Morris & Shu in Han et al.

Cambrian Stage 3

Chiungchussu Formation

 China

A polychaete. The type species is A. sinensis.

Alfaites[223]

Gen. et sp. nov

Valid

Valent, Fatka & Marek

Cambrian (Drumian)

Buchava Formation

 Czech Republic

A member of Hyolitha. The type species is A. romeo.

Alulagraptus[224]

Gen. et comb. nov

Valid

Chen et al.

Late Ordovician

 China

A graptolite. Genus includes A. ensiformis (Mu & Zhang in Mu et al., 1963).

Anomalocaris magnabasis[225]

Sp. nov

Valid

Pates et al.

Cambrian Stage 4

Carrara Formation
Pioche Formation

 United States

A member of Radiodonta. Originally described as a species of Anomalocaris, but transferred to the genus Houcaris in 2021.[226]

Archiasterella auriculata[227]

Sp. nov

Valid

Moore in Moore et al.

Cambrian

 United States
( Nevada)

A chancelloriid sclerite.

Archiasterella cometensis[227]

Sp. nov

Valid

Moore in Moore et al.

Cambrian

 United States
( Nevada)

A chancelloriid sclerite.

Archiasterella uncinata[227]

Sp. nov

Valid

Moore in Moore et al.

Cambrian

 United States
( Nevada)

A chancelloriid sclerite.

Bauruascaris[228]

Gen. et 2 sp. nov

Valid

Cardia et al.

Late Cretaceous (Campanian/Maastrichtian)

Adamantina Formation

 Brazil

An ascaridoid nematode described on the basis of fossil eggs preserved in crocodyliform coprolites. Genus includes new species B. cretacicus and B. adamantinensis.

Bicingulites nanningensis[229]

Sp. nov

Valid

Wei, Zong & Gong

Early Devonian

Nagaoling Formation

 China

A member of Tentaculitida.

Cambrachelous[230]

Gen. et sp. nov

Valid

Geyer, Valent & Meier

Cambrian

Tannenknock Formation

 Germany

A member of Hyolitha. Genus includes new species C. diploprosopus.

Cambroraster[231]

Gen. et sp. nov

Valid

Moysiuk & Caron

Cambrian

Burgess Shale

 Canada
 China[232][233]

A radiodont belonging to the family Hurdiidae. Genus includes new species C. falcatus.

Cephalonega[234]

Nom. nov

Valid

Ivantsov et al.

Ediacaran

 Russia

A member of Proarticulata; a replacement name for Onega Fedonkin (1976).

Chancelloria australilonga[235]

Sp. nov

Valid

Yun et al.

Cambrian Stage 4

Emu Bay Shale

 Australia

Chancelloria impar[227]

Sp. nov

Valid

Moore in Moore et al.

Cambrian

 United States
( Nevada)

A chancelloriid sclerite.

Chancelloria lilioides[227]

Sp. nov

Valid

Moore in Moore et al.

Cambrian

 United States
( Nevada)

A chancelloriid sclerite.

Cornulites sokiranae[236]

Sp. nov

Valid

Vinn, Musabelliu & Zatoń

Late Devonian

Central Devonian Field

 Russia

A member of Cornulitida.

Costatubus[237]

Gen. et sp. nov

Valid

Selly et al.

Ediacaran

 United States

A cloudinid. Genus includes new species C. bibendi.

Costulatotheca[238]

Gen. et sp. nov

Valid

Earp

Early Devonian

 Australia

A member of Hyolitha. Genus includes new species C. schleigeri.

Cupitheca decollata[239]

Sp. nov

Valid

Sun et al.

Early Cambrian

Yu'anshan Formation

 China

A member of Hyolitha.

Dahescolex[240]

Gen. et sp. nov

Valid

Shao et al.

Cambrian (Fortunian)

Kuanchuanpu Formation

 China

An animal which might be a stem-lineage derivative of Scalidophora. Genus includes new species D. kuanchuanpuensis. Announced in 2019; the final version of the article naming it was published in 2020.

Daihua[241]

Gen. et sp. nov

Valid

Zhao et al.

Cambrian Stage 3

Chiungchussu Formation

 China

A member of the total group of Ctenophora. The type species is D. sanqiong.

Dailyatia decobruta[242]

Sp. nov

Valid

Betts in Betts et al.

Early Cambrian

 Australia

A tommotiid belonging to the family Kennardiidae.

Echinokleptus[243]

Gen. et sp. nov

Valid

Muir et al.

Ordovician (Tremadocian)

 United Kingdom

Agglutinated tubes most likely produced by a polychaete. Genus includes new species E. anileis.

Gothograptus auriculatus[244]

Sp. nov

Valid

Kozłowska et al.

Silurian

 Germany
 Lithuania
 Poland
 Sweden

A graptolite.

Gothograptus diminutus[244]

Sp. nov

Valid

Kozłowska et al.

Silurian

 Poland

A graptolite.

Gothograptus domeyki[244]

Sp. nov

Valid

Kozłowska et al.

Silurian

 Lithuania

A graptolite.

Gothograptus velo[244]

Sp. nov

Valid

Kozłowska et al.

Silurian

 Poland

A graptolite.

Grantitheca? klani[230]

Sp. nov

Valid

Geyer, Valent & Meier

Cambrian

Tannenknock Formation

 Germany

A member of Hyolitha.

Harrisgraptus[245]

Gen. et comb. nov

Valid

VandenBerg

Ordovician (Floian)

 Australia

A graptolite belonging to the group Dichograptina and the family Pterograptidae. The type species is "Didymograptus" eocaduceus Harris (1933).

Hexitheca washingtonensis[246]

Sp. nov

Valid

Malinky & Geyer

Early Cambrian (Dyeran)

 United States

A member of Hyolitha.

Heydenius simulphilus[247]

Sp. nov

Valid

Poinar & Currie

Eocene

Baltic amber

Europe (Baltic Sea region)

A nematode belonging to the family Mermithidae. Announced in 2019; the final version of the article naming was published in 2020.

Ipoliknus[222]

Gen. et sp. nov

Han, Conway Morris & Shu in Han et al.

Cambrian Stage 3

Chiungchussu Formation

 China

A polychaete. The type species is I. avitus.

Lonchidium cylicus[229]

Sp. nov

Valid

Wei, Zong & Gong

Early Devonian

Nagaoling Formation

 China

A member of Tentaculitida.

Nectocotis[248]

Gen. et sp. nov

Valid

Smith

Ordovician (Katian)

Whetstone Gulf Formation

 United States
( New York)

A relative of Nectocaris; an animal of uncertain phylogenetic placement, possibly a stem-cephalopod. The type species is N. rusmithi.

Normalograptus baridaensis[249]

Sp. nov

Valid

Štorch, Roqué Bernal & Gutiérrez-Marco

Ordovician (Hirnantian)

 Spain

A graptolite.

Normalograptus ednae[249]

Sp. nov

Valid

Štorch, Roqué Bernal & Gutiérrez-Marco

Silurian (Rhuddanian)

 Spain

A graptolite.

Odessites aurisites[229]

Sp. nov

Valid

Wei, Zong & Gong

Early Devonian

Nagaoling Formation

 China

A member of Tentaculitida.

Odessites nahongensis[229]

Sp. nov

Valid

Wei, Zong & Gong

Early Devonian

Nagaoling Formation

 China

A member of Tentaculitida.

Paratriplicatella[250]

Gen. et sp. nov

Valid

Pan et al.

Early Cambrian

 China

A member of Hyolitha. Genus includes new species P. shangwanensis.

Protomicrocornus[250]

Gen. et sp. nov

Valid

Pan et al.

Early Cambrian

 China

A member of Hyolitha. Genus includes new species P. triplicensis.

Saarina hagadorni[237]

Sp. nov

Valid

Selly et al.

Ediacaran

 United States

Shenzianyuloma[251]

Gen. et sp. nov

Valid

McMenamin

Cambrian

Maotianshan Shales

 China

A member of Vetulicolia. The type species is S. yunnanense.

Sialomorpha[252]

Gen. et sp. nov

Valid

Poinar & Nelson

Eocene or Miocene

Dominican amber

 Dominican Republic

A small invertebrate of uncertain phylogenetic placement, sharing characters with both tardigrades and mites, but belonging to neither group. The type species is S. dominicana.

Tentaculites brevitenui[229]

Sp. nov

Valid

Wei, Zong & Gong

Early Devonian

Nagaoling Formation

 China

A member of Tentaculitida.

Triplicatella xinjia[250]

Sp. nov

Valid

Pan et al.

Early Cambrian

 China

A member of Hyolitha.

Ursulinacaris[253]

Gen. et sp. nov

Pates, Daley & Butterfield

Cambrian

Mount Cap formation
Carrara Formation?

 Canada
 United States?

A radiodont belonging to the family Hurdiidae. The type species is U. grallae.

Volynites nagaolingensis[229]

Sp. nov

Valid

Wei, Zong & Gong

Early Devonian

Nagaoling Formation

 China

A member of Tentaculitida.

Yilingia[254]

Gen. et sp. nov

Valid

Chen et al.

Late Ediacaran

 China

An early bilaterian, possibly related to panarthropods or annelids. Genus includes new species Y. spiciformis.

Research

Foraminifera

Research

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Acervoschwagerina gongendaniensis[289]

Sp. nov

Valid

Kobayashi in Kobayashi & Furutani

Permian (late Cisuralian)

 Japan

A member of Fusulinida.

Ammodiscus jordanensis[290]

Sp. nov

Valid

Gennari and Rettori in Powell et al.

Early and Middle Triassic

Ma'in Formation

 China
 Hungary
 Jordan
 Poland
 Romania

A species of Ammodiscus.

Bispiraloconulus[291]

Gen. et sp. nov

Valid

Schlagintweit, Bucur & Sudar

Early Cretaceous (Berriasian)

 Serbia

Genus includes new species B. serbiacus.

Canalispina[292]

Gen. et sp. nov

Valid

Robles-Salcedo et al.

Late Cretaceous (Maastrichtian)

 Italy

A member of the family Siderolitidae. Genus includes new species C. iapygia.

Chusenella tsochenensis[293]

Sp. nov

Valid

Zhang et al.

Middle Permian

Xiala Formation

 China

A member of the family Schwagerinidae.

Cuniculinella omiensis[289]

Sp. nov

Valid

Kobayashi in Kobayashi & Furutani

Permian (late Cisuralian)

 Japan

A member of Fusulinida.

Cyclopsinella roselli[294]

Sp. nov

Valid

Villalonga et al.

Late Cretaceous (Campanian)

Terradets Limestone

 Spain

Globigaetania[295]

Gen. et sp. nov

Valid

Gennari & Rettori

Permian (Wordian to Capitanian)

Gnishik Formation

 Iran
 Japan

A member of the family Globivalvulinidae. Genus includes new species G. angulata.

Pachycolumella[296]

Gen. et 2 sp. nov

Valid

Septfontaine, Schlagintweit & Rashidi

Late Cretaceous (Maastrichtian) and Paleocene (Danian)

Tarbur Formation

 India
 Iran
 Oman
 Pakistan
 Turkey

The type species is P. elongata; genus also includes P. acuta.

Pseudochablaisia[297]

Gen. et sp. nov

Valid

Schlagintweit, Septfontaine & Rashidi

Late Cretaceous (Maastrichtian)

Tarbur Formation

 Iran

A member of the family Pfenderinidae. Genus includes new species P. subglobosa.

Serrakielina[298]

Gen. et sp. nov

Valid

Schlagintweit & Rashidi

Paleocene

 Iran

Genus includes new species S. chahtorshiana.

Simobaculites saundersi[299]

Sp. nov

Valid

Wilson & Kaminski in Wilson et al.

Cenozoic

Nariva Formation

 Trinidad and Tobago

Socotraella? yazdiana[298]

Sp. nov

Valid

Schlagintweit & Rashidi

Paleocene

 Iran

Tambareauella[300]

Gen. et comb. et sp. nov

Valid

Boukhary & El Naby

Eocene

 Egypt
 France

A member of the family Nummulitidae. The type species is "Operculina (Nummulitoides)" azilensis Tambareau (1966); genus also includes new species T. russeiesensis.

Other organisms

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Aguirrea[301]

Gen. et sp. nov

Valid

Teichert, Woelkerling & Munnecke

Silurian (Wenlock)

Högklint Formation

 Sweden

A coralline alga. Genus includes new species A. fluegelii.

Amsassia yushanensis[302]

Sp. nov

Valid

Lee et al.

Late Ordovician

Xiazhen Formation

 China

A coral-like organism.

Anechosoma[303]

Gen. et sp. nov

Valid

Krings & Kerp

Early Devonian

 United Kingdom

A unicellular organism with possible affinities to the Glaucophyta or Chlorophyta. Genus includes new species A. oblongum.

Appendisphaera clustera[304]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

 China

A microfossil.

Appendisphaera lemniscata[304]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

 China

A microfossil.

Asterocapsoides fluctuensis[304]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

 China

A microfossil.

Bacatisphaera sparga[304]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

 China

A microfossil.

Baculiphyca brevistipitata[305]

Sp. nov

Valid

Ye et al.

Ediacaran

 China

A macroalga.

Briareus robustus[304]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

 China

A microfossil.

Briareus vasformis[304]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

 China

A microfossil.

Cambrowania[306]

Gen. et sp. nov

Disputed

Tang & Xiao in Tang et al.

Early Cambrian

Hetang Formation

 China

An organism of uncertain phylogenetic placement. Originally classified as an animal of uncertain phylogenetic placement, possibly a sponge or a bivalved arthropod; Slater & Budd (2019) contested its animal affinity, and considered its fossil material to be more likely collapsed hollow organic spheroidal acritarchs belonging to the genus Leiosphaeridia.[307][308] Genus includes new species C. ovata.

Casterlorum[8]

Gen. et sp. nov

Valid

Retallack

Ordovician (Darriwilian)

Lenoir Formation

 United States
( Tennessee)

An organism of uncertain affinities, originally described as a hornwort. Genus includes new species C. crispum.

Cavaspina conica[304]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

 China

A microfossil.

Chiastozygus fahudensis[309]

Sp. nov

Valid

Al Rawahi & Dunkley Jones

Late Cretaceous (late Coniacian to late Campanian)

Fiqa Formation

 Oman

A heterococcolith.

Circumpodium[310]

Gen. et sp. nov

Valid

Wisshak & Hüne

Middle Jurassic (Callovian)

Marnes de Dives Formation

 France

A microfossil of uncertain phylogenetic placement. Genus includes new species C. enigmaticum.

Cyathinema[311]

Gen. et sp. nov

Valid

Agić et al.

Early Ediacaran

Nyborg Formation

 Norway

A eukaryote of uncertain phylogenetic placement. The type species is C. digermulense.

Cymatiosphaeroides forabilatus[304]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

 China

A microfossil.

Daedalosphaera[6]

Gen. et sp. nov

Valid

Loron et al.

MesoproterozoicNeoproterozoic transition

Grassy Bay Formation

 Canada

A spheroidal acritarch with inner wall sculpture. Genus includes new species D. digitisigna.

Dicrospinasphaera improcera[304]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

 China

A microfossil.

Distosphaera? corniculata[304]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

 China

A microfossil.

Dollyphyton[8]

Gen. et sp. nov

Valid

Retallack

Ordovician (Darriwilian)

Lenoir Formation

 United States
( Tennessee)

An organism of uncertain affinities, originally described as a moss belonging to the group Sphagnales. Genus includes new species D. boucotii.

Doushantuophyton? laticladus[305]

Sp. nov

Valid

Ye et al.

Ediacaran

 China

A macroalga.

Edwardsiphyton[8]

Gen. et sp. nov

Valid

Retallack

Ordovician (Darriwilian)

Lenoir Formation

 United States
( Tennessee)

An organism of uncertain affinities, originally described as a moss belonging to the group Pottiales. Genus includes new species E. ovatum.

Enteromorphites magnus[305]

Sp. nov

Valid

Ye et al.

Ediacaran

 China

A macroalga.

Eotylotopalla quadrata[304]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

 China

A microfossil.

Ericiasphaera fibrilla[304]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

 China

A microfossil.

Estrella[304]

Gen. et 2 sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

 China

A microfossil. Genus includes new species E. greyae and E. recta.

Germinosphaera alveolata[312]

Sp. nov

Valid

Miao et al.

Late Paleoproterozoic

Chuanlinggou Formation

 China

An organic-walled microfossil interpreted as a unicellular eukaryote.

Hercochitina violana[313]

Sp. nov

Valid

Nõlvak & Liang in Liang et al.

Ordovician (Katian)

Viola Springs Formation

 United States

A chitinozoan.

Herisphaera[6]

Gen. et 2 sp. nov

Valid

Loron et al.

MesoproterozoicNeoproterozoic transition

Grassy Bay Formation
Nelson Head Formation

 Canada

A spiny acritarch with regularly distributed processes. Genus includes new species H. arbovela and H. triangula.

Janegraya[8]

Gen. et sp. nov

Valid

Retallack

Ordovician (Darriwilian)

Lenoir Formation

 United States
( Tennessee)

An organism of uncertain affinities, originally described as a liverwort belonging to the group Sphaerocarpales. Genus includes new species J. sibylla.

Knollisphaeridium coniformum[304]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

 China

A microfossil.

Knollisphaeridium heliacum[304]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

 China

A microfossil.

Konglingiphyton? laterale[305]

Sp. nov

Valid

Ye et al.

Ediacaran

 China

A macroalga.

Laminasphaera[304]

Gen. et sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

 China

A microfossil. Genus includes new species L. capillata.

Laufeldochitina toilaensis[314]

Sp. nov

Valid

Nõlvak, Liang & Hints

Ordovician (Dapingian)

 Estonia

A chitinozoan.

Maxiphyton[305]

Gen. et sp. nov

Valid

Ye et al.

Ediacaran

 China

A macroalga. Genus includes new species M. stipitatum.

Membranosphaera[304]

Gen. et sp. nov

Junior homonym

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

 China

A microfossil. Genus includes new species M. formosa. The generic name is preoccupied by Membranosphaera Samoilovitch in Samoilovitch and Mtchedlishvili (1961); Shang & Liu (2024) coined a replacement name Membranospinosphaera.[315]

Mengeosphaera flammelata[304]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

 China

A microfossil.

Mengeosphaera lunula[304]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

 China

A microfossil.

Mengeosphaera membranifera[316]

Sp. nov

Valid

Shang, Liu & Moczydłowska

Ediacaran

Doushantuo Formation

 China

An acritarch.

Moorodinium crispa[317]

Sp. nov

Valid

Wainman et al.

Late Jurassic (late Kimmeridgian–early Tithonian)

Surat Basin

 Australia

A dinoflagellate.

Nimbosphaera[318]

Gen. et sp. nov

Valid

Harper & Krings

Early Devonian

Windyfield chert

 United Kingdom

A microfossil resembling the sheathed zoosporangia of extant chytrids. Genus includes new species N. rothwellii.

Nunatsiaquus[6]

Gen. et sp. nov

Valid

Loron et al.

MesoproterozoicNeoproterozoic transition

Grassy Bay Formation

 Canada

A spheroidal acritarch with inner wall sculpture. Genus includes new species N. cryptotorus.

Obelix[319]

Gen. et comb. nov

Valid

Morais et al.

Neoproterozoic

Callison Lake Formation
Chuar Group
(Kwagunt Formation)

 Canada  United States

A vase-shaped microfossil representing tests of protists. The type species is "Cycliocyrillium" rootsi Cohen, Irvine & Strauss (2017); Morais et al. (2019) corrected the suffix for the specific epithet to rootsii.

Palaeoleptochlamys[320]

Gen. et sp. nov

Valid

Strullu-Derrien et al.

Early Devonian

Rhynie chert

 United Kingdom

A member of Amoebozoa belonging to the group Arcellinida. Genus includes new species P. hassii.

Palaeolyngbya kerpii[321]

Sp. nov

Valid

Krings

Early Devonian

Rhynie chert

 United Kingdom

A cyanobacterium with affinities to Oscillatoriaceae.

Paleoplastes[322]

Gen. et sp. nov

In press

Poinar & Vega

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A possible dictyostelid. Genus includes new species P. burmanica. Announced in 2019; the final version of the article naming it was published in 2021.

Perexiflasca ventricosa[323]

Sp. nov

Valid

Krings & Harper

Early Devonian

Windyfield chert

 United Kingdom

A small, chytrid-like organism.

Rhyniotaxillus[324]

Gen. et sp. nov

Valid

Krings & Sergeev

Early Devonian

Rhynie chert

 United Kingdom

A minute coccoid cyanobacterium. Genus includes new species R. devonicus.

Rhyniovexator[303]

Gen. et sp. nov

Valid

Krings & Kerp

Early Devonian

 United Kingdom

Possibly a chytrid or a member of Aphelida. Genus includes new species R. penetrans.

Sinocylindra linearis[305]

Sp. nov

Valid

Ye et al.

Ediacaran

 China

An organism of uncertain phylogenetic placement, possibly an alga or an exceptionally large prokaryote.

Skuadinium fusum[317]

Sp. nov

Valid

Wainman et al.

Late Jurassic (late Kimmeridgian–early Tithonian)

Surat Basin

 Australia

A dinoflagellate.

Sporosphaera[325]

Gen. et sp. nov

Valid

Landon et al.

Ediacaran

 China

A eukaryote reminiscent of acritarchs. Genus includes new species S. guizhouensis.

Staurolithites ormae[309]

Sp. nov

Valid

Al Rawahi & Dunkley Jones

Late Cretaceous (late Santonian to late Campanian)

Fiqa Formation

 Oman

A heterococcolith.

Tanarium capitatum[304]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

 China

A microfossil.

Tanarium uniformum[304]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

 China

A microfossil.

Tetraphycus laminiformis[312]

Sp. nov

Valid

Miao et al.

Late Paleoproterozoic

Chuanlinggou Formation

 China

An organic-walled microfossil, a colonial organism of uncertain phylogenetic placement, possibly a cyanobacteria.

Variomargosphaeridium varietatum[304]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

 China

A microfossil.

Verrucosphaera[304]

Gen. et sp. nov

Junior homonym

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

 China

A microfossil. Genus includes new species V. minima. The generic name is preoccupied by Verrucosphaera Górka (1970); Shang & Liu (2024) coined a replacement name Spinomargosphaera.[315]

Research

  • Putative traces of life older than 3.95 Ga, reported from northern Labrador (Canada) by Tashiro et al. (2017)[326] are reevaluated by Whitehouse et al. (2019).[327]
  • Description of cellularly preserved microfossils from ~3.4 Ga-old deposits of the Kromberg Formation (South Africa), providing information on reproduction patterns of these organisms, is published by Kaźmierczak & Kremer (2019).[328]
  • El Albani et al. (2019) describe 2.1 billion-year-old fossils belonging to the Francevillian biota of Gabon, including pyritized string-shaped structures interpreted as produced by a multicellular or syncytial organism able to migrate laterally and vertically to reach food resources.[329]
  • A study on ca. 1.9 Ga hairpin-shaped trace fossils and discoid fossils from the Stirling Range Formation (Western Australia) is published by Retallack & Mao (2019), who interpret these fossils as evidence of early life on land.[330]
  • A study on organic-walled microfossils from the Cailleach Head Formation (Torridon Group, Scotland) is published by Wacey et al. (2019), who report exceptional preservation of sub-cellular detail in selected cells.[331]
  • Phosphatized three-dimensional fossil of a putative calcimicrobe Epiphyton are reported from the Neoproterozoic Dengying Formation (China) by Min et al. (2019).[332]
  • A study on the affinities of tubular microfossils from the Ediacaran Doushantuo Formation (China), i.e. Crassitubus, Quadratitubus, Ramitubus and Sinocyclocyclicus, is published by Sun et al. (2019), who reject the interpretation of these taxa as early animals.[333]
  • Lehn, Horodyski & Paim (2019) report the first known occurrence of Ediacaran organic-walled microfossils preserved in fine-grained siliciclastic strata of the Camaquã Basin (southernmost Brazil).[334]
  • A study on the structure, developmental biology and affinities of Caveasphaera costata from the Ediacaran Doushantuo Formation (China) is published by Yin et al. (2019).[335]
  • A study on possible cells and their appendages in fossils of Epiphyton from the Wuliuan of the North China Platform, and on their implications for the classification of this taxon, is published by Zhang et al. (2019).[336]
  • A study on the morphology and colony organization of Rhyniococcus uniformis (a Devonian organism resembling extant cyanobacteria in the genus Merismopedia), based on data from new specimens, is published by Krings & Harper (2019).[337]
  • A new method of assessing the morphology of fossil radiolarian specimens is presented by Kachovich, Sheng & Aitchison (2019), who apply their method to six specimens from the Cambrian Inca Formation (Australia) and Ordovician Piccadilly Formation (Canada) and evaluate the implications of their method for the studies of radiolarian evolution.[338]

Trace fossils

History of life in general

Research related to paleontology that concerns multiple groups of the organisms listed above.

  • Experiments indicating that abiotic chemical gardening can mimic structures interpreted as the oldest known fossil microorganisms in both morphology and composition are conducted by McMahon (2019).[339]
  • A study on biomarkers recovered from cap dolomites of the Araras Group (Brazil), interpreted as evidence of the transition from a bacterial to eukaryotic dominated ecosystem after the Marinoan deglaciation, likely caused by massive bacterivorous grazing by ciliates, is published by van Maldegem et al. (2019).[340]
  • Biomarkers thought to be diagnostic for demosponges and cited as evidence of rise of animals to ecological importance prior to the Cambrian radiation are reported to be also synthesized by rhizarians by Nettersheim et al. (2019), who place the oldest unambiguous evidence for animals closer to the Cambrian Explosion.[341][342][343]
  • A study on crucial conditions affecting the evolution of a proto-metabolism in early life is published by Goldford et al. (2019).[344]
  • A study on the age of the Ediacaran fossils from the Podolya Basin (southwestern Ukraine) is published by Soldatenko et al. (2019).[345]
  • A study on occurrences of body and trace fossils in Ediacaran and lower Cambrian (Fortunian) rocks around the world is published by Muscente et al. (2019), who report evidence indicative of existence of a global, cosmopolitan assemblage unique to terminal Ediacaran strata, living between two episodes of biotic turnover which might be the earliest mass extinctions of complex life.[346]
  • A study on the diversification of animals and their behaviour in the Ediacaran–Cambrian interval, as indicated by fossil and environmental proxy records, is published by Wood et al. (2019), who interpret the fossil record as indicating that the rise of early animals was more likely a series of successive, transitional radiation events which extended from the Ediacaran to the early Paleozoic, rather than competitive or biotic replacement of the latest Ediacaran biotas by markedly distinct Cambrian ones.[347]
  • A study comparing the variability of Ediacaran faunal assemblages to that of more recent fossil and modern benthic assemblages is published by Finnegan, Gehling & Droser (2019).[348]
  • A study on the intensity of animal bioturbation and ecosystem engineering in trace fossil assemblages throughout the latest Ediacaran Nama Group (Namibia), evaluating the implications of this data for the knowledge of the causes of the disappearance of the Ediacaran biota, is published by Cribb et al. (2019).[349]
  • A study on mechanisms of skeletal biomineralization in early animals (focusing on Cloudina and Cambrian hyoliths and halkieriids) is published by Gilbert et al. (2019).[350]
  • A study on the relationship between atmospheric oxygen oscillations, the extent of shallow-ocean oxygenation and the animal biodiversity in the Cambrian period is published by He et al. (2019).[351]
  • A study on the course of the transition from microbial-dominated reef environments to animal-based reefs in the early Cambrian, as indicated by data from strata in the western Basin and Range of California and Nevada, is published by Cordie, Dornbos & Marenco (2019).[352]
  • An assemblage of early Cambrian small carbonaceous fossils and acritarchs, including possible oldest known annelid remains, is described from the siltstones of the Lappajärvi impact structure (Finland) by Slater & Willman (2019).[353]
  • A study aiming to explain the occurrence of the variety of trace fossils associated with Tuzoia carapaces from the Cambrian Burgess Shale (British Columbia, Canada) is published by Mángano, Hawkes & Caron (2019).[354]
  • Cambrian Lagerstätte from the Qingjiang biota (Shuijingtou Formation; Hubei, China), preserving fossils of diverse, ~518 million years old biota, is reported by Fu et al. (2019).[355][356]
  • A study aiming to infer whether a marked drop in known diversity of marine life during the period between the Cambrian explosion and the Great Ordovician Biodiversification Event (the Furongian Gap) is apparent, due to sampling failure or lack of rock, or real, is published by Harper et al. (2019).[357]
  • A study on the marine biodiversity changes throughout the first 120 million years of the Phanerozoic is published by Rasmussen et al. (2019).[358]
  • A study aiming to determine factors influencing early Palaeozoic marine biodiversity is published by Penny & Kröger (2019).[359]
  • A study on rates of origination and extinction at the genus level throughout early Paleozoic is published by Kröger, Franeck & Rasmussen (2019), who also present estimates of longevity, taxon age and taxon life expectancy of early Paleozoic marine genera.[360]
  • A review of biodiversity curves of marine organisms throughout early Paleozoic, indicating the occurrence of a large-scale, long-term radiation of life that started during late Precambrian time and was only finally interrupted in the Devonian Period, is published online by Harper, Cascales-Miñana & Servais (2019).[361]
  • A study on processes causing fluctuations of biodiversity of marine invertebrates throughout the Phanerozoic is published by Rominger, Fuentes & Marquet (2019).[362]
  • A study on the impact of environmental changes on the biodiversity of North American marine organisms throughout the Phanerozoic is published by Roberts & Mannion (2019).[363]
  • A study testing the hypothesis that the influence of ocean chemistry and climate on the ecological success of marine calcifiers decreased throughout the Phanerozoic is published by Eichenseer et al. (2019).[364]
  • A study on genus origination and extinction rates in the Ordovician on a global scale, for the paleocontinents Baltica and Laurentia, and for onshore and offshore areas, is published by Franeck & Liow (2019).[365]
  • First Middle Ordovician (DapingianDarriwilian) soft-bodied fossils from northern Gondwana (fossils of medusozoan possibly belonging to the genus Patanacta, possible members of the family Wiwaxiidae and an arthropod possibly belonging to the family Pseudoarctolepidae) are described from the Valongo Formation (Portugal) by Kimmig et al. (2019).[366]
  • New Konservat-Lagerstätte containing exceptionally preserved soft-bodied organisms, including the earliest record of Acoelomorpha, Turbellaria, Nemertea and Nematoda reported so far, is described from the Ordovician (Katian) Vauréal Formation (Canada) by Knaust & Desrochers (2019).[367]
  • A review of occurrence data of latest Ordovician benthic marine organisms is published by Wang, Zhan & Percival (2019), who evaluate the implications of the studied data for the knowledge of the course of the end-Ordovician mass extinction.[368]
  • A revision of Silurian fauna from the Pentland Hills (Scotland) described by Archibald Lamont in 1978 is published by Candela & Crighton (2019).[369]
  • A study on the course of graptolite extinctions during the middle Homerian biotic crisis and on the impact of this crisis on other marine invertebrates, as indicated by data from the Kosov Quarry section of the Prague Synform (Czech Republic), is published by Manda et al. (2019).[370]
  • Well-preserved fossil cryptic biota is reported from the submarine cavities of the Devonian (Emsian to Givetian) mud mounds in the Hamar Laghdad area (Morocco) by Berkowski et al. (2019).[371]
  • A study aiming to test and quantify the classification of Devonian biogeographic areas, based on distributional data of Devonian trilobite, brachiopod and fish taxa, is published by Dowding & Ebach (2019).[372]
  • A study on patterns of local richness of terrestrial tetrapods throughout the Phanerozoic is published by Close et al. (2019).[373]
  • Description of tetrapod and fish fossils from the coastal locality of Burnmouth, Scotland (Ballagan Formation), associated plant material and sedimentological context of these fossils is published by Clack et al. (2019), who interpret these fossils as evidence of the potential richness of the Tournaisian fauna, running counter to the assumption of a depauperate nonmarine fauna following the end-Devonian Hangenberg event.[374]
  • A study on the impact of climate changes during the Carboniferous–Permian transition on the evolution of land-living vertebrates is published by Pardo et al. (2019).[375]
  • A study aiming to test one of the scenarios proposed by Robert L. Carroll in 1970 to explain the origin of the amniotic egg, based on data from Permo-Carboniferous tetrapods, is published by Didier, Chabrol & Laurin (2019).[376]
  • An overview of the studies researching biodiversity changes in the Permian and their links to volcanism is published by Chen & Xu (2019).[377]
  • Haridy et al. (2019) report the occurrence of overgrowth of palatal dentition of Cacops and Captorhinus by a new layer of bone to which the newest teeth are then attached (the overgrowth pattern also documented in early fishes), and evaluate the implications of this finding for the knowledge of the origin of teeth.[378]
  • A study on the severity of the end-Guadalupian extinction event is published online by Rampino & Shen (2019).[379]
  • A study on the ecology of Permian tetrapods from the Abrahamskraal Formation (South Africa), as indicated by stable oxygen isotope compositions of phosphate from teeth and bones used as a proxy for water dependence, is published online by Rey et al. (2019).[380]
  • Two Permian tetrapod assemblages, recovered from the northernmost point at which the lowest Beaufort Group has been targeted for collecting fossils, are reported from the southern Free State (South Africa) by Groenewald, Day & Rubidge (2019), who evaluate the implications of these fossils for the knowledge of faunal provincialism within the Middle to Late Permian Karoo Basin.[381]
  • A study aiming to determine which Permian tetrapod assemblage zones are present in the vicinity of Victoria West (Northern Cape, South Africa), and to reassess the biostratigraphic provenance of specimens collected historically in this area (including the holotype of Lycaenops ornatus), is published by Day & Rubidge (2019).[382]
  • A study on the course of the turnover from the Daptocephalus to Lystrosaurus Assemblage Zones of the Karoo Basin is published by Gastaldo et al. (2019).[383]
  • A study on the timing of the extinction of latest Permian vertebrates in the Karoo Basin of South Africa is published online by Rampino et al. (2019).[384]
  • A study on the identification and position of the terrestrial end-Permian mass extinction in southern African sediments, based on data from a new site in the South African Karoo Basin, is published online by Botha et al. (2019).[385]
  • A study on the functional diversity of middle Permian and Early Triassic marine paleocommunities in the area of present-day western United States, and on its implications for the knowledge of functional re-organization of these communities in the aftermath of the Permian–Triassic extinction event, is published by Dineen, Roopnarine & Fraiser (2019).[386]
  • A study aiming to explain high biodiversity preserved in the Triassic Cassian Formation (Italy) is published online by Roden et al. (2019).[387]
  • A study on shark, sizable carnivorous archosaur, big herbivorous tetrapod and probable turtle bromalites (coprolites and possibly some cololites) from a turtle-dominated fossil assemblage from the Upper Triassic Poręba site (Poland) is published by Bajdek et al. (2019), who evaluate the implications of their findings for inferring the diet of the Triassic turtle Proterochersis porebensis.[388]
  • A study on seawater oxygenation during the Early Jurassic and its impact on the recovery of marine benthos after the Triassic–Jurassic extinction event, as indicated by data from Blue Lias Formation (United Kingdom), is published by Atkinson & Wignall (2019).[389]
  • A study on the patterns and processes of recovery of marine fauna after the Toarcian oceanic anoxic event, as indicated by data from the Cleveland Basin (Yorkshire, United Kingdom), is published by Caswell & Dawn (2019).[390]
  • A study on changes of land vegetation resulting from the Toarcian oceanic anoxic event is published by Slater et al. (2019).[391]
  • Skeletal elements of Oxfordian ichthyosaurs and plesiosaurs are reported from the Kingofjeld mountain (north-east Greenland) by Delsett & Alsen (2019).[392]
  • New marine reptile-bearing localities documenting the TithonianBerriasian transition at the High Andes (Mendoza Province, Argentina) are reported by Fernández et al. (2019).[393]
  • A study on microvertebrate fossils from the Upper Jurassic or Lower Cretaceous of Ksar Metlili (Anoual Syncline, Morocco), evaluating their palaeobiogeographical implications, and on the age of this fauna, is published online by Lasseron et al. (2019).[394]
  • Description of mid-Cretaceous invertebrate fauna from Batavia Knoll (eastern Indian Ocean), and a study on its similarities to other Cretaceous faunas from around the Indian Ocean, is published by Wild & Stilwell (2019).[395]
  • A study on the age of the vertebrate fauna from the Cretaceous Cerro Barcino Formation (Argentina) is published online by Krause et al. (2019).[396]
  • Possible amphibian, gastropod and insect egg masses are described from the Cretaceous amber from Myanmar by Xing et al. (2019).[397]
  • A study on coprolites from the Upper Cretaceous deposits in the Münster Basin (northwestern Germany), evaluating their implications for the knowledge of Cretaceous trophic structures and predator–prey interactions, is published by Qvarnström et al. (2019).[398]
  • New vertebrate assemblage from the upper Turonian Schönleiten Formation of Gams bei Hieflau (Austria) is described by Ősi et al. (2019).[399]
  • Turonian marine vertebrate fossils from the Huehuetla quarry (Puebla, Mexico) are described by Alvarado-Ortega et al. (2019).[400]
  • A study on the biogeography of Cretaceous terrestrial tetrapods is published by Kubo (2019).[401]
  • A study on the structure and contents of a large piece of amber attached to a jaw of a specimen of Prosaurolophus maximus from the Cretaceous Dinosaur Park Formation (Alberta, Canada), evaluating the implications of this finding for the knowledge of the habitat and taphonomy of the dinosaur, is published by McKellar et al. (2019).[402]
  • An accumulation of fossil eggshells of bird, crocodylomorph and gekkotan eggs is reported from the Late Cretaceous Oarda de Jos locality in the vicinity of the city of Sebeș (Romania) by Fernández et al. (2019).[403]
  • A review of the fossil record of Late Cretaceous and Paleogene vertebrates from the Seymour Island (Antarctica) is published by Reguero (2019).[404]
  • A study on the evolutionary history of the family Pospiviroidae, aiming to assess possible impact of the Cretaceous–Paleogene extinction event on the divergence rates in this family, is published by Bajdek (2019).[405]
  • A study on calcareous nanoplankton and planktic foraminiferal assemblages in a Cretaceous-Paleogene section from the peak ring of the Chicxulub crater, and on their implications for the knowledge of recovery of plankton after the Cretaceous–Paleogene extinction event, is published by Jones, Lowery & Bralower (2019).[406]
  • A study on the course of recovery of the nanoplankton communities after the Cretaceous–Paleogene extinction event is published by Alvarez et al. (2019), who report evidence indicative of 1.8 million years of exceptional volatility of post-extinction communities and indicating that the emergence of a more stable equilibrium-state community coincided with indicators of carbon cycle restoration and a fully functioning biological pump.[407]
  • A study on the timing and nature of recovery of benthic marine ecosystems of Antarctica after the Cretaceous–Paleogene mass extinction, as indicated by data from fossils of benthic molluscs, is published by Whittle et al. (2019).[408]
  • A study on the drivers and tempo of biotic recovery after Cretaceous–Paleogene mass extinction, as indicated by data from the Corral Bluffs section of the Denver Basin (Colorado, United States), is published by Lyson et al. (2019).[409]
  • Description of the vertebrate assemblage from the Oligocene Shine Us locality in the Khaliun Basin (Mongolia) is published by Daxner-Höck et al. (2019).[410]
  • Description of reptile and amphibian fossils from the early Miocene localities of the Kilçak section (Turkey) is published by Syromyatnikova et al. (2019).[411]
  • Description of fossil fish, amphibian and reptilian fauna from the middle Miocene locality Gračanica (Bosnia and Herzegovina) is published online by Vasilyan (2019).[412]
  • A study on the vertebrate fossils from the early Clarendonian localities within the Goliad Formation in Bee and Live Oak Counties in Texas (comprising the Lapara Creek Fauna), and on the stratigraphic context of these localities, is published by May (2019).[413]
  • New late Miocene vertebrate assemblage, including turtle, rodent and xenarthran fossils (among which is the oldest record of an armadillo belonging to the genus Dasypus reported so far), is described from the Los Alisos locality (Guanaco Formation, Argentina) by Ercoli et al. (2019).[414]
  • Description of a diverse late Miocene marine fauna from the Bloomfield Quarry (Wilson Grove Formation; California, United States), including the most diverse assemblage of fossil walruses yet reported worldwide from a single locality, is published by Powell et al. (2019).[415]
  • Fish, turtle and mammals fossils are described from a locality near Whitehorse (Yukon, Canada), probably of Miocene age, by Eberle et al. (2019).[416]
  • A study on microscopic traces of hominin and animal activities in the Denisova Cave (Russia), providing the information on the use of this cave over the last 300,000 years, is published by Morley et al. (2019).[417]
  • A study on the age of the Pleistocene vertebrate assemblage from the Khok Sung locality (Thailand) is published by Duval et al. (2019).[418]
  • Revision of reptile and amphibian fossils from the late Pleistocene collection of the "Caverne Marie-Jeanne" (Hastière-Lavaux, Namur Province, Belgium) is published by Blain et al. (2019).[419]
  • New late Pleistocene site Tsaramody (Sambaina basin, Madagascar), preserving diverse subfossil remains of vertebrates, is reported by Samonds et al. (2019).[420]
  • A study on the paleoecology and diet of late Pleistocene terrestrial vertebrates known from an asphalt deposit (Project 23, Deposit 1) at Rancho La Brea (California, United States) is published online by Fuller et al. (2019).[421]
  • A study on changes of vegetation in southern Borneo over the past 40,000  calibrated years BP, as indicated by data from Saleh Cave (South Kalimantan, Indonesia), is published by Wurster et al. (2019).[422]
  • Late Quaternary fossils of vertebrates are described from caves in the Manning Karst Region of eastern New South Wales (Australia) by Price et al. (2019).[423]
  • A study aiming to determine the relationships between extinctions of megafauna, climatic changes and patterns of human appearance in south-eastern Australia over the last 120,000 years is published by Saltré et al. (2019).[424]
  • A study on the causes of Holocene extinction of megafauna of Madagascar is published by Godfrey et al. (2019).[425]
  • A review discussing possible links between the fossil record of marine biodiversity, nutrient availability and primary productivity is published online by Martin & Servais (2019).[426]
  • A study on factors which determined the relative intensity of marine extinctions during greenhouse–icehouse transitions in the Late Ordovician and the Cenozoic is published online by Saupe et al. (2019).[427]
  • A study on the possible relationship between speciation and extinction rates of different groups of organisms and the ages of these groups, as indicated by data from extant and fossil species, is published by Henao Diaz et al. (2019).[428][429][430]
  • A study on the evolution of bite force of amniotes, as indicated by data from extant and fossil taxa, is published by Sakamoto, Ruta & Venditti (2019).[431]
  • A study on the phylogenetic distribution, morphological variation and functions of apicobasal ridges (elevated ridges of tooth enamel) in aquatic reptiles and mammals, as indicated by data from extant and fossil taxa, is published by McCurry et al. (2019).[432]
  • A study on the impact of uncertainty of stratigraphic age of fossils on studies estimating species divergence times which incorporate fossil taxa, based on data from the fossil record of North American mammals and from the dataset of extant and fossil cetaceans, is published by Barido-Sottani et al. (2019).[433]
  • A study evaluating the impact of information about stratigraphic ranges of fossil taxa on the analyses of timing of evolutionary divergence is published online by Püschel et al. (2019).[434]
  • A study on anatomical distribution, abundance, geometry, melanin chemistry and elemental inventory of melanosomes in tissues of extant vertebrates, evaluating their implications for reconstructions of internal soft-tissue anatomy in fossil vertebrates, is published by Rossi et al. (2019).[435]
  • A study on the chronostratigraphy and biostratigraphy of Cenozoic vertebrate (mostly mammal) fossils from the South Carolina Coastal Plain is published by Albright et al. (2019).[436]

Other research

Other research related to paleontology, including research related to geology, palaeogeography, paleoceanography and paleoclimatology.

  • A study on the biological oxygen production during the Mesoarchean, as indicated by data from Mesoarchean shales of the Mozaan Group (Pongola Supergroup, South Africa) preserving record of a shallow ocean "oxygen oasis", is published by Ossa Ossa et al. (2019).[437]
  • A study on the extent of the oxygenation of ocean waters over continental shelves before the Great Oxidation Event, as indicated by data from 2.5-billion-year-old Mount McRae Shale (Australia), is published by Ostrander et al. (2019).[438]
  • A study on the extent of the oxygenation of shallow oceans 2.45 billion years ago is published by Rasmussen et al. (2019), who interpret their findings as indicating that oxygen levels both the surface oceans and atmosphere were exceedingly low before the Great Oxidation Event, which the authors interpret as directly caused by evolution of oxygenic photosynthesis.[439]
  • A study aiming to determine whether the overall size of the biosphere decreased at the end of the Great Oxidation Event, based on data on isotope geochemistry of sulfate minerals from the Belcher Group (subarctic Canada), is published by Hodgskiss et al. (2019).[440]
  • Evidence of a burst of mantle activity at the end of the Archean (around 2.5 billion years ago) is presented by Marty et al. (2019), who interpret their findings as lending credence to models advocating a magmatic origin for environmental changes such as the Great Oxidation Event.[441]
  • A study aiming to determine the effects of competition of early anoxygenic phototrophs and primitive oxygenic phototrophs on the Earth system, especially on the large-scale oxygenation of Earth's atmosphere ~2.3 billion years ago, is published by Ozaki et al. (2019).[442]
  • A study on the geochemistry of mat-related structures and their host sediments from the Francevillian Formation (Gabon) is published by Aubineau et al. (2019), who evaluate the implications of their findings for the knowledge whether ancient microbes induced illitisation (conversion of smectite to illite–smectite mixed-layer minerals), and for the knowledge of Earth's climate and ocean chemistry in the Paleoproterozoic.[443]
  • A study on the organic geochemical (biomarker) signatures of the 1.38-billion-years-old black siltstones of the Velkerri Formation (Australia), and on their implications for inferring the microbial diversity and palaeoenvironment of the Proterozoic Roper Seaway, is published by Jarrett et al. (2019).[444]
  • A study on the origins of putative stromatolites and associated carbonate minerals from lacustrine sedimentary rocks of the 1.1-billion-years-old Stoer Group is published by Brasier et al. (2019).[445]
  • A study suggesting a link between early evolution and diversification of animals and high availability of copper in the late Neoproterozoic is published by Parnell & Boyce (2019).[446]
  • A study aiming to determine the cause of the uniquely high amplitudes of Neoproterozoic δ13C excursions is published by Shields et al. (2019).[447]
  • A study evaluating the possible relationship between the Cryogenian magmatic activity and the evolution of early life, based on data from the Cryogenian Yaolinghe Group (China), is published by Long, Zhang & Luo (2019).[448]
  • Evidence for oxygenated waters near ice sheet grounding lines during the Cryogenian is presented by Lechte et al. (2019).[449]
  • A study on ocean oxygen levels during the Ediacaran Shuram negative C-isotope Excursion and the middle Ediacaran, and on their implications for the evolution of the Ediacaran biota, is published by Zhang et al. (2019).[450]
  • A study on the causes of widespread preservation of soft-bodied organisms in sandstones of the Ediacara Member in South Australia is published by Liu et al. (2019).[451]
  • A study on the seafloor oxygen fugacity in the time of the emergence of the earliest known benthic animals, as inferred from data from the latest Ediacaran Dengying Formation (China), is published by Ding et al. (2019).[452]
  • A study on the process of fossilization of Ediacaran organisms, and on its impact on the preservation of the external shape of these organisms, is published by Bobrovskiy et al. (2019).[453]
  • A study on the global extent of the oxygenation of seafloor, surface oceans and atmosphere during early Cambrian is published by Dahl et al. (2019), who report evidence of two major oceanic anoxic events in the early Cambrian.[454]
  • A study on nitrogen isotope and organic carbon isotope data from the lower Cambrian Niutitang Formation (China) is published online by Xu et al. (2019), who link nitrogen cycle perturbations to animal diversification during the early Cambrian.[455]
  • A study on the paleoecological characteristics of Cambrian marine ecosystems of central Sonora (Mexico) is published by Romero et al. (2019).[456]
  • A study on seawater temperatures during the Cambrian, as indicated by data from oxygen isotope analyses of Cambrian brachiopod shells, is published by Wotte et al. (2019).[457]
  • A study on bottom-water redox conditions in the late Cambrian Alum Shale Sea, as indicated by sedimentary molybdenum contents of the Alum Shale, is published by Dahl et al. (2019), who interpret their findings as indicating that anoxic sulfidic bottom waters were an intermittent rather than persistent feature of Cambrian oceans, and that early animals invaded the seafloor during oxygenated periods.[458]
  • A study on the paleogeographic position of all major Phanerozoic arc-continent collisions, comparing it with the latitudinal distribution of ice-sheets throughout the Phanerozoic, is published by Macdonald et al. (2019).[459]
  • A study aiming to determine whether the Ordovician meteor event directly affected Earth's climate and biota is published by Schmitz et al. (2019).[460]
  • A review of the evidence of evolutionary radiation of animals throughout the Great Ordovician Biodiversification Event, and of environmental changes coincident with these biotic changes, is published by Stigall et al. (2019).[461]
  • A study on conodont oxygen isotope compositions in Ordovician samples from Argentine Precordillera and Laurentia, and on their implications for the knowledge of palaeothermometry and drift of the Precordillera in the early Paleozoic, is published online by Albanesi et al. (2019).[462]
  • A study on carbon isotope data from stratigraphic sections at Germany Valley (West Virginia) and Union Furnace (Pennsylvania) in the Central Appalachian Basin, evaluating its implications for the knowledge of change in atmospheric oxygen levels during the late Ordovician and its possible relationship with early diversification of land plants, is published by Adiatma et al. (2019).[463]
  • Signatures of Devonian (Famennian) forests and soils preserved in black shales in the southernmost Appalachian Basin (Chattanooga Shale; Alabama, United States) are presented by Lu et al. (2019).[464]
  • A study examining the intensity of explosive volcanism from 400 to 200 million years ago, and evaluating its impact on the late Paleozoic Ice Age, is published by Soreghan, Soreghan & Heavens (2019).[465]
  • Description of Cisuralian charcoal from the Barro Branco coal seam (Siderópolis Member of the Rio Bonito Formation, Brazil), and a study on its implications for reconstruction of palaeo-wildfire occurrences in peat-forming vegetation through the Late Palaeozoic in Gondwana, is published by Benicio et al. (2019).[466]
  • A study on the extent and causes of the end-Capitanian extinction event, based on data from the Middle to Late Permian section of the Sverdrup Basin (Ellesmere Island, Canada), is published online by Bond, Wignall & Grasby (2019).[467]
  • A study on the ocean chemistry during the Permian–Triassic extinction event, as indicated by data from a new stratigraphic section in Utah, and on its implications for the knowledge of the causes of this extinction, is published by Burger, Estrada & Gustin (2019).[468]
  • A study aiming to determine the stratigraphic position of the end-Permian biotic crisis in the Sydney Basin (Australia) is published by Fielding et al. (2019), who also attempt to determine the climate changes in this region concurrent with the end-Permian extinction.[469]
  • A study on shifts in volcanic activity across the Permian-Triassic boundary, as indicated by measurements of mercury in marine sections across the Northern Hemisphere, is published by Shen et al. (2019).[470]
  • A study on mercury enrichments in Permian-Triassic boundary sections from Lubei (South China craton) and Dalongkou (Junggar terrane), and on their implications for the knowledge of volcanic activity during the Permian-Triassic transition, is published by Shen et al. (2019).[471]
  • Evidence of the environmental transition from meandering to braided rivers and of the development of desert-like conditions in the earliest Triassic is reported from Permian-Triassic boundary sections in Shanxi (China) by Zhu et al. (2019).[472]
  • A study on the nitrogen isotope variations in oceanic waters in the aftermath of the end-Permian mass extinction is published by Sun et al. (2019), whose conceptual model indicates ammonium intoxication of the oceans during this time period.[473]
  • A study on microbially induced sedimentary structures from the Lower Triassic Blind Fiord Formation (Arctic Canada), evaluating their implications for the knowledge of the course of biotic recovery in the aftermath of the Permian–Triassic extinction event, is published online by Wignall et al. (2019).[474]
  • A study on the oxygen isotope compositions of discrete conodont elements from the Lower Triassic Mianwali Formation (Pakistan), and on their implications for inferring the timing of temperature changes and the interrelationship between climate and biodiversity patterns during the Smithian-Spathian biotic crisis, is published by Goudemand et al. (2019).[475]
  • A study on nutrient availability through the Early to Middle Triassic along the northern margin of Pangea is published online by Grasby et al. (2019).[476]
  • A study on the character and extent of the Triassic Boreal Ocean delta plain across the area of the present-day Barents Sea, interpreted as the largest delta plain reported so far, is published by Klausen, Nyberg & Helland-Hansen (2019).[477]
  • A study aiming to determine links between volcanic activity in the Central Atlantic magmatic province, elevated concentrations of mercury in marine and terrestrial sediments and abnormalities of fossil fern spores across the Triassic-Jurassic boundary in southern Scandinavia and northern Germany is published by Lindström et al. (2019).[478]
  • A study aiming to reconstruct the palaeoenvironmental changes of the late Pliensbachian outside of Western Tethys Ocean and to test their temporal relation to large igneous province volcanism is published by De Lena et al. (2019).[479]
  • Krencker, Lindström & Bodin (2019) present sedimentological, paleontological and geochemical evidence from the Central High Atlas Basin (Morocco) and Jameson Land (Greenland) indicative of the occurrence of a major sea-level drop prior to the onset of the Toarcian oceanic anoxic event.[480]
  • A study on the duration of the Toarcian oceanic anoxic event, as indicated by data from the Talghemt section in the High Atlas (Morocco), is published by Boulila et al. (2019).[481]
  • A study on the Middle Jurassic palaeoenvironment of La Voulte (France), as indicated by data from exceptionally preserved eyes of the polychelidan lobster Voulteryon parvulus and from epibiontic brachiopods associated with V. parvulus, is published by Audo et al. (2019).[482]
  • A study comparing the Jurassic floras of the Ayuquila Basin and the Otlaltepec Basin (Mexico) and evaluating their implications for the knowledge of the Jurassic environments of these basins is published by Velasco-de León et al. (2019).[483]
  • A study on Jurassic paleomagnetism, based on an updated set of Jurassic paleopoles from Adria (Italy), is published by Muttoni & Kent (2019).[484]
  • A study on the chronostratigraphy of the Upper Jurassic Morrison Formation is published by Maidment & Muxworthy (2019).[485]
  • Evidence of repeated significant oceanic and biotic turnovers in the area of the present-day Gulf of Mexico at the Jurassic-Cretaceous transition is presented by Zell et al. (2019).[486]
  • A study on the age of the dinosaur-bearing Upper Jurassic–Lower Cretaceous sediments of western Maestrazgo Basin and South-Iberian Basin (eastern Spain), aiming to also reconstruct the palaeoenvironments of this area on the basis of data from these sediments, is published by Campos-Soto et al. (2019).[487]
  • A review of data on the Jurassic and Cretaceous climates of Siberia is published by Rogov et al. (2019).[488]
  • A study on global climatic changes during the Early Cretaceous, focusing on the duration and magnitude of Early Cretaceous cold episodes, is published by Vickers et al. (2019).[489]
  • Evidence from the Lower Cretaceous strata around the southern margin of the Eromanga Basin (Australia) indicative of cold (limited glacial and/or seasonal freezing) conditions persisting in Southern Australia through the Hauterivian and the Aptian is presented by Alley, Hore & Frakes (2019).[490]
  • A study on phototropism in extant trees from Beijing and Jilin Provinces and fossil tree trunks from the Jurassic Tiaojishan and Tuchengzi formations in Liaoning and Beijing regions (China), and on its implications for inferring the history of the rotation of the North China Block, is published by Jiang et al. (2019).[491]
  • A study on the age of the Cretaceous Cloverly Formation is published by D'Emic et al. (2019).[492]
  • Evidence from the chronostratigraphy, fossil content, bracketing facies and ages of the Cretaceous Wayan Formation of Idaho and Vaughn Member of the Blackleaf Formation of Montana, indicating that they represent the same depositional system prior to disruption by subsequent tectonic and volcanic events, is presented by Krumenacker (2019).[493]
  • A study on Cenomanian plants from the Redmond no.1 mine near Schefferville (Redmond Formation; Labrador Peninsula, Canada) and on their implications for the knowledge of paleoclimate of this site is published by Demers-Potvin & Larsson (2019).[494]
  • The first high-resolution record of CenomanianTuronian paleotemperatures from the Southern Hemisphere, as indicated by data from the Ocean Drilling Program Site 1138 on the Kerguelen Plateau, is presented by Robinson et al. (2019).[495]
  • A study on the impact of marine biogeochemical processes on the Cretaceous Thermal Maximum is published by Wallmann et al. (2019).[496]
  • A study on the age of the Upper Cretaceous Wadi Milk Formation (Sudan) is published by Owusu Agyemang et al. (2019).[497]
  • A study on Cenomanian to Coniacian polar environmental conditions at eight locations in northeast Russia and northern Alaska is published online by Spicer et al. (2019).[498]
  • A study on variability of carbon, oxygen and nitrogen isotopes in multiple tissues from a wide array of extant vertebrate taxa from the Atchafalaya River Basin in Louisiana (inferred to be an environmental analogue to the Late Cretaceous coastal floodplains of North America), and on its implications for formulating and testing predictions about ancient ecological communities based on stable isotope data from fossil specimens, is published by Cullen et al. (2019).[499]
  • A study on the general distribution and stratigraphy of the lower shale member of the Campanian Aguja Formation (Texas, United States), and a revision of all significant larger vertebrate fossil specimens from these strata, is published by Lehman et al. (2019).[500]
  • High-precision dating for the Battle Formation (Alberta, Canada) is presented by Eberth & Kamo (2019).[501]
  • High-precision dating and the first calibrated chronostratigraphy for the Horseshoe Canyon Formation (Alberta, Canada) is presented by Eberth & Kamo (2019).[502]
  • A study on the Maastrichtian climate of Arctic Alaska, based on data from the Prince Creek Formation, is published by Salazar-Jaramillo et al. (2019).[503]
  • Studies on the timing of the Deccan Traps volcanism close to the Cretaceous-Paleogene boundary are published by Schoene et al. (2019), who interpret their findings as indicative of four high-volume eruptive periods close to the Cretaceous-Paleogene boundary, the first of which occurred tens of thousands of years prior to both the Chicxulub bolide impact and Cretaceous–Paleogene extinction event[504] and by Sprain et al. (2019), who interpret their findings as indicating that a steady eruption of the flood basalts mostly occurred in the earliest Paleogene.[505]
  • A study on the environmental variability before and across the Cretaceous-Paleogene mass extinction, as inferred from data on the calcium isotope ratios of aragonitic mollusc shells from the Lopez de Bertodano Formation (Antarctica), is published online by Linzmeier et al. (2019).[506]
  • A turbulently deposited sediment package directly overlain by the Cretaceous–Paleogene boundary tonstein is reported from the Tanis site (Hell Creek Formation, North Dakota, United States) by DePalma et al. (2019), who interpret their findings as indicating that deposition occurred shortly after a major bolide impact, and might have been caused by the Chicxulub impact.[507]
  • A study on the immediate aftermath of the Chicxulub impact at the Cretaceous–Paleogene boundary, based on data from the Chicxulub crater, is published by Gulick et al. (2019).[508]
  • Evidence of rapid ocean acidification in the aftermath of the Chicxulub impact and of the protracted Earth system recovery after the Cretaceous–Paleogene extinction event is presented by Henehan et al. (2019).[509]
  • The longest, highest resolution, stratigraphically continuous, single-species benthic foraminiferal carbon and oxygen isotope records for the Late Maastrichtian to Early Eocene from a single site in the South Atlantic Ocean, providing information on the evolution of climate and carbon-cycling during this time period, are presented by Barnet et al. (2019).[510]
  • O'Leary et al. (2019) publish a monograph on the sedimentology and sequence stratigraphy of the part of Mali which was covered by an ancient epeiric sea known as the Trans-Saharan Seaway during the Late Cretaceous and early Paleogene, provide the first formal description of and nomenclature for the Upper Cretaceous and lower Paleogene geological formations of this region, and revise fossil flora and fauna of this region.[511]
  • Zeebe & Lourens (2019) provide a new absolute astrochronology up to 58 Ma and a new Paleocene–Eocene boundary age.[512]
  • A study on stomata of fossil specimens of members of the family Lauraceae from the Eocene of Australia and New Zealand, evaluating their implications for reconstructions of Eocene pCO2 levels, is published by Steinthorsdottir et al. (2019).[513]
  • Climate simulations capturing major climatic features of the Early Eocene and the Paleocene–Eocene Thermal Maximum in a state-of-the-art Earth system model are presented by Zhu, Poulsen & Tierney (2019).[514]
  • A study evaluating the utility of membrane lipids of members of Thaumarchaeota (now Nitrososphaerota) as proxies for the carbon isotope excursion and surface ocean warming, and assessing their implications for the knowledge of the source and size of carbon emissions during the Paleocene–Eocene Thermal Maximum, is published by Elling et al. (2019).[515]
  • A study on abundant black charcoal shards from Paleogene sites of Wilson Lake B (New Jersey) and Randall's Farm (Maryland) is published by Fung et al. (2019), who interpret these shards as most likely to be evidence of widespread wildfires at the Paleocene-Eocene boundary caused by extraterrestrial impact.[516]
  • A study on the impact of carbon-based greenhouse gas fluxes associated with the North Atlantic Igneous Province on the onset of the Paleocene–Eocene Thermal Maximum is published by Jones et al. (2019).[517]
  • Evidence from the Deep Ivorian Basin offshore West Africa (equatorial Atlantic Ocean), indicating that peak warming during the Middle Eocene Climatic Optimum was associated with upper-ocean stratification, decreased export production, and possibly harmful algal blooms, is presented by Cramwinckel et al. (2019).[518]
  • New stable isotopes record of the Middle Eocene Climatic Optimum event is reported from eastern Turkey by Giorgioni et al. (2019).[519]
  • A study on variations of ocean circulation and marine bioproductivity related to the beginnings of the formation of the Antarctic Circumpolar Current, based on data from Eocene and Oligocene sedimentary drift deposits east of New Zealand, is published by Sarkar et al. (2019).[520]
  • A study on changes in surface water temperature in the eastern North Sea Basin during the late Priabonian to earliest Rupelian is published by Śliwińska et al. (2019).[521]
  • A study linking the onset or strengthening of an Atlantic meridional overturning circulation to the closure of the Arctic–Atlantic gateway at the Eocene–Oligocene transition is published by Hutchinson et al. (2019).[522]
  • A study on the timing of the uplift of the Tibetan Plateau, as indicated by the discovery of the Oligocene palm fossils in the Lunpola Basin in Tibet, is published by Su et al. (2019).[523]
  • A review of vertebrate fossils from the Tibetan Plateau, evaluating their implications for inferring the course of the uplift of the Tibetan Plateau, is published by Deng et al. (2019).[524]
  • A study on the impact of changing Eocene paleogeography and climate on the utility of stable isotope paleoaltimetry methods in the studies aiming to reconstruct the elevation history of the Tibetan Plateau is published by Botsyun et al. (2019).[525][526][527]
  • A study on the causes of the long-term climate cooling during the Neogene is published by Rugenstein, Ibarra & von Blanckenburg (2019).[528]
  • A study on the climatic and environmental conditions in the Loperot site (Kenya) in the early Miocene is published by Liutkus-Pierce et al. (2019).[529]
  • A study on the timing and course of the separation of the Indian Ocean and the Mediterranean Sea in the Miocene is published by Bialik et al. (2019).[530]
  • A study comparing changes of the export of intermediate-depth Pacific waters to the western North Atlantic prior to the closure of the Central American Seaway with records of strength of the Atlantic meridional overturning circulation, evaluating the implications of this data for the knowledge of the timing of closure of the Central American Seaway, is published by Kirillova et al. (2019).[531]
  • A study on climatic and environmental changes in central Andes during the late Miocene is published by Carrapa, Clementz & Feng (2019).[532]
  • A study on the exact age of the marine fauna from the Miocene Chilcatay and Pisco formations (Peru), and on its implications for reconstructions of local paleoenvironment, is published online by Bosio et al. (2019).[533]
  • A study on the origin of the African C4 savannah grasslands is published by Polissar et al. (2019).[534]
  • A study on the anatomical traits of teeth and inferred diet of bovids, suids and rhinocerotids from Kanapoi, and on their implications for reconstructing the environments of this site, is published online by Dumouchel & Bobe (2019).[535]
  • New spatial data on the Plio-Pleistocene Bolt's Farm pits from the Cradle of Humankind site (South Africa) is presented by Edwards et al. (2019), who also attempt to provide key biochronological ages for the Bolt's Farm deposits.[536]
  • A study on the global mean sea level during the Pliocene mid-Piacenzian Warm Period is published by Dumitru et al. (2019).[537]
  • A study on the amplitude of sea-level variations during the Pliocene is published by Grant et al. (2019).[538]
  • Simulations of coevolution of climate, ice sheets and carbon cycle over the past 3 million years are presented by Willeit et al. (2019).[539]
  • A study on the age of the Sahara, as indicated by data from Pliocene and Pleistocene paleosols from the Canary Islands, is published by Muhs et al. (2019).[540]
  • A study on the latest Villafranchian climate and environment of the area of southern Italy, as indicated by amphibian and reptile fossil record from the Pirro Nord karstic complex, is published by Blain et al. (2019).[541]
  • A study on atmospheric gas levels before and after the shift from glacial cycles of 100 thousand years to 40-thousand-year cycles around one million years ago, as inferred from data from ice core samples from the Allan Hills Blue Ice Area (East Antarctica), is published by Yan et al. (2019).[542]
  • A study on pCO2 levels from 2.6 to 0.8 Ma is published by Da et al. (2019), who find no evidence indicating that the Mid-Pleistocene Transition was caused by the decline of pCO2.[543]
  • A study on changes in winter rainfall in the Mediterranean over the past 1.36 million years is published by Wagner et al. (2019).[544]
  • Results of stable carbon and oxygen isotope analyses of tooth enamel samples from Pleistocene mammals from the Yugong Cave and Baxian Cave (China) are presented by Sun et al. (2019), who evaluate the implications of their findings for the knowledge of Pleistocene climatic and environmental changes in South China.[545]
  • A study on Pleistocene mammal fossils from the Yai Ruak Cave (Krabi Province, Thailand), including the southernmost known record of Crocuta crocuta ultima, is published by Suraprasit et al. (2019), who evaluate the implications of these fossils for reconstructions of the environment in the area of the Malay Peninsula in the Pleistocene.[546]
  • A study on Acheulean and Middle Stone Age sites from the Eastern Desert (Sudan), preserving stone artifacts, is published by Masojć et al. (2019), who interpret these sites as evidence of green corridor or corridors across Sahara which made early hominin dispersal possible.[547]
  • Evidence from oxygen isotope data from Soreq Cave speleothems (Israel), indicative of the occurrence of summer monsoon rainfall in the Middle East during recurrent intervals of the last interglacial period (overlapping with archeological indicators of human migration), is presented by Orland et al. (2019).[548]
  • A study on the spatial and temporal distribution of ancient peatlands in the past 130,000 years is published by Treat et al. (2019).[549]
  • A study on the size of fossil rabbits from 14 late Pleistocene and Holocene archaeological sites in Portugal, and on its implications for the knowledge of temperatures and environment in the area of Portugal during the last glaciation, is published by Davis (2019).[550]
  • A study on Pleistocene small mammal remains from Stratigraphic Unit V from El Salt site (Alcoy, Spain), evaluating their implications for the knowledge of climatic conditions in the eastern Iberian Peninsula at the time of the disappearance of local Neanderthal populations during Marine Isotope Stage 3, is published by Fagoaga et al. (2019).[551]
  • A study on the sedimentary sequence from the Pilauco site in Chile, evaluating whether evidence from this site is consistent with the Younger Dryas impact hypothesis, is published by Pino et al. (2019).[552]
  • A study on variations of size of fossil murine rodents from Liang Bua (Flores, Indonesia) through time, and on their implications for reconstructions of paleoclimate and paleoenvironment of Flores, is published by Veatch et al. (2019).[553]
  • A study on human land use worldwide from 10,000 years before the present to 1850 CE, indicating that Earth was to a large extent transformed by human activity by 3000 years ago, is published by Stephens et al. (2019).[554]
  • Evidence for synchronous cyclical changes in monsoon climate, human activity and prehistoric cultural development in the area of northeast China throughout the Holocene is presented by Xu et al. (2019).[555]
  • A study on Andean plate tectonics since the late Mesozoic is published by Chen, Wu & Suppe (2019).[556]
  • A study on the course of the collision of India and Asia, as indicated by palaeomagnetic data from the Burma Terrane, is published by Westerweel et al. (2019).[557]
  • A scenario for the genesis of tropical cyclones throughout the Cenozoic is presented by Yan et al. (2019).[558]
  • A study on the extent of ice sheets in the Northern Hemisphere throughout the Quaternary is published by Batchelor et al. (2019).[559]
  • A new method of concentration of proteins from fossil specimens with high humic content and of removal of humic substances is presented by Schroeter et al. (2019).[560]

References

  1. ^ Gini-Newman, Garfield; Graham, Elizabeth (2001). Echoes from the past: world history to the 16th century. Toronto: McGraw-Hill Ryerson Ltd. ISBN 9780070887398. OCLC 46769716.
  2. ^ a b c Matthew J. Pound; Jennifer M. K. O'Keefe; Noelia B. Nuñez Otaño; James B. Riding (2019). "Three new Miocene fungal palynomorphs from the Brassington Formation, Derbyshire, UK" (PDF). Palynology. 43 (4): 596–607. Bibcode:2019Paly...43..596P. doi:10.1080/01916122.2018.1473300. S2CID 134737967. Archived (PDF) from the original on 2020-05-06. Retrieved 2019-12-14.
  3. ^ Mahasin Ali Khan; Meghma Bera; Subir Bera (2019). "A new meliolaceos foliicolous fungus from the Plio-Pleistocene of Arunachal Pradesh, eastern Himalaya". Review of Palaeobotany and Palynology. 268: 55–64. Bibcode:2019RPaPa.268...55K. doi:10.1016/j.revpalbo.2019.06.005. S2CID 197570338.
  4. ^ Meghma Bera; Mahasin Ali Khan; Subir Bera (2019). "A new foliicolous melioloid fungus from the Pliocene of eastern Himalaya". Mycological Progress. 18 (7): 921–931. Bibcode:2019MycPr..18..921B. doi:10.1007/s11557-019-01502-5. S2CID 195353784.
  5. ^ a b George Poinar; Fernando E. Vega (2019). "Entomopathogenic fungi (Hypocreales: Ophiocordycipitaceae) infecting bark lice (Psocoptera) in Dominican and Baltic amber". Mycology. 11 (1): 71–77. doi:10.1080/21501203.2019.1706657. PMC 7033690. PMID 32128283.
  6. ^ a b c d Corentin C. Loron; Robert H. Rainbird; Elizabeth C. Turner; J. Wilder Greenman; Emmanuelle J. Javaux (2019). "Organic-walled microfossils from the late Mesoproterozoic to early Neoproterozoic lower Shaler Supergroup (Arctic Canada): diversity and biostratigraphic significance". Precambrian Research. 321: 349–374. Bibcode:2019PreR..321..349L. doi:10.1016/j.precamres.2018.12.024. S2CID 134474143.
  7. ^ Corentin C. Loron; Camille François; Robert H. Rainbird; Elizabeth C. Turner; Stephan Borensztajn; Emmanuelle J. Javaux (2019). "Early fungi from the Proterozoic era in Arctic Canada". Nature. 570 (7760): 232–235. Bibcode:2019Natur.570..232L. doi:10.1038/s41586-019-1217-0. PMID 31118507. S2CID 162180486.
  8. ^ a b c d e f Gregory J. Retallack (2019). "Ordovician land plants and fungi from Douglas Dam, Tennessee". The Palaeobotanist. 68 ((1-2)): 173–205. doi:10.54991/jop.2019.43. S2CID 252298996.
  9. ^ a b Arkamitra Vishnu (née Mandal); Mahasin Ali Khan; Meghma Bera; Krishnendu Acharya; David L. Dilcher; Subir Bera (2019). "Occurrence of Phoma Sacc. in the phyllosphere of Neogene Siwalik forest of Arunachal sub-Himalaya and its palaeoecological implications". Fungal Biology. 123 (1): 18–28. Bibcode:2019FunB..123...18V. doi:10.1016/j.funbio.2018.10.007. PMID 30654954. S2CID 58632586.
  10. ^ George Poinar; Fernando E. Vega (2019). "A mid-Cretaceous trichomycete, Priscadvena corymbosa gen. et sp. nov., in Burmese amber". Fungal Biology. 123 (5): 393–396. Bibcode:2019FunB..123..393P. doi:10.1016/j.funbio.2019.02.007. PMID 31053328. S2CID 92176165.
  11. ^ Jouko Rikkinen; David A. Grimaldi; Alexander R. Schmidt (2019). "Morphological stasis in the first myxomycete from the Mesozoic, and the likely role of cryptobiosis". Scientific Reports. 9 (1): Article number 19730. Bibcode:2019NatSR...919730R. doi:10.1038/s41598-019-55622-9. PMC 6930221. PMID 31874965.
  12. ^ Jen-Pan Huang; Ekaphan Kraichak; Steven D. Leavitt; Matthew P. Nelsen; H. Thorsten Lumbsch (2019). "Accelerated diversifications in three diverse families of morphologically complex lichen-forming fungi link to major historical events". Scientific Reports. 9 (1): Article number 8518. Bibcode:2019NatSR...9.8518H. doi:10.1038/s41598-019-44881-1. PMC 6599062. PMID 31253825.
  13. ^ Ulla Kaasalainen; Martin Kukwa; Jouko Rikkinen; Alexander R. Schmidt (2019). "Crustose lichens with lichenicolous fungi from Paleogene amber". Scientific Reports. 9 (1): Article number 10360. Bibcode:2019NatSR...910360K. doi:10.1038/s41598-019-46692-w. PMC 6637111. PMID 31316089.
  14. ^ Marta Tischer; Michał Gorczak; Błażej Bojarski; Julia Pawłowska; Christel Hoffeins; Hans Werner Hoffeins; Marta Wrzosek (2019). "New fossils of ascomycetous anamorphic fungi from Baltic amber". Fungal Biology. 123 (11): 804–810. Bibcode:2019FunB..123..804T. doi:10.1016/j.funbio.2019.08.003. PMID 31627856. S2CID 202008839.
  15. ^ Shan Chang; Lei Zhang; Sébastien Clausen; David J. Bottjer; Qinglai Feng (2019). "The Ediacaran-Cambrian rise of siliceous sponges and development of modern oceanic ecosystems". Precambrian Research. 333: Article 105438. Bibcode:2019PreR..33305438C. doi:10.1016/j.precamres.2019.105438. S2CID 202174665.
  16. ^ Joseph P. Botting; Lucy A. Muir (2019). "Dispersal and endemic diversification: Differences in non-lithistid spiculate sponge faunas between the Cambrian Explosion and the GOBE". Palaeoworld. 28 (1–2): 24–36. doi:10.1016/j.palwor.2018.03.002. S2CID 135439485.
  17. ^ Francisco Sánchez-Beristain; Pedro García-Barrera; Josep Antón Moreno-Bedmar (2019). "Acanthochaetetes huauclillensis nov. sp. (Porifera: Demospongiae) from the Lower Cretaceous of Oaxaca, Mexico, and its palaeoecological, palaeobiogeographic and stratigraphic implications". Journal of South American Earth Sciences. 91: 227–238. Bibcode:2019JSAES..91..227S. doi:10.1016/j.jsames.2019.02.008. S2CID 133746096.
  18. ^ a b Marcelo G. Carrera; Colin D. Sumrall (2019). "Ordovician sponges from the Lenoir Limestone, Tennessee: new evidence for a differential sponge distribution along the margins of Laurentia". Journal of Paleontology. 94 (1): 34–44. doi:10.1017/jpa.2019.67. S2CID 203119746.
  19. ^ a b c d e Joseph P. Botting; Sarah E. Stewart; Lucy A. Muir; Yuandong Zhang (2019). "Taxonomy and evolution of the protomonaxonid sponge family Piraniidae". Palaeontologia Electronica. 22 (3): Article number 22.3.76. doi:10.26879/998. S2CID 211107467.
  20. ^ Ardianty Nadhira; Mark D. Sutton; Joseph P. Botting; Lucy A. Muir; Pierre Gueriau; Andrew King; Derek E. G. Briggs; David J. Siveter; Derek J. Siveter (2019). "Three-dimensionally preserved soft tissues and calcareous hexactins in a Silurian sponge: implications for early sponge evolution". Royal Society Open Science. 6 (7): Article ID 190911. Bibcode:2019RSOS....690911N. doi:10.1098/rsos.190911. PMC 6689616. PMID 31417767.
  21. ^ a b c Ewa Świerczewska-Gładysz; Agata Jurkowska; Robert Niedźwiedzki (2019). "New data about the Turonian–Coniacian sponge assemblage from Central Europe". Cretaceous Research. 94: 229–258. Bibcode:2019CrRes..94..229S. doi:10.1016/j.cretres.2018.10.001. S2CID 133666273.
  22. ^ Juwan Jeon; Qijian Li; Jae-Ryong Oh; Suk-Joo Choh; Dong-Jin Lee (2019). "A new species of the primitive stromatoporoid Cystostroma from the Ordovician of East Asia". Geosciences Journal. 23 (4): 547–556. Bibcode:2019GescJ..23..547J. doi:10.1007/s12303-018-0063-7. S2CID 133783450.
  23. ^ Joseph P. Botting; Yves Candela; Vicen Carrió; William R. B. Crighton (2019). "A new hexactinellid sponge from the Silurian of the Pentland Hills (Scotland) with similarities to extant rossellids". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 111 (1): 17–25. doi:10.1017/S1755691019000045. S2CID 135302203.
  24. ^ Qiu-Jun Wang; Jin Peng; Rong-Qin Wen; Guang-Ying Du; Hui Zhang; De-Zhi Wang; Yi-Fan Wang (2019). "Hamptonia jianhensis sp. nov. from the Cambrian (Stage 4) Balang Fauna of Guizhou, China". Historical Biology: An International Journal of Paleobiology. 32 (9): 1206–1214. doi:10.1080/08912963.2019.1575374. S2CID 92293899.
  25. ^ Qiu-Jun Wang; Jin Peng; Rong-Qin Wen; Guang-Ying Du; Hui Zhang; De-Zhi Wang; Yi-Fan Wang (2019). "Leptomitid sponges from the Cambrian (Stage 4) Balang Fauna of Guizhou, China". Geobios. 57: 127–139. Bibcode:2019Geobi..57..127W. doi:10.1016/j.geobios.2019.10.005. S2CID 213562488.
  26. ^ Fearghus McSweeney; John Buckeridge; Michelle Kelly (2019). "Porifera (Calcarea: Lithonida) from the Lower Miocene Batesford Limestone, Victoria, Australia, including a new species Monoplectroninia malonei sp. nov". Proceedings of the Royal Society of Victoria. 131 (1): 7–17. doi:10.1071/RS19001. S2CID 199102463.
  27. ^ Lixia Li; Dorte Janussen; Renbin Zhan; Joachim Reitner (2019). "Oldest known fossil of Rossellids (Hexactinellida, Porifera) from the Ordovician–Silurian transition of Anhui, South China". PalZ. 93 (4): 559–566. Bibcode:2019PalZ...93..559L. doi:10.1007/s12542-019-00452-3. S2CID 181708511.
  28. ^ Joseph P. Botting; Arnaud Brayard; the Paris Biota Team (2019). "A late-surviving Triassic protomonaxonid sponge from the Paris Biota (Bear Lake County, Idaho, USA)". Geobios. 54: 5–11. Bibcode:2019Geobi..54....5B. doi:10.1016/j.geobios.2019.04.006. S2CID 146559079.
  29. ^ Fabrizio Bizzarini (2019). "Stellispongia subsphaerica Dieci, Antonacci e Zardini 1970 (Triassico superiore, Dolomiti), osservazioni storico- sistematiche e sua attribuzione al nuovo genere Subsphaerospongia". Lavori – Società Veneziana di Scienze Naturali. 44: 67–74.
  30. ^ Lucas D. Mouro; Rodrigo S. Horodyski; Antonio. C.S. Fernandes; Marcelo A. Carvalho; Mateus. S. Silva; Breno L. Waichel; João P. Saldanha (2019). "Pennsylvanian sponge from the Mecca Quarry Shale, Carbondale Group (Indiana, USA) and the paleobiogeographic distribution of Teganiella in the paleoequatorial region of Laurentia". Journal of Paleontology. 93 (5): 827–838. Bibcode:2019JPal...93..827M. doi:10.1017/jpa.2019.7. S2CID 134602608.
  31. ^ Qing Tang; Bin Wan; Xunlai Yuan; A. D. Muscente; Shuhai Xiao (2019). "Spiculogenesis and biomineralization in early sponge animals". Nature Communications. 10 (1): Article number 3348. Bibcode:2019NatCo..10.3348T. doi:10.1038/s41467-019-11297-4. PMC 6659672. PMID 31350398.
  32. ^ Cui Luo; Fangchen Zhao; Han Zeng (2019). "The first report of a vauxiid sponge from the Cambrian Chengjiang Biota". Journal of Paleontology. 94 (1): 28–33. doi:10.1017/jpa.2019.52. S2CID 202183998.
  33. ^ Ning Sun; Robert J. Elias; Dong-Jin Lee (2019). "Corallite increase in the Late Ordovician coral Agetolites, and its taxonomic implication". Journal of Paleontology. 93 (5): 839–855. Bibcode:2019JPal...93..839S. doi:10.1017/jpa.2019.14. S2CID 133656532.
  34. ^ Felicia Harris; Heather Alley; Ron Fine; Bradley Deline (2019). "Rare colonial corals from the Upper Ordovician Kope Formation of Kentucky and their role in ephemeral invasions in the Edenian". Palaeogeography, Palaeoclimatology, Palaeoecology. 533: Article 109279. Bibcode:2019PPP...53309279H. doi:10.1016/j.palaeo.2019.109279. S2CID 200064214.
  35. ^ Kun Liang; Robert J. Elias; Dong-Jin Lee (2019). "Morphometrics, growth characteristics, and phylogenetic implications of Halysites catenularius (Tabulata, Silurian, Estonia)". Journal of Paleontology. 93 (2): 215–231. Bibcode:2019JPal...93..215L. doi:10.1017/jpa.2018.73. S2CID 135341052.
  36. ^ James E. Landmeyer; Francis Tourneur; Julien Denayer; Mikołaj K. Zapalski (2019). "Fossil tabulate corals reveal outcrops of Paleozoic sandstones in the Atlantic Coastal Plain Province, Southeastern USA". PLOS ONE. 14 (10): e0224248. Bibcode:2019PLoSO..1424248L. doi:10.1371/journal.pone.0224248. PMC 6812764. PMID 31648249.
  37. ^ Landmeyer, James E.; Tourneur, Francis; Denayer, Julien; Zapalski, Mikołaj K. (24 October 2019). "Fossil tabulate corals reveal outcrops of Paleozoic sandstones in the Atlantic Coastal Plain Province, Southeastern USA". PLOS ONE. 14 (10): e0224248. Bibcode:2019PLoSO..1424248L. doi:10.1371/journal.pone.0224248. PMC 6812764. PMID 31648249.
  38. ^ Anna M. Weiss; Rowan C. Martindale (2019). "Paleobiological traits that determined scleractinian coral survival and proliferation during the late Paleocene and early Eocene hyperthermals". Paleoceanography and Paleoclimatology. 34 (2): 252–274. Bibcode:2019PaPa...34..252W. doi:10.1029/2018PA003398. S2CID 92040247.
  39. ^ William F. Precht; Stephen V. Vollmer; Alexander B. Modys; Les Kaufman (2019). "Fossil Acropora prolifera (Lamarck, 1816) reveals coral hybridization is not only a recent phenomenon". Proceedings of the Biological Society of Washington. 132 (1): 40–55. doi:10.2988/18-D-18-00011. S2CID 146062712.
  40. ^ Lewis A. Jones; Philip D. Mannion; Alexander Farnsworth; Paul J. Valdes; Sarah-Jane Kelland; Peter A. Allison (2019). "Coupling of palaeontological and neontological reef coral data improves forecasts of biodiversity responses under global climatic change". Royal Society Open Science. 6 (4): Article ID 182111. Bibcode:2019RSOS....682111J. doi:10.1098/rsos.182111. PMC 6502368. PMID 31183138.
  41. ^ Heyo Van Iten; Juliana De Moraes Leme; Marcello G. Simões; Mario Cournoyer (2019). "Clonal colony in the Early Devonian cnidarian Sphenothallus from Brazil". Acta Palaeontologica Polonica. 64 (2): 409–416. doi:10.4202/app.00576.2018. S2CID 134452962.
  42. ^ Zapalski, Mikołaj K.; Berkowski, Błażej (2019-02-01). "The Silurian mesophotic coral ecosystems: 430 million years of photosymbiosis". Coral Reefs. 38 (1): 137–147. Bibcode:2019CorRe..38..137Z. doi:10.1007/s00338-018-01761-w. ISSN 1432-0975. S2CID 56895138.
  43. ^ Morana Mihaljević (2019). "Oligocene‑Miocene Scleractinians from the Central Indo-Pacific: Malaysian Borneo and the Philippines". Palaeontologia Electronica. 22 (3): Article number 22.3.61. doi:10.26879/978. S2CID 207819249.
  44. ^ Baba Senowbari-Daryan; Michael Link (2019). "Heterastridium (Hydrozoa) from the Norian of Iran and Turkey". Palaeontographica Abteilung A. 314 (4–6): 81–159. Bibcode:2019PalAA.314...81S. doi:10.1127/pala/2019/0097. S2CID 213352982.
  45. ^ a b c Mahmoud Kora; Hans-Georg Herbig; Heba El Desouky (2019). "Late Moscovian (mid-Pennsylvanian) rugose corals from Wadi Araba (Egypt, Eastern Desert): Taxonomy, palaeoecology and palaeobiogeography". Geobios. 52: 1–25. Bibcode:2019Geobi..52....1K. doi:10.1016/j.geobios.2018.11.004. S2CID 134370446.
  46. ^ a b c d e f Ann F. Budd; James D. Woodell; Danwei Huang; James S. Klaus (2019). "Evolution of the Caribbean subfamily Mussinae (Anthozoa: Scleractinia: Faviidae): transitions between solitary and colonial forms". Journal of Systematic Palaeontology. 17 (18): 1581–1616. Bibcode:2019JSPal..17.1581B. doi:10.1080/14772019.2018.1541932. S2CID 92225764. Archived from the original on 2020-07-24. Retrieved 2019-08-18.
  47. ^ Shuji Niko; Yousuke Ibaraki; Jun-ichi Tazawa (2019). "Devonian tabulate corals from pebbles in Mesozoic conglomerate, Kotaki, Niigata Prefecture, central Japan Part 4 : Auloporida". Science Reports of Niigata University. (Geology). 34: 1–8. hdl:10191/51356.
  48. ^ a b Wei-hua Liao; Kun Liang (2019). "Givetian (Devonian) rugose corals from Wangyou, Huishui, Guizhou (1)". Acta Palaeontologica Sinica. 58 (1): 11–22. Archived from the original on 2024-05-24. Retrieved 2020-08-01.
  49. ^ a b c d e f g h i j k Stephen D. Cairns (2020). "Late Miocene (Messinian) Stylasteridae (Cnidaria, Hydrozoa) from Carboneras, southeastern Spain". Journal of Paleontology. 94 (2): 217–238. Bibcode:2020JPal...94..217C. doi:10.1017/jpa.2019.91. S2CID 212737630.
  50. ^ a b Marie Coen-Aubert (2019). "Investigation of some Givetian rugose corals from the Mont d'Haurs Formation in southern Belgium". Geologica Belgica. 22 (3–4): 121–138. doi:10.20341/gb.2019.008. S2CID 209506234.
  51. ^ Marie Coen-Aubert (2022). "The highly diversified rugose coral fauna from the Lower Givetian Meerbüsch quarry in the Eifel Hills (Germany)". Geologica Belgica. 25 (1–2): 53–81. doi:10.20341/gb.2022.003. S2CID 251748822.
  52. ^ Alan E.H. Pedder (2019). "Systematics, biostratigraphy and significance of discoid and partly discoid corals from the Devonian of northwestern Canada, Ural Mountains Russia and southeastern Australia". Bulletin of Geosciences. 94 (2): 137–168. doi:10.3140/bull.geosci.1734. S2CID 219273477. Archived from the original on 2020-05-10. Retrieved 2020-03-04.
  53. ^ a b Yves Plusquellec (2019). "Unusual Upper Emsian Tabulata and Rugosa from the Floresta Formation of Columbia". Bulletin of Geosciences. 94 (4): 441–454. doi:10.3140/bull.geosci.1766. S2CID 219139688.
  54. ^ Jerzy Fedorowski; Victor V. Ohar (2019). "Bashkirian Rugosa (Anthozoa) from the Donets Basin (Ukraine). Part 9. The Subfamily Dirimiinae, subfam. nov". Acta Geologica Polonica. 69 (4): 583–616. doi:10.24425/agp.2019.126444. S2CID 198408987.
  55. ^ a b c d e f g Xiaojuan Wang; Xiangdong Wang; Yichun Zhang; Changqun Cao; Dongjin Lee (2019). "Late Permian rugose corals from Gyanyima of Drhada, Tibet (Xizang), Southwest China". Journal of Paleontology. 93 (5): 856–875. Bibcode:2019JPal...93..856W. doi:10.1017/jpa.2019.37. S2CID 201336041.
  56. ^ a b Jerzy Fedorowski; E. Wayne Bamber; Barry C. Richards (2019). "Bashkirian rugose corals from the Carboniferous Mattson Formation in the Liard Basin, northwest Canada—stratigraphic and paleobiogeographic implications". Acta Palaeontologica Polonica. 64 (4): 851–870. doi:10.4202/app.00636.2019. S2CID 213460832.
  57. ^ Simon Boivin; Raphaël Vasseur; Bernard Lathuilière; Iuliana Lazăr; Christophe Durlet; Rowan Clare Martindale; Khalid El Hmidi; Rossana Martini (2019). "A little walk between Early Jurassic sponges and corals: a confusing morphological convergence". Geobios. 57: 1–24. Bibcode:2019Geobi..57....1B. doi:10.1016/j.geobios.2019.10.001. S2CID 213773807.
  58. ^ a b c d Jerzy Fedorowski (2019). "Bashkirian Rugosa (Anthozoa) from the Donets Basin (Ukraine). Part 8. The Family Kumpanophyllidae Fomichev, 1953". Acta Geologica Polonica. 69 (3): 431–463. doi:10.24425/agp.2019.126436. S2CID 149658984.
  59. ^ Raphaël Vasseur; Simon Boivin; Bernard Lathuilière; Iuliana Lazar; Christophe Durlet; Rowan-Clare Martindale; Stéphane Bodin; Khalid Elhmidi (2019). "Lower Jurassic corals from Morocco with skeletal structures convergent with those of Paleozoic rugosan corals". Palaeontologia Electronica. 22 (2): Article number 22.2.48. doi:10.26879/874. S2CID 201307470.
  60. ^ Junfeng Guo; Jian Han; Heyo Van Iten; Zuchen Song; Yaqin Qiang; Wenzhe Wang; Zhifei Zhang; Guoxiang Li; Yifei Sun; Jie Sun (2019). "A new tetraradial olivooid (Medusozoa) from the lower Cambrian (Stage 2) Yanjiahe Formation, South China". Journal of Paleontology. 94 (3): 457–466. doi:10.1017/jpa.2019.101. S2CID 213138765.
  61. ^ a b Sara A. Quiroz-Barroso; Francisco Sour-Tovar; Jesús Quiroz-Barragán (2019). "Dos especies nuevas de Paraconularia (Scyphozoa, Conulariidae) en la Formación Las Delicias, Pérmico Inferior–Medio de Coahuila, México". Revista Brasileira de Paleontologia. 22 (2): 120–130. doi:10.4072/rbp.2019.2.04. S2CID 214310586.
  62. ^ Junfeng Guo; Jian Han; Heyo Van Iten; Xing Wang; Yaqin Qiang; Zuchen Song; Wenzhe Wang; Zhifei Zhang; Guoxiang Li (2019). "A fourteen-faced hexangulaconulariid from the early Cambrian (Stage 2) Yanjiahe Formation, South China". Journal of Paleontology. 94 (1): 45–55. doi:10.1017/jpa.2019.56. S2CID 201301115.
  63. ^ Shuji Niko; Masayuki Fujikawa (2019). "A new Permian tabulate coral from the Zomeki Limestone, Yamaguchi Prefecture". Bulletin of the Akiyoshi-dai Museum of Natural History. 54: 7–10.
  64. ^ Hannes Löser (2019). "Regional persistence of the extant coral genus Stephanocoenia since the Early Cretaceous in the Western Atlantic". PalZ. 94 (1): 17–39. doi:10.1007/s12542-019-00457-y. S2CID 199474285.
  65. ^ Shuji Niko (2019). "Middle Devonian tabulate corals from the Kamiarisu Formation, Iwate Prefecture, Japan" (PDF). Bulletin of the National Museum of Nature and Science, Series C. 45: 13–18. Archived (PDF) from the original on 2020-07-17. Retrieved 2020-01-09.
  66. ^ a b c d Mohan A. Sonar; Ramesh M. Badve (2019). "Bryozoan fauna from the Burdigalian of Quilon Beds of Padappakara, Kerala, India". Journal of the Geological Society of India. 93 (5): 583–593. Bibcode:2019JGSI...93..583S. doi:10.1007/s12594-019-1220-y. S2CID 181814694.
  67. ^ Juan López-Gappa; Leandro Martín Pérez (2019). "A new genus and species of Chaperiidae (Bryozoa: Cheilostomata) from the early Miocene of Patagonia (Argentina)". Ameghiniana. 56 (5): 422–429. doi:10.5710/AMGH.30.08.2019.3281. hdl:11336/121538. S2CID 202899769.
  68. ^ Antonietta Rosso; Francesco Sciuto (2019). "First fossil record of Atlantisina (Bryozoa) from the Gelasian of Sicily: a new piece of evidence to unravel past bryodiversity of the deep Mediterranean Sea". Bollettino della Società Paleontologica Italiana. 58 (2): 141–154. doi:10.4435/BSPI.2019.01 (inactive 2024-11-20).{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  69. ^ Silviu O. Martha; Bernhard Ruthensteiner; Paul D. Taylor; Gero Hillmer; Kei Matsuyama (2019). "Description of a new cyclostome species from the middle Santonian of Germany using micro-computed tomography". Australasian Palaeontological Memoirs. 52: 91–99. ISSN 2205-8877. Archived from the original on 2024-05-24. Retrieved 2020-03-15.
  70. ^ a b c Emanuela Di Martino; Paul D. Taylor; Allan Gil S. Fernando; Tomoki Kase; Moriaki Yasuhara (2019). "First bryozoan fauna from the middle Miocene of Central Java, Indonesia". Alcheringa: An Australasian Journal of Palaeontology. 43 (3): 461–478. Bibcode:2019Alch...43..461M. doi:10.1080/03115518.2019.1590639. S2CID 195564225.
  71. ^ a b c d e f Silviu O. Martha; Paul D. Taylor; William L. Rader (2019). "Early Cretaceous gymnolaemate bryozoans from the early to middle Albian of the Glen Rose and Walnut formations of Texas, USA". Journal of Paleontology. 93 (2): 260–277. Bibcode:2019JPal...93..260M. doi:10.1017/jpa.2018.80. S2CID 146223017.
  72. ^ José Amet Rivaz Hernández (2019). "Devonavictoria nomen novum: a replacement name for the preoccupied Devonian bryozoan genus Salairella Mesentseva, 2015". Paleontological Journal. 53 (4): 433. Bibcode:2019PalJ...53..433J. doi:10.1134/S003103011904004X. S2CID 201657118.
  73. ^ Thomas E. Yancey; Patrick N. Wyse Jackson; Barry G. Sutton; Richard J. Gottfried (2019). "Evactinoporidae, a new family of Cystoporata (Bryozoa) from the Mississippian of North America: growth and functional morphology". Journal of Paleontology. 93 (6): 1058–1074. Bibcode:2019JPal...93.1058Y. doi:10.1017/jpa.2019.62. S2CID 202176564.
  74. ^ Amir Pedramara; Kamil Zágoršek; Maria Aleksandra Bitner; Mehdi Yazdi; Ali Bahrami; Zahra Maleki (2019). "Bryozoans and brachiopods from the Lower Miocene deposits of the Qom Formation in North-East Isfahan (Central Iran)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 294 (2): 229–250. doi:10.1127/njgpa/2019/0852. S2CID 213845190.
  75. ^ a b c Andrej Ernst; Carlton E. Brett; Mark A. Wilson (2019). "Bryozoan fauna from the Reynales Formation (lower Silurian, Aeronian) of New York, USA". Journal of Paleontology. 93 (4): 628–657. Bibcode:2019JPal...93..628E. doi:10.1017/jpa.2018.101. S2CID 135188343.
  76. ^ a b c d Silviu O. Martha; Paul D. Taylor; William L. Rader (2019). "Early Cretaceous cyclostome bryozoans from the early to middle Albian of the Glen Rose and Walnut formations of Texas, USA". Journal of Paleontology. 93 (2): 244–259. Bibcode:2019JPal...93..244M. doi:10.1017/jpa.2018.79. S2CID 135372462.
  77. ^ Z.A. Tolokonnikova; A.V. Pakhnevich (2019). "Bryozoans and brachiopods from the Famennian (Upper Devonian) of the central Russian Platform". Paleontological Journal. 53 (1): 44–51. Bibcode:2019PalJ...53...44T. doi:10.1134/S0031030119010106. S2CID 182157519.
  78. ^ a b c d e f Emanuela Di Martino; Paul D. Taylor; Roger W. Portell (2019). "Anomia-associated bryozoans from the upper Pliocene (Piacenzian) lower Tamiami Formation of Florida, USA". Palaeontologia Electronica. 22 (1): Article number 22.1.11. doi:10.26879/920. S2CID 135310182.
  79. ^ Marcelo G. Carrera; Andrea F. Sterren; Gabriela A. Cisterna; Hans R. Niemeyer (2019). "Pinegopora chilensis, a new Permian bryozoan species of the Andean bryozoan province in southwestern Gondwana". Journal of Paleontology. 94 (1): 180–184. doi:10.1017/jpa.2019.32. S2CID 182236523.
  80. ^ a b Emanuela di Martino; Paul D. Taylor (2019). "Pseudidmonea Borg, 1944 (Cyclostomata: Pseudidmoneidae): description of two new species from the Miocene of New Zealand and phylogenetic relationships of the genus". Australasian Palaeontological Memoirs. 52: 67–75. ISSN 2205-8877. Archived from the original on 2024-05-24. Retrieved 2020-03-15.
  81. ^ a b Anna V. Koromyslova; Silviu O. Martha; Alexey V. Pakhnevich (2019). "Revision of Porina-like cheilostome Bryozoa from the Campanian and Maastrichtian of Central Asia". Annales de Paléontologie. 105 (1): 1–19. Bibcode:2019AnPal.105....1K. doi:10.1016/j.annpal.2018.10.002. S2CID 133711596.
  82. ^ Narendra K. Swami; Andrej Ernst; Satish C. Tripathi; Prasenjit Barman; S.K. Bharti; Y.P. Rana (2019). "A new cryptostome bryozoan Ptilotrypa from the Upper Ordovician Yong Limestone Formation: Tethyan sequence of Kumaun Higher Himalaya, India". Journal of Paleontology. 93 (3): 585–591. Bibcode:2019JPal...93..585S. doi:10.1017/jpa.2018.94. S2CID 135358848.
  83. ^ Anna V. Koromyslova; Alexey V. Pakhnevich; Petr V. Fedorov (2019). "Tobolocella levinae n. gen., n. sp., a cheilostome bryozoan from the late Maastrichtian of northern Kazakhstan: scanning electron microscope and micro-CT study". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 294 (1): 91–101. doi:10.1127/njgpa/2019/0848. S2CID 210616879.
  84. ^ Timothy P. Topper; Junfeng Guo; Sébastien Clausen; Christian B. Skovsted; Zhifei Zhang (2019). "A stem group echinoderm from the basal Cambrian of China and the origins of Ambulacraria". Nature Communications. 10 (1): Article number 1366. Bibcode:2019NatCo..10.1366T. doi:10.1038/s41467-019-09059-3. PMC 6433856. PMID 30911013.
  85. ^ Samuel Zamora; David F. Wright; Rich Mooi; Bertrand Lefebvre; Thomas E. Guensburg; Przemysław Gorzelak; Bruno David; Colin D. Sumrall; Selina R. Cole; Aaron W. Hunter; James Sprinkle; Jeffrey R. Thompson; Timothy A. M. Ewin; Oldřich Fatka; Elise Nardin; Mike Reich; Martina Nohejlová; Imran A. Rahman (2020). "Re-evaluating the phylogenetic position of the enigmatic early Cambrian deuterostome Yanjiahella". Nature Communications. 11 (1): Article number 1286. Bibcode:2020NatCo..11.1286Z. doi:10.1038/s41467-020-14920-x. PMC 7063041. PMID 32152310.
  86. ^ Timothy P. Topper; Junfeng Guo; Sébastien Clausen; Christian B. Skovsted; Zhifei Zhang (2020). "Reply to "Re-evaluating the phylogenetic position of the enigmatic early Cambrian deuterostome Yanjiahella"". Nature Communications. 11 (1): Article number 1287. Bibcode:2020NatCo..11.1287T. doi:10.1038/s41467-020-14922-9. PMC 7062690. PMID 32152290.
  87. ^ Bertrand Lefebvre; Thomas E. Guensburg; Emmanuel L.O. Martin; Rich Mooi; Elise Nardin; Martina Nohejlova; Farid Saleh; Khaoula Kouraïss; Khadija El Hariri; Bruno David (2019). "Exceptionally preserved soft parts in fossils from the Lower Ordovician of Morocco clarify stylophoran affinities within basal deuterostomes" (PDF). Geobios. 52: 27–36. Bibcode:2019Geobi..52...27L. doi:10.1016/j.geobios.2018.11.001. S2CID 135417114. Archived (PDF) from the original on 2021-04-29. Retrieved 2021-02-21.
  88. ^ Martina Nohejlová; Elise Nardin; Oldřich Fatka; Libor Kašička; Michal Szabad (2019). "Morphology, palaeoecology and phylogenetic interpretation of the Cambrian echinoderm Vyscystis (Barrandian area, Czech Republic)". Journal of Systematic Palaeontology. 17 (19): 1619–1634. Bibcode:2019JSPal..17.1619N. doi:10.1080/14772019.2018.1541485. S2CID 92231073.
  89. ^ Sarah L. Sheffield; Colin D. Sumrall (2019). "The phylogeny of the Diploporita: a polyphyletic assemblage of blastozoan echinoderms". Journal of Paleontology. 93 (4): 740–752. Bibcode:2019JPal...93..740S. doi:10.1017/jpa.2019.2. S2CID 133798442.
  90. ^ Sarah L. Sheffield; Colin D. Sumrall (2019). "A re-interpretation of the ambulacral system of Eumorphocystis (Blastozoa, Echinodermata) and its bearing on the evolution of early crinoids". Palaeontology. 62 (1): 163–173. Bibcode:2019Palgy..62..163S. doi:10.1111/pala.12396. S2CID 134585363.
  91. ^ Thomas E. Guensburg; James Sprinkle; Rich Mooi; Bertrand Lefebvre (2020). "Evolutionary significance of the blastozoan Eumorphocystis and its pseudo-arms" (PDF). Journal of Paleontology. 95 (2): 327–343. doi:10.1017/jpa.2020.84. ISSN 0022-3360. S2CID 228841638. Archived (PDF) from the original on 2021-04-29. Retrieved 2021-01-21.
  92. ^ Jennifer E. Bauer; Johnny A. Waters; Colin D. Sumrall (2019). "Redescription of Macurdablastus and redefinition of Eublastoidea as a clade of Blastoidea (Echinodermata)". Palaeontology. 62 (6): 1003–1013. Bibcode:2019Palgy..62.1003B. doi:10.1111/pala.12439. S2CID 200031342.
  93. ^ Samuel Zamora; Colin Sumrall (2019). "Hexedriocystis, an aberrant echinoderm from the Upper Ordovician of Morocco". In A. W. Hunter; J. J. Álvaro; B. Lefebvre; P. van Roy; S. Zamora (eds.). The Great Ordovician Biodiversification Event: Insights from the Tafilalt Biota, Morocco. Geological Society, London, Special Publications. Vol. 485. The Geological Society of London. pp. SP485–2017–213. doi:10.1144/SP485-2017-213. S2CID 134603420.
  94. ^ René A. Shroat-Lewis; Emily N. Greenwood; Colin D. Sumrall (2019). "Paleoecologic analysis of edrioasteroid (Echinodermata) encrusted slabs from the Chesterian (upper Mississippian) Kinkaid Limestone of southern Illinois". PALAIOS. 34 (3): 146–158. Bibcode:2019Palai..34..146S. doi:10.2110/palo.2018.061. S2CID 133886514.
  95. ^ M.E.Peter (2019). "Aberrations in the infrabasal circlet of the cladid crinoid genus Cupulocrinus (Echinodermata) and implications for the origin of flexible crinoids". Palaeogeography, Palaeoclimatology, Palaeoecology. 522: 52–61. Bibcode:2019PPP...522...52P. doi:10.1016/j.palaeo.2019.03.002. S2CID 134102417.
  96. ^ Selina R. Cole (2019). "Phylogeny and evolutionary history of diplobathrid crinoids (Echinodermata)". Palaeontology. 62 (3): 357–373. Bibcode:2019Palgy..62..357C. doi:10.1111/pala.12401. S2CID 135180540.
  97. ^ Selina R. Cole (2019). "Hierarchical controls on extinction selectivity across the diplobathrid crinoid phylogeny". Paleobiology. 47 (2): 251–270. doi:10.1017/pab.2019.37. S2CID 209592152.
  98. ^ Krzysztof R. Brom (2019). "Body-size trends of cyrtocrinids (Crinoidea, Cyrtocrinida)". Annales de Paléontologie. 105 (2): 109–118. Bibcode:2019AnPal.105..109B. doi:10.1016/j.annpal.2018.12.002. S2CID 134427588.
  99. ^ Selina R. Cole; David F. Wright; William I. Ausich (2019). "Phylogenetic community paleoecology of one of the earliest complex crinoid faunas (Brechin Lagerstätte, Ordovician)". Palaeogeography, Palaeoclimatology, Palaeoecology. 521: 82–98. Bibcode:2019PPP...521...82C. doi:10.1016/j.palaeo.2019.02.006. S2CID 135129430.
  100. ^ James Saulsbury; Samuel Zamora (2019). "The nervous and circulatory systems of a Cretaceous crinoid: preservation, palaeobiology and evolutionary significance". Palaeontology. 63 (2): 243–253. doi:10.1111/pala.12452. hdl:2027.42/154347. S2CID 210622230.
  101. ^ Jeffrey R. Thompson; David J. Bottjer (2019). "Quantitative analysis of substrate preference in Carboniferous stem group echinoids". Palaeogeography, Palaeoclimatology, Palaeoecology. 513: 35–51. Bibcode:2019PPP...513...35T. doi:10.1016/j.palaeo.2018.06.018. S2CID 133856254.
  102. ^ Carlie Pietsch; Kathleen A. Ritterbush; Jeffrey R. Thompson; Elizabeth Petsios; David J. Bottjer (2019). "Evolutionary models in the Early Triassic marine realm". Palaeogeography, Palaeoclimatology, Palaeoecology. 513: 65–85. Bibcode:2019PPP...513...65P. doi:10.1016/j.palaeo.2017.12.016. S2CID 134281291.
  103. ^ Diana Fernández; Luciana Giachetti; Sabine Stöhr; Ben Thuy; Damián Perez; Marcos Comerio; Pablo Pazos (2019). "Brittle stars from the Lower Cretaceous of Patagonia: first ophiuroid articulated remains for the Mesozoic of South America". Andean Geology. 46 (2): 421–432. doi:10.5027/andgeoV46n2-3157. hdl:11336/97700. S2CID 198429041. Archived from the original on 2020-06-02. Retrieved 2020-03-04.
  104. ^ a b c William I. Ausich; Samuel Zamora (2019). "Stratigraphic and paleogeographic distributions of Devonian crinoids from Spain with description of new taxa from the Iberian Chains". Journal of Paleontology. 93 (6): 1159–1174. Bibcode:2019JPal...93.1159A. doi:10.1017/jpa.2019.29. S2CID 189965567.
  105. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa Andrew Scott Gale (2019). "Microcrinoids (Echinodermata, Articulata, Roveacrinida) from the Cenomanian-Santonian chalk of the Anglo-Paris Basin: taxonomy and biostratigraphy". Revue de Paléobiologie, Genève. 38 (2): 397–533. doi:10.5281/zenodo.3579355.
  106. ^ Jeffrey R. Thompson; Georgy V. Mirantsev; Elizabeth Petsios; David J. Bottjer (2019). "Phylogenetic analysis of the Archaeocidaridae and Palaeozoic Miocidaridae (Echinodermata, Echinoidea) and the origin of crown group echinoids". Papers in Palaeontology. 6 (2): 217–249. doi:10.1002/spp2.1280. S2CID 202865274.
  107. ^ Ben Thuy; Andy Gale; Lea Numberger-Thuy (2019). "Brittle stars looking like starfish: the first fossil record of the Astrophiuridae and a remarkable case of convergent evolution". PeerJ. 7: e8008. doi:10.7717/peerj.8008. PMC 6858817. PMID 31741791.
  108. ^ Thomas E. Guensburg; James Sprinkle; Rich Mooi; Bertrand Lefebvre; Bruno David; Michel Roux; Kraig Derstler (2019). "Athenacrinus n. gen. and other early echinoderm taxa inform crinoid origin and arm evolution". Journal of Paleontology. 94 (2): 311–333. doi:10.1017/jpa.2019.87. S2CID 212737589.
  109. ^ a b c d e f g William I. Ausich; Mario E. Cournoyer (2019). "New taxa and revised stratigraphic distribution of the crinoid fauna from Anticosti Island, Québec, Canada (Late Ordovician-early Silurian)". Journal of Paleontology. 93 (6): 1137–1158. Bibcode:2019JPal...93.1137A. doi:10.1017/jpa.2019.36. S2CID 189972765.
  110. ^ Patrick D. McDermott; Christopher R. C. Paul (2019). "A new Upper Ordovician aristocystitid diploporite genus (Echinodermata) from the Llanddowror district, South Wales". Geological Journal. 54 (1): 529–536. Bibcode:2019GeolJ..54..529M. doi:10.1002/gj.3203. S2CID 134160452.
  111. ^ a b c d Michel Roux; Marc Eléaume; Nadia Améziane (2019). "A revision of the genus Conocrinus d'Orbigny, 1850 (Echinodermata, Crinoidea, Rhizocrinidae) and its place among extant and fossil crinoids with a xenomorphic stalk". Zootaxa. 4560 (1): 51–84. doi:10.11646/zootaxa.4560.1.3. PMID 30790991. S2CID 73478837.
  112. ^ Daniel B. Blake; Merlynd K. Nestell (2019). "Revision of the unusual Carboniferous ophiuroid Cholaster (Echinodermata) and remarks on skeletal differentiation within the Asterozoa". Journal of Paleontology. 93 (4): 753–763. Bibcode:2019JPal...93..753B. doi:10.1017/jpa.2018.109. S2CID 135037972.
  113. ^ a b c David F. Wright; Selina R. Cole; William I. Ausich (2019). "Biodiversity, systematics, and new taxa of cladid crinoids from the Ordovician Brechin Lagerstätte". Journal of Paleontology. 94 (2): 334–357. doi:10.1017/jpa.2019.81. S2CID 212737662.
  114. ^ a b Andrew Scott Gale (2024). "Rapid evolution in Turonian microcrinoids (Crinoidea, Roveacrinidae) and its significance for Late Cretaceous stratigraphy". Acta Geologica Polonica. 75 (1). e34. doi:10.24425/agp.2024.151757.
  115. ^ Blanca Estela Buitrón-Sánchez; Francisco Alonso Solís-Marín; Carlos Andrés Conejeros-Vargas; Andrea Alejandra Caballero-Ochoa (2019). "Equinodermos de las familias Echinolampadidae Gray, 1851 y Cassidulidae L. Agassiz y Desor, 1847 fósiles y recientes de México: estudio comparativo con base en macro y microestructuras". Paleontología Mexicana. 8 (1): 51–63. doi:10.22201/igl.05437652e.2019.8.1.223. Archived from the original on 2019-06-20. Retrieved 2019-06-20.
  116. ^ a b Samuel Zamora; Elise Nardin; Jorge Esteve; Juan Carlos Gutiérrez-Marco (2019). "New rhombiferan blastozoans (Echinodermata) from the Late Ordovician of Morocco". In A. W. Hunter; J. J. Álvaro; B. Lefebvre; P. van Roy; S. Zamora (eds.). The Great Ordovician Biodiversification Event: Insights from the Tafilalt Biota, Morocco. Geological Society, London, Special Publications. Vol. 485. The Geological Society of London. pp. 587–602. doi:10.1144/SP485.10. S2CID 134366604.
  117. ^ Jeffrey R. Thompson; Renato Posenato; David J. Bottjer; Elizabeth Petsios (2019). "Echinoids from the Tesero Member (Werfen Formation) of the Dolomites (Italy): implications for extinction and survival of echinoids in the aftermath of the end-Permian mass extinction". PeerJ. 7: e7361. doi:10.7717/peerj.7361. PMC 6718154. PMID 31531267.
  118. ^ a b c William I. Ausich; Mark A. Wilson; Ursula Toom (2019). "Early Silurian recovery of Baltica crinoids following the end-Ordovician extinctions (Llandovery, Estonia)". Journal of Paleontology. 94 (3): 521–530. doi:10.1017/jpa.2019.89. S2CID 210634638.
  119. ^ Daniel B. Blake; Forest J. Gahn; Thomas E. Guensburg (2019). "An Early Ordovician (Floian) asterozoan (Echinodermata) of problematic class-level affinities". Journal of Paleontology. 94 (2): 358–365. doi:10.1017/jpa.2019.82. S2CID 201313020.
  120. ^ Mhairi Reid; Aaron W. Hunter; Wendy L. Taylor; Emese M. Bordy (2019). "A new genus of Protasteridae (Ophiuridea) from the Lower Devonian Bokkeveld Group of South Africa". Palaeontologia Africana. 53: 66–74. hdl:10539/26244.
  121. ^ Stephen K. Donovan; Eamon N. Doyle (2019). "Utility of crinoid columnals in palaeontology illustrated by a new species: Clare Shale Formation (Carboniferous), Doolin, County Clare, western Ireland". Proceedings of the Geologists' Association. 130 (6): 696–700. Bibcode:2019PrGA..130..696D. doi:10.1016/j.pgeola.2019.02.004. S2CID 134322194.
  122. ^ Jeffrey R. Thompson; Timothy A. M. Ewin (2019). "A new species of Hyattechinus (Echinoidea) from the type Devonian of the United Kingdom and implications for the distribution of Devonian proterocidarid echinoids". Geological Magazine. 156 (5): 801–810. Bibcode:2019GeoM..156..801T. doi:10.1017/S0016756818000109. S2CID 134574820.
  123. ^ a b William I. Ausich; Mark A. Wilson; Oive Tinn (2019). "Kalana Lagerstätte crinoids: Early Silurian (Llandovery) of central Estonia". Journal of Paleontology. 94 (1): 131–144. doi:10.1017/jpa.2019.27. S2CID 181399467.
  124. ^ J. Žítt; C. Löser; O. Nekvasilová; L. Hradecká; L. Švábenická (2019). "Předboj and Hoher Stein: Two sites of mass roveacrinid occurrence (Crinoidea, Cenomanian, Bohemian-Saxonian Cretaceous Basin)". Cretaceous Research. 94: 80–107. Bibcode:2019CrRes..94...80Z. doi:10.1016/j.cretres.2018.08.015. S2CID 134453132.
  125. ^ a b c d Andrew Scott Gale (2020). "Roveacrinidae (Crinoidea, Articulata) from the Cenomanian and Turonian of North Africa (Agadir Basin and Anti-Atlas, Morocco, and central Tunisia): biostratigraphy and taxonomy". Acta Geologica Polonica. 70 (3): 273–310. doi:10.24425/agp.2019.126458. S2CID 211546467.
  126. ^ G. V. Mirantsev (2019). "Magnofossacrinus, a new genus of cladid crinoids (Crinoidea, Echinodermata) from the Moscovian (Pennsylvanian) of Moscow Region". Paleontological Journal. 53 (5): 488–498. Bibcode:2019PalJ...53..488M. doi:10.1134/S0031030119040099. S2CID 203853352.
  127. ^ a b Tony Sadler; Francis C. Holmes; Stephen J. Gallagher (2019). "Two new species of the echinoid genus Monostychia from the Miocene of Victoria and a redescription of M. etheridgei Tenison-Woods, 1877". Alcheringa: An Australasian Journal of Palaeontology. 43 (2): 279–290. Bibcode:2019Alch...43..279S. doi:10.1080/03115518.2018.1528508. S2CID 133679725.
  128. ^ Peter Müller; Gerhard Hahn (2019). "Multisievertsia, eine neue Gattung der Cyclocystoidea (Echinodermata) aus dem deutschen Unter-Devon". Mainzer Geowissenschaftliche Mitteilungen. 47: 55–68.
  129. ^ Timothy A. M. Ewin; Mike Reich; Mark R. Graham; Mario E. Cournoyer (2019). "Perforocycloides nathalieae new genus and species, an unusual Silurian cyclocystoid (Echinodermata) from Anticosti Island, Québec, Canada". PalZ. 93 (4): 625–635. Bibcode:2019PalZ...93..625E. doi:10.1007/s12542-019-00483-w. hdl:10141/622663. S2CID 202177304.
  130. ^ Enric Forner i Valls (2019). "Pliotoxaster buitronae especie nueva (Echinoidea) del Aptiense inferior de la Cuenca del Maestrat (Península Ibérica)". Paleontología Mexicana. 8 (2): 129–146. doi:10.22201/igl.05437652e.2019.8.2.233.
  131. ^ Timothy A. M. Ewin; Markus Martin; Phillip Isotalo; Samuel Zamora (2019). "New rhenopyrgid edrioasteroids (Echinodermata) and their implications for taxonomy, functional morphology, and paleoecology". Journal of Paleontology. 94 (1): 115–130. doi:10.1017/jpa.2019.65. S2CID 204263950. Archived from the original on 2020-10-27. Retrieved 2020-11-11.
  132. ^ Ben Thuy; Gilles Escarguel; the Paris Biota Team (2019). "A new brittle star (Ophiuroidea: Ophiodermatina) from the Early Triassic Paris Biota (Bear Lake County, Idaho, USA)". Geobios. 54: 55–61. Bibcode:2019Geobi..54...55T. doi:10.1016/j.geobios.2019.04.004. S2CID 146672908.
  133. ^ Imran A. Rahman; Jeffrey R. Thompson; Derek E. G. Briggs; David J. Siveter; Derek J. Siveter; Mark D. Sutton (2019). "A new ophiocistioid with soft-tissue preservation from the Silurian Herefordshire Lagerstätte, and the evolution of the holothurian body plan". Proceedings of the Royal Society B: Biological Sciences. 286 (1900): Article ID 20182792. doi:10.1098/rspb.2018.2792. hdl:10044/1/69181. PMC 6501687. PMID 30966985.
  134. ^ Rongqin Wen; Loren E. Babcock; Jin Peng; Richard A. Robison (2019). "New edrioasteroid (Echinodermata) from the Spence Shale (Cambrian), Idaho, USA: further evidence of attachment in the early evolutionary history of edrioasteroids". Bulletin of Geosciences. 94 (1): 115–124. doi:10.3140/bull.geosci.1730. S2CID 219306237. Archived from the original on 2019-12-30. Retrieved 2020-03-04.
  135. ^ V. Balter; J.E. Martin; T. Tacail; G. Suan; S. Renaud; C. Girard (2019). "Calcium stable isotopes place Devonian conodonts as first level consumers". Geochemical Perspectives Letters. 10: 36–39. doi:10.7185/geochemlet.1912. hdl:1983/cdaaa2aa-9641-4658-bcfb-58d0664c6259. S2CID 150154587.
  136. ^ Luca Medici; Daniele Malferrari; Martina Savioli; Annalisa Ferretti (2019). "Mineralogy and crystallization patterns in conodont bioapatite from first occurrence (Cambrian) to extinction (end-Triassic)". Palaeogeography, Palaeoclimatology, Palaeoecology. 549: Article 109098. doi:10.1016/j.palaeo.2019.02.024. hdl:11380/1171775. S2CID 134950999.
  137. ^ Samuel Ginot; Nicolas Goudemand (2019). "Conodont size, trophic level, and the evolution of platform elements". Paleobiology. 45 (3): 458–468. Bibcode:2019Pbio...45..458G. doi:10.1017/pab.2019.19. S2CID 196680606.
  138. ^ Christopher R. Barnes (2019). "Impacts of climate-ocean-tectonic changes on early Paleozoic conodont ecology and evolution evidenced by the Canadian part of Laurentia". Palaeogeography, Palaeoclimatology, Palaeoecology. 549: Article 109092. doi:10.1016/j.palaeo.2019.02.018. S2CID 133789941.
  139. ^ Ana Mestre; Susana Heredia (2019). "The conodont Paroistodus horridus (Barnes and Poplawski) as a new biostratigraphical tool for the middle Darriwilian (Ordovician)". Palaeogeography, Palaeoclimatology, Palaeoecology. 549: Article 109114. doi:10.1016/j.palaeo.2019.03.015. hdl:11336/150549. S2CID 133879757.
  140. ^ Zhihua Yang; Xiuchun Jing; Xunlian Wang; Hongrui Zhou; Hui Ren (2019). "New recognitions on the Late Ordovician conodont genera Tasmanognathus Burrett and Yaoxianognathus An". Acta Micropalaeontologica Sinica. 36 (2): 115–129. doi:10.16087/j.cnki.1000-0674.2019.02.002. Archived from the original on 2020-07-24. Retrieved 2019-08-30.
  141. ^ Rosie Dhanda; Duncan J. E. Murdock; John E. Repetski; Philip C. J. Donoghue; M. Paul Smith (2019). "The apparatus composition and architecture of Erismodus quadridactylus and the implications for element homology in prioniodinin conodonts". Papers in Palaeontology. 5 (4): 657–677. Bibcode:2019PPal....5..657D. doi:10.1002/spp2.1257. hdl:1983/49f0aa70-34e3-48e4-9c00-deadd8689d6b. S2CID 146204818.
  142. ^ Maria G. Corriga; Carlo Corradini (2019). "Ontogeny of Ancyrodelloides carlsi (Boersma) and comments on its generic attribution (Conodonta, Lower Devonian)". Geobios. 57: 25–32. Bibcode:2019Geobi..57...25C. doi:10.1016/j.geobios.2019.10.002. S2CID 213372488.
  143. ^ Przemysław Świś (2019). "Population dynamics of the Late Devonian conodont Alternognathus calibrated in days". Historical Biology: An International Journal of Paleobiology. 31 (9): 1161–1169. doi:10.1080/08912963.2018.1427088. S2CID 89835464.
  144. ^ Javier Sanz-López; Silvia Blanco-Ferrera; C. Giles Miller (2019). "The apparatus of the Carboniferous conodont Vogelgnathus simplicatus and the early evolution of the genus". Journal of Paleontology. 93 (1): 126–136. Bibcode:2019JPal...93..126S. doi:10.1017/jpa.2018.66. S2CID 134343300.
  145. ^ Louise Souquet; Nicolas Goudemand (2019). "Exceptional basal-body preservation in some Early Triassic conodont elements from Oman". Palaeogeography, Palaeoclimatology, Palaeoecology. 549: Article 109066. doi:10.1016/j.palaeo.2019.01.028. S2CID 133865209.
  146. ^ Satoshi Takahashi; Satoshi Yamakita; Noritoshi Suzuki (2019). "Natural assemblages of the conodont Clarkina in lowermost Triassic deep-sea black claystone from northeastern Japan, with probable soft-tissue impressions". Palaeogeography, Palaeoclimatology, Palaeoecology. 524: 212–229. Bibcode:2019PPP...524..212T. doi:10.1016/j.palaeo.2019.03.034. S2CID 134664744.
  147. ^ Jin-Yuan Huang; Carlos Martínez-Pérez; Shi-Xue Hu; Philip C.J. Donoghue; Qi-Yue Zhang; Chang-Yong Zhou; Wen Wen; Michael J. Benton; Mao Luo; Hua-Zhou Yao; Ke-Xin Zhang (2019). "Middle Triassic conodont apparatus architecture revealed by synchrotron X-ray microtomography". Palaeoworld. 28 (4): 429–440. doi:10.1016/j.palwor.2018.08.003. hdl:1983/6c42767e-ca94-44ea-a651-b5a5fc596eb4. S2CID 133860596.
  148. ^ Jinyuan Huang; Carlos Martínez-Pérez; Shixue Hu; Qiyue Zhang; Kexin Zhang; Changyong Zhou; Wen Wen; Tao Xie; Michael J. Benton; Zhong-Qiang Chen; Mao Luo; Philip C. J. Donoghue (2019). "Apparatus architecture of the conodont Nicoraella kockeli (Gondolelloidea, Prioniodinina) constrains functional interpretations" (PDF). Palaeontology. 62 (5): 823–835. Bibcode:2019Palgy..62..823H. doi:10.1111/pala.12429. hdl:1983/0b506cea-36b5-4656-8d1a-035cedce151c. S2CID 134405654. Archived (PDF) from the original on 2020-07-24. Retrieved 2020-06-03.
  149. ^ Yanlong Chen; Frank Scholze; Sylvain Richoz; Zhifei Zhang (2019). "Middle Triassic conodont assemblages from the Germanic Basin: implications for multi-element taxonomy and biogeography". Journal of Systematic Palaeontology. 17 (5): 359–377. Bibcode:2019JSPal..17..359C. doi:10.1080/14772019.2018.1424260. S2CID 89794841.
  150. ^ Pauline Guenser; Louise Souquet; Sylvain Dolédec; Michele Mazza; Manuel Rigo; Nicolas Goudemand (2019). "Deciphering the roles of environment and development in the evolution of a Late Triassic assemblage of conodont elements". Paleobiology. 45 (3): 440–457. Bibcode:2019Pbio...45..440G. doi:10.1017/pab.2019.14. hdl:11577/3307206. S2CID 181539675.
  151. ^ Thomas J. Suttner; Erika Kido (2019). "Euconodont hard tissue: preservation patterns of the basal body". Palaeontology. 63 (1): 29–49. doi:10.1111/pala.12438. S2CID 201292631.
  152. ^ H. Richard Lane; Qi Yuping; Wang Zhihao; Tamara I. Nemyrovska; Barry C. Richards; Hu Keyi (2019). "Conodonts from the mid-Carboniferous boundary GSSP at Arrow Canyon, Nevada, USA". Micropaleontology. 65 (2): 77–104. Bibcode:2019MiPal..65...77L. doi:10.47894/mpal.65.2.01. S2CID 248221077. Archived from the original on 2019-03-19. Retrieved 2019-03-19.
  153. ^ Gustavo G. Voldman; José M. Toyos (2019). "Taxonomy, biostratigraphy and biofacies of an Upper Ordovician (Katian) conodont fauna from the Casaio Formation, Northwest Spain". Bulletin of Geosciences. 94 (4): 455–478. doi:10.3140/bull.geosci.1759. hdl:20.500.12468/269. S2CID 219140308.
  154. ^ a b c Norman M. Savage (2019). "Frasnian-Famennian transition in western Thailand: conodonts, biofacies, eustatic changes, extinction". Journal of Paleontology. 93 (3): 476–495. Bibcode:2019JPal...93..476S. doi:10.1017/jpa.2018.96. S2CID 133759821.
  155. ^ Haishui Jiang; Jinling Yuan; Yan Chen; James G. Ogg; Jiaxin Yan (2019). "Synchronous onset of the Mid-Carnian Pluvial Episode in the East and West Tethys: Conodont evidence from Hanwang, Sichuan, South China". Palaeogeography, Palaeoclimatology, Palaeoecology. 520: 173–180. Bibcode:2019PPP...520..173J. doi:10.1016/j.palaeo.2019.02.004. S2CID 135408066.
  156. ^ a b A.N. Plotitsyn; Yu. A. Gatovsky (2019). "New conodont species from the Famennian (Upper Devonian) of the Urals". Paleontological Journal. 53 (6): 629–635. Bibcode:2019PalJ...53..629P. doi:10.1134/S0031030119060108. S2CID 210926178. Archived from the original on 2019-10-26. Retrieved 2019-10-26.
  157. ^ N. S. Ovnatanova; L. I. Kononova; L. S. Kolesnik; Yu. A. Gatovsky (2019). "Polygnathus sharyuensis nom. nov., a new replacement name for the Famennian (Upper Devonian) Polygnathus mawsonae Ovnatanova et al., 2017 (Conodonta)". Paleontological Journal. 53 (2): 214. Bibcode:2019PalJ...53..214O. doi:10.1134/S0031030119020096. S2CID 195299628.
  158. ^ Yong Yi Zhen (2019). "Revision of two phragmodontid species (Conodonta) from the Darriwilian (Ordovician) of the Canning Basin in Western Australia and phylogeny of the Cyrtoniodontidae". Alcheringa: An Australasian Journal of Palaeontology. 43 (4): 523–539. Bibcode:2019Alch...43..546Z. doi:10.1080/03115518.2019.1619835. S2CID 199110065.
  159. ^ Ali Murat Kiliç; Francis Hirsch (2019). "Siberigondolella gen. nov., a Boreal Early Triassic lanceolate conodont". Turkish Journal of Zoology. 43 (5): 536–539. doi:10.3906/zoo-1904-42.
  160. ^ Carlo Corradini; Maria G. Corriga; Monica Pondrelli; Paolo Serventi; Luca Simonetto; Annalisa Ferretti (2019). "Lochkovian (Lower Devonian) marine-deposits from the Rio Malinfier West section (Carnic Alps, Italy)". Italian Journal of Geosciences. 138 (2): 153–170. doi:10.3301/IJG.2018.33. hdl:11380/1171727. S2CID 133934982.
  161. ^ Jacqueline K. Lungmus; Kenneth D. Angielczyk (2019). "Antiquity of forelimb ecomorphological diversity in the mammalian stem lineage (Synapsida)". Proceedings of the National Academy of Sciences of the United States of America. 116 (14): 6903–6907. Bibcode:2019PNAS..116.6903L. doi:10.1073/pnas.1802543116. PMC 6452662. PMID 30886085.
  162. ^ Isaac W. Krone; Christian F. Kammerer; Kenneth D. Angielczyk (2019). "The many faces of synapsid cranial allometry". Paleobiology. 45 (4): 531–545. Bibcode:2019Pbio...45..531K. doi:10.1017/pab.2019.26. S2CID 203409804.
  163. ^ Yara Haridy; Florian Witzmann; Patrick Asbach; Robert R. Reisz (2019). "Permian metabolic bone disease revealed by microCT: Paget's disease-like pathology in vertebrae of an early amniote". PLOS ONE. 14 (8): e0219662. Bibcode:2019PLoSO..1419662H. doi:10.1371/journal.pone.0219662. PMC 6685605. PMID 31390345.
  164. ^ Arjan Mann; Ryan S. Paterson (2019). "Cranial osteology and systematics of the enigmatic early 'sail-backed' synapsid Echinerpeton intermedium Reisz, 1972, and a review of the earliest 'pelycosaurs'". Journal of Systematic Palaeontology. 18 (6): 529–539. doi:10.1080/14772019.2019.1648323. S2CID 202847907.
  165. ^ Marco Romano; Paolo Citton; Simone Maganuco; Eva Sacchi; Martina Caratelli; Ausonio Ronchi; Umberto Nicosia (2019). "New basal synapsid discovery at the Permian outcrop of Torre del Porticciolo (Alghero, Italy)". Geological Journal. 54 (3): 1554–1566. Bibcode:2019GeolJ..54.1554R. doi:10.1002/gj.3250. S2CID 133755506.
  166. ^ Kirstin S. Brink; Mark J. MacDougall; Robert R. Reisz (2019). "Dimetrodon (Synapsida: Sphenacodontidae) from the cave system at Richards Spur, OK, USA, and a comparison of Early Permian–aged vertebrate paleoassemblages". The Science of Nature. 106 (1–2): Article 2. Bibcode:2019SciNa.106....2B. doi:10.1007/s00114-018-1598-1. PMID 30610457. S2CID 57427089.
  167. ^ Zoe T. Kulik; Christian A. Sidor (2019). "The original boneheads: histologic analysis of the pachyostotic skull roof in Permian burnetiamorphs (Therapsida: Biarmosuchia)". Journal of Anatomy. 235 (1): 151–166. doi:10.1111/joa.12987. PMC 6580075. PMID 31070781. S2CID 148571203.
  168. ^ Christen D. Shelton; Anusuya Chinsamy; Bruce M. Rothschild (2019). "Osteomyelitis in a 265-million-year-old titanosuchid (Dinocephalia, Therapsida)". Historical Biology: An International Journal of Paleobiology. 31 (8): 1093–1096. Bibcode:2019HBio...31.1093S. doi:10.1080/08912963.2017.1419348. S2CID 90528131.
  169. ^ Megan. R. Whitney; Christian A. Sidor (2019). "Histological and developmental insights into the herbivorous dentition of tapinocephalid therapsids". PLOS ONE. 14 (10): e0223860. Bibcode:2019PLoSO..1423860W. doi:10.1371/journal.pone.0223860. PMC 6821052. PMID 31665173.
  170. ^ Bruce S. Rubidge; Romala Govender; Marco Romano (2019). "The postcranial skeleton of the basal tapinocephalid dinocephalian Tapinocaninus pamelae (Synapsida: Therapsida) from the South African Karoo Supergroup". Journal of Systematic Palaeontology. 17 (20): 1767–1789. Bibcode:2019JSPal..17.1767R. doi:10.1080/14772019.2018.1559244. S2CID 92677126.
  171. ^ Marco Romano; Bruce Rubidge (2019). "First 3D reconstruction and volumetric body mass estimate of the tapinocephalid dinocephalian Tapinocaninus pamelae (Synapsida: Therapsida)". Historical Biology: An International Journal of Paleobiology. 33 (4): 498–505. doi:10.1080/08912963.2019.1640219. S2CID 203881268.
  172. ^ Simon W. Fraser-King; Julien Benoit; Michael O. Day; Bruce S. Rubidge (2019). "Cranial morphology and phylogenetic relationship of the enigmatic dinocephalian Styracocephalus platyrhynchus from the Karoo Supergroup, South Africa". Palaeontologia Africana. 54: 14–29. hdl:10539/28128.
  173. ^ Christopher T. Griffin; Kenneth D. Angielczyk (2019). "The evolution of the dicynodont sacrum: constraint and innovation in the synapsid axial column". Paleobiology. 45 (1): 201–220. Bibcode:2019Pbio...45..201G. doi:10.1017/pab.2018.49. S2CID 91615798.
  174. ^ Jun Liu (2019). "The tetrapod fauna of the upper Permian Naobaogou Formation of China— 4. the diversity of dicynodonts". Vertebrata PalAsiatica. 57 (3): 173–180. doi:10.19615/j.cnki.1000-3118.190522.
  175. ^ Maria de los Angeles Ordonez; Guillermo H. Cassini; Sergio F. Vizcaíno; Claudia A. Marsicano (2019). "A geometric morphometric approach to the analysis of skull shape in Triassic dicynodonts (Therapsida, Anomodontia) from South America". Journal of Morphology. 280 (12): 1808–1820. doi:10.1002/jmor.21066. PMID 31621947. S2CID 204755666.
  176. ^ Z. Macungo; I. Loide; S. Zunguza; N. Nhamutole; I.E.M. Maharaj; J. Mugabe; K.D. Angielczyk; R. Araújo (2020). "Endothiodon (Therapsida, Anomodontia) specimens from the middle/late Permian of the Metangula Graben (Niassa Province, Mozambique) increase complexity to the taxonomy of the genus". Journal of African Earth Sciences. 163: Article 103647. Bibcode:2020JAfES.16303647M. doi:10.1016/j.jafrearsci.2019.103647. S2CID 210616960.
  177. ^ Iyra E. M. Maharaj; Anusuya Chinsamy; Roger M. H. Smith (2019). "The postcranial anatomy of Endothiodon bathystoma (Anomodontia, Therapsida)". Historical Biology: An International Journal of Paleobiology. 33 (7): 1066–1088. doi:10.1080/08912963.2019.1679128. S2CID 209607275.
  178. ^ Kenneth D. Angielczyk (2019). "First occurrence of the dicynodont Digalodon (Therapsida, Anomodontia) from the Lopingian upper Madumabisa Mudstone Formation, Luangwa Basin, Zambia". Palaeontologia Africana. 53: 219–225. hdl:10539/26832.
  179. ^ Daniel de Simão-Oliveira; Leonardo Kerber; Felipe L. Pinheiro (2019). "Endocranial morphology of the Brazilian Permian dicynodont Rastodon procurvidens (Therapsida: Anomodontia)". Journal of Anatomy. 236 (3): 384–397. doi:10.1111/joa.13107. PMC 7018630. PMID 31670465. S2CID 204975400.
  180. ^ Adriana C. Mancuso; Randall B. Irmis (2020). "A large-bodied stahleckeriine dicynodont (Synapsida, Anomodontia) from the Upper Triassic (Carnian) Chañares Formation (Argentina); new data for Triassic Gondwanan biogeography". Ameghiniana. 57 (1): 45–57. doi:10.5710/AMGH.20.12.2019.3302. S2CID 213000821.
  181. ^ Marco Romano; Fabio Manucci (2019). "Resizing Lisowicia bojani: volumetric body mass estimate and 3D reconstruction of the giant Late Triassic dicynodont". Historical Biology: An International Journal of Paleobiology. 33 (4): 474–479. doi:10.1080/08912963.2019.1631819. S2CID 196679837.
  182. ^ Tony Thulborn; Susan Turner (2003). "The last dicynodont: an Australian Cretaceous relict". Proceedings of the Royal Society B: Biological Sciences. 270 (1518): 985–993. doi:10.1098/rspb.2002.2296. JSTOR 3558635. PMC 1691326. PMID 12803915.
  183. ^ Espen M. Knutsen; Emma Oerlemans (2020). "The last dicynodont? Re-assessing the taxonomic and temporal relationships of a contentious Australian fossil". Gondwana Research. 77: 184–203. Bibcode:2020GondR..77..184K. doi:10.1016/j.gr.2019.07.011. S2CID 202908716.
  184. ^ Henrik Richard Grunert; Neil Brocklehurst; Jörg Fröbisch (2019). "Diversity and disparity of Therocephalia: macroevolutionary patterns through two mass extinctions". Scientific Reports. 9 (1): Article number 5063. Bibcode:2019NatSR...9.5063G. doi:10.1038/s41598-019-41628-w. PMC 6433905. PMID 30911058.
  185. ^ Neil Brocklehurst (2019). "Morphological evolution in therocephalians breaks the hypercarnivore ratchet". Proceedings of the Royal Society B: Biological Sciences. 286 (1900): Article ID 20190590. doi:10.1098/rspb.2019.0590. PMC 6501669. PMID 30966993.
  186. ^ Gabriela Fontanarrosa; Fernando Abdala; Susanna Kümmell; Robert Gess (2019). "The manus of Tetracynodon (Therapsida: Therocephalia) provides evidence for survival strategies following the Permo-Triassic extinction". Journal of Vertebrate Paleontology. 38 (4): (1)–(13). doi:10.1080/02724634.2018.1491404. hdl:11336/91246. S2CID 109228166.
  187. ^ Marcus Lukic-Walther; Neil Brocklehurst; Christian F. Kammerer; Jörg Fröbisch (2019). "Diversity patterns of nonmammalian cynodonts (Synapsida, Therapsida) and the impact of taxonomic practice and research history on diversity estimates". Paleobiology. 45 (1): 56–69. Bibcode:2019Pbio...45...56L. doi:10.1017/pab.2018.38. S2CID 91197045.
  188. ^ Elize Butler; Fernando Abdala; Jennifer Botha-Brink (2019). "Postcranial morphology of the Early Triassic epicynodont Galesaurus planiceps (Owen) from the Karoo Basin, South Africa". Papers in Palaeontology. 5 (1): 1–32. Bibcode:2019PPal....5....1B. doi:10.1002/spp2.1220. hdl:11336/86180. S2CID 134080723.
  189. ^ Luisa C. Pusch; Christian F. Kammerer; Jörg Fröbisch (2019). "Cranial anatomy of the early cynodont Galesaurus planiceps and the origin of mammalian endocranial characters". Journal of Anatomy. 234 (5): 592–621. doi:10.1111/joa.12958. PMC 6481412. PMID 30772942. S2CID 73457058.
  190. ^ Christophe Hendrickx; Fernando Abdala; Jonah N. Choiniere (2019). "A proposed terminology for the dentition of gomphodont cynodonts and dental morphology in Diademodontidae and Trirachodontidae". PeerJ. 7: e6752. doi:10.7717/peerj.6752. PMC 6571134. PMID 31223521.
  191. ^ Fábio Hiratsuka Veiga; Jennifer Botha-Brink; Marina Bento Soares (2019). "Osteohistology of the non-mammaliaform traversodontids Protuberum cabralense and Exaeretodon riograndensis from southern Brazil". Historical Biology: An International Journal of Paleobiology. 31 (9): 1231–1241. doi:10.1080/08912963.2018.1441292. S2CID 89832937.
  192. ^ Tomaz P. Melo; Ana Maria Ribeiro; Agustín G. Martinelli; Marina Bento Soares (2019). "Early evidence of molariform hypsodonty in a Triassic stem-mammal". Nature Communications. 10 (1): Article number 2841. Bibcode:2019NatCo..10.2841M. doi:10.1038/s41467-019-10719-7. PMC 6598982. PMID 31253810.
  193. ^ Carolina A. Hoffmann; P. G. Rodrigues; M. B. Soares; M. B. de Andrade (2019). "Brain endocast of two non-mammaliaform cynodonts from southern Brazil: an ontogenetic and evolutionary approach". Historical Biology: An International Journal of Paleobiology. 33 (8): 1196–1207. doi:10.1080/08912963.2019.1685512. hdl:10923/19658. S2CID 209571873.
  194. ^ Maurício Rodrigo Schmitt; Agustín G. Martinelli; Tomaz Panceri Melo; Marina Bento Soares (2019). "On the occurrence of the traversodontid Massetognathus ochagaviae (Synapsida, Cynodontia) in the early late Triassic Santacruzodon Assemblage Zone (Santa Maria Supersequence, southern Brazil): Taxonomic and biostratigraphic implications". Journal of South American Earth Sciences. 93: 36–50. Bibcode:2019JSAES..93...36S. doi:10.1016/j.jsames.2019.04.011. S2CID 150326079.
  195. ^ Ane E. B. Pavanatto; Leonardo Kerber; Sérgio Dias-da-Silva (2019). "Virtual reconstruction of cranial endocasts of traversodontid cynodonts (Eucynodontia: Gomphodontia) from the upper Triassic of Southern Brazil". Journal of Morphology. 280 (9): 1267–1281. doi:10.1002/jmor.21029. PMID 31241801. S2CID 195658515.
  196. ^ Lívia Roese Miron; Ane Elise Branco Pavanatto; Flávio Augusto Pretto; Rodrigo Temp Müller; Sérgio Dias-da-Silva; Leonardo Kerber (2020). "Siriusgnathus niemeyerorum (Eucynodontia: Gomphodontia): The youngest South American traversodontid?". Journal of South American Earth Sciences. 97: Article 102394. Bibcode:2020JSAES..9702394M. doi:10.1016/j.jsames.2019.102394. S2CID 210628164.
  197. ^ Julien Benoit; Irina Ruf; Juri A. Miyamae; Vincent Fernandez; Pablo Gusmão Rodrigues; Bruce S. Rubidge (2019). "The evolution of the maxillary canal in Probainognathia (Cynodontia, Synapsida): reassessment of the homology of the infraorbital foramen in mammalian ancestors". Journal of Mammalian Evolution. 27 (3): 329–348. doi:10.1007/s10914-019-09467-8. S2CID 156055693.
  198. ^ Pablo Gusmão Rodrigues; Agustín G. Martinelli; Cesar Leandro Schultz; Ian J. Corfe; Pamela G. Gill; Marina B. Soares; Emily J. Rayfield (2019). "Digital cranial endocast of Riograndia guaibensis (Late Triassic, Brazil) sheds light on the evolution of the brain in non-mammalian cynodonts". Historical Biology: An International Journal of Paleobiology. 31 (9): 1195–1212. doi:10.1080/08912963.2018.1427742. hdl:1983/4f437b31-8913-4699-a3f5-b800384c68e0. S2CID 89841123.
  199. ^ Morgan L. Guignard; Agustin G. Martinelli; Marina B. Soares (2019). "Postcranial anatomy of Riograndia guaibensis (Cynodontia: Ictidosauria)". Geobios. 53: 9–21. Bibcode:2019Geobi..53....9G. doi:10.1016/j.geobios.2019.02.006. S2CID 134305282.
  200. ^ Morgan L. Guignard; Agustin G. Martinelli; Marina B. Soares (2019). "The postcranial anatomy of Brasilodon quadrangularis and the acquisition of mammaliaform traits among non-mammaliaform cynodonts". PLOS ONE. 14 (5): e0216672. Bibcode:2019PLoSO..1416672G. doi:10.1371/journal.pone.0216672. PMC 6510408. PMID 31075140.
  201. ^ Daniela C. Kalthoff; Ellen Schulz-Kornas; Ian Corfe; Thomas Martin; Stephen McLoughlin; Julia A. Schultz (2019). "Complementary approaches to tooth wear analysis in Tritylodontidae (Synapsida, Mammaliamorpha) reveal a generalist diet". PLOS ONE. 14 (7): e0220188. Bibcode:2019PLoSO..1420188K. doi:10.1371/journal.pone.0220188. PMC 6658083. PMID 31344085.
  202. ^ Maxime Lasseron (2019). "Enigmatic teeth from the Jurassic–Cretaceous transition of Morocco: The latest known non-mammaliaform cynodonts (Synapsida, Cynodontia) from Africa?". Comptes Rendus Palevol. 18 (7): 897–907. Bibcode:2019CRPal..18..897L. doi:10.1016/j.crpv.2019.05.002. S2CID 199103372.
  203. ^ Aitor Navarro-Díaz; Borja Esteve-Altava; Diego Rasskin-Gutman (2019). "Disconnecting bones within the jaw-otic network modules underlies mammalian middle ear evolution". Journal of Anatomy. 235 (1): 15–33. doi:10.1111/joa.12992. PMC 6579944. PMID 30977522. S2CID 109941017.
  204. ^ Katrina E. Jones; Kenneth D. Angielczyk; Stephanie E. Pierce (2019). "Stepwise shifts underlie evolutionary trends in morphological complexity of the mammalian vertebral column". Nature Communications. 10 (1): Article number 5071. Bibcode:2019NatCo..10.5071J. doi:10.1038/s41467-019-13026-3. PMC 6838112. PMID 31699978.
  205. ^ Robert R. Reisz (2019). "A small caseid synapsid, Arisierpeton simplex gen. et sp. nov., from the early Permian of Oklahoma, with a discussion of synapsid diversity at the classic Richards Spur locality". PeerJ. 7: e6615. doi:10.7717/peerj.6615. PMC 6462398. PMID 30997285.
  206. ^ a b Frederik Spindler; Sebastian Voigt; Jan Fischer (2020). "Edaphosauridae (Synapsida, Eupelycosauria) from Europe and their relationship to North American representatives". PalZ. 94 (1): 125–153. Bibcode:2020PalZ...94..125S. doi:10.1007/s12542-019-00453-2. S2CID 198140317.
  207. ^ Frederik Spindler; Ralf Werneburg; Jörg W. Schneider (2019). "A new mesenosaurine from the lower Permian of Germany and the postcrania of Mesenosaurus: implications for early amniote comparative osteology". PalZ. 93 (2): 303–344. Bibcode:2019PalZ...93..303S. doi:10.1007/s12542-018-0439-z. S2CID 91871872.
  208. ^ a b Chloe Olivier; Bernard Battail; Sylvie Bourquin; Camille Rossignol; J.-Sebastien Steyer; Nour-Eddine Jalil (2019). "New dicynodonts (Therapsida, Anomodontia) from near the Permo-Triassic boundary of Laos: implications for dicynodont survivorship across the Permo-Triassic mass extinction and the paleobiogeography of Southeast Asian blocks" (PDF). Journal of Vertebrate Paleontology. 39 (2): e1584745. Bibcode:2019JVPal..39E4745O. doi:10.1080/02724634.2019.1584745. S2CID 150253165. Archived (PDF) from the original on 2021-04-27. Retrieved 2021-01-21.
  209. ^ Hillary C. Maddin; Arjan Mann; Brian Hebert (2020). "Varanopid from the Carboniferous of Nova Scotia reveals evidence of parental care in amniotes". Nature Ecology & Evolution. 4 (1): 50–56. doi:10.1038/s41559-019-1030-z. PMID 31900446. S2CID 209672554.
  210. ^ Christian F. Kammerer (2019). "Revision of the Tanzanian dicynodont Dicynodon huenei (Therapsida: Anomodontia) from the Permian Usili Formation". PeerJ. 7: e7420. doi:10.7717/peerj.7420. PMC 6708577. PMID 31497385.
  211. ^ Yulia A. Suchkova; Valeriy K. Golubev (2019). "A new Permian therocephalian (Therocephalia, Theromorpha) from the Sundyr assemblage of Eastern Europe". Paleontological Journal. 53 (4): 411–417. Bibcode:2019PalJ...53..411S. doi:10.1134/S0031030119040117. S2CID 201659515.
  212. ^ Frederik Spindler (2020). "Re-evaluation of an early sphenacodontian synapsid from the Lower Permian of England". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 111 (1): 27–37. Bibcode:2020EESTR.111...27S. doi:10.1017/S175569101900015X. S2CID 202192911.
  213. ^ Jun Liu; Fernando Abdala (2019). "The tetrapod fauna of the upper Permian Naobaogou Formation of China: 3. Jiufengia jiai gen. et sp. nov., a large akidnognathid therocephalian". PeerJ. 7: e6463. doi:10.7717/peerj.6463. PMC 6388668. PMID 30809450.
  214. ^ Julia A. Suchkova; Valeriy K. Golubev (2019). "A new primitive therocephalian (Theromorpha) from the Middle Permian of Eastern Europe". Paleontological Journal. 53 (3): 305–314. Bibcode:2019PalJ...53..305S. doi:10.1134/S0031030119030158. S2CID 195299565. Archived from the original on 2019-05-03. Retrieved 2019-05-03.
  215. ^ Kenneth D. Angielczyk; Julien Benoit; Bruce S. Rubidge (2019). "A new tusked cistecephalid dicynodont (Therapsida, Anomodontia) from the upper Permian upper Madumabisa Mudstone Formation, Luangwa Basin, Zambia". Papers in Palaeontology. 7 (1): 405–446. doi:10.1002/spp2.1285. S2CID 210304700.
  216. ^ Tomasz Sulej; Grzegorz Niedźwiedzki (2019). "An elephant-sized Late Triassic synapsid with erect limbs". Science. 363 (6422): 78–80. Bibcode:2019Sci...363...78S. doi:10.1126/science.aal4853. PMID 30467179. S2CID 53716186. Archived from the original on 2023-04-26. Retrieved 2021-09-21.
  217. ^ Sigi Maho; Bryan M. Gee; Robert R. Reisz (2019). "A new varanopid synapsid from the early Permian of Oklahoma and the evolutionary stasis in this clade". Royal Society Open Science. 6 (10): Article ID 191297. doi:10.1098/rsos.191297. PMC 6837192. PMID 31824730.
  218. ^ Rachel V. S. Wallace; Ricardo Martínez; Timothy Rowe (2019). "First record of a basal mammaliamorph from the early Late Triassic Ischigualasto Formation of Argentina". PLOS ONE. 14 (8): e0218791. Bibcode:2019PLoSO..1418791W. doi:10.1371/journal.pone.0218791. PMC 6685608. PMID 31390368.
  219. ^ Kammerer, Christian F. (2019). "A new dicynodont (Anomodontia: Emydopoidea) from the terminal Permian of KwaZulu-Natal, South Africa". Palaeontologia Africana. 53: 179–191. hdl:10539/26708. ISSN 2410-4418.
  220. ^ Christian F. Kammerer; Pia A. Viglietti; P. John Hancox; Richard J. Butler; Jonah N. Choiniere (2019). "A new kannemeyeriiform dicynodont (Ufudocyclops mukanelai, gen. et sp. nov.) from Subzone C of the Cynognathus Assemblage Zone, Triassic of South Africa, with implications for biostratigraphic correlation with other African Triassic Faunas" (PDF). Journal of Vertebrate Paleontology. 39 (2): e1596921. Bibcode:2019JVPal..39E6921K. doi:10.1080/02724634.2019.1596921. S2CID 181994969. Archived (PDF) from the original on 2020-09-22. Retrieved 2020-06-03.
  221. ^ Fernando Abdala; Leandro C. Gaetano; Roger M. H. Smith; Bruce S. Rubidge (2019). "A new large cynodont from the Late Permian (Lopingian) of the South African Karoo Basin and its phylogenetic significance". Zoological Journal of the Linnean Society. 186 (4): 983–1005. doi:10.1093/zoolinnean/zlz004. hdl:11336/144434.
  222. ^ a b Jian Han; Simon Conway Morris; Jennifer F. Hoyal Cuthill; Degan Shu (2019). "Sclerite-bearing annelids from the lower Cambrian of South China". Scientific Reports. 9 (1): Article number 4955. Bibcode:2019NatSR...9.4955H. doi:10.1038/s41598-019-40841-x. PMC 6426949. PMID 30894583.
  223. ^ Martin Valent; Oldřich Fatka; Ladislav Marek (2019). "Alfaites romeo gen. et sp. nov., a new Hyolitha from the Cambrian of Skryje-Týřovice Basin (Czech Republic)". European Journal of Taxonomy (491): 1–10. doi:10.5852/ejt.2019.491. S2CID 133808571.
  224. ^ Xu Chen; Zhongyang Chen; Charles E. Mitchell; Qing Chen; Linna Zhang (2019). "A restudy of the Sandbian to Katian (Upper Ordovician) graptolites from the East Qilianshan (Chilianshan), Northwest China". Journal of Paleontology. 93 (6): 1175–1209. Bibcode:2019JPal...93.1175C. doi:10.1017/jpa.2019.55. S2CID 202179305.
  225. ^ Stephen Pates; Allison C. Daley; Gregory D. Edgecombe; Peiyun Cong; Bruce S. Lieberman (2019). "Systematics, preservation and biogeography of radiodonts from the southern Great Basin, USA, during the upper Dyeran (Cambrian Series 2, Stage 4)" (PDF). Papers in Palaeontology. 7 (1): 235–262. doi:10.1002/spp2.1277. S2CID 204260554. Archived (PDF) from the original on 2021-07-16. Retrieved 2021-05-04.
  226. ^ Yu Wu; Dongjing Fu; Jiaxin Ma; Weiliang Lin; Ao Sun; Xingliang Zhang (2021). "Houcaris gen. nov. from the early Cambrian (Stage 3) Chengjiang Lagerstätte expanded the palaeogeographical distribution of tamisiocaridids (Panarthropoda: Radiodonta)". PalZ. 95 (2): 209–221. Bibcode:2021PalZ...95..209W. doi:10.1007/s12542-020-00545-4. S2CID 235221043.
  227. ^ a b c d e J. L. Moore; Susannah M. Porter; Mark Webster; Adam C. Maloof (2019). "Chancelloriid sclerites from the Dyeran–Delamaran ('Lower–Middle' Cambrian) boundary interval of the Pioche–Caliente region, Nevada, USA". Papers in Palaeontology. 7 (1): 565–623. doi:10.1002/spp2.1274. ISSN 2056-2799. S2CID 214284708.
  228. ^ Daniel F.F. Cardia; Reinaldo J. Bertini; Lucilene G. Camossi; Luiz A. Letizio (2019). "Two new species of ascaridoid nematodes in Brazilian Crocodylomorpha from the Upper Cretaceous". Parasitology International. 72: Article 101947. doi:10.1016/j.parint.2019.101947. PMID 31233826. S2CID 195356917.
  229. ^ a b c d e f Fan Wei; Ruiwen Zong; Yiming Gong (2019). "Tentaculitids and their evolutionary significance in the Early Devonian Dashatian section, South China". Palaeobiodiversity and Palaeoenvironments. 99 (1): 7–28. Bibcode:2019PdPe...99....7W. doi:10.1007/s12549-018-0367-7. S2CID 134005216.
  230. ^ a b Gerd Geyer; Martin Valent; Stefan Meier (2019). "Helcionelloids, stenothecoids and hyoliths from the Tannenknock Formation (traditional lower middle Stage 4/Wuliuan boundary interval) of the Franconian Forest, Germany". PalZ. 93 (2): 207–253. Bibcode:2019PalZ...93..207G. doi:10.1007/s12542-018-0433-5. S2CID 134937994.
  231. ^ J. Moysiuk; J.-B. Caron (2019). "A new hurdiid radiodont from the Burgess Shale evinces the exploitation of Cambrian infaunal food sources". Proceedings of the Royal Society B: Biological Sciences. 286 (1908): Article ID 20191079. doi:10.1098/rspb.2019.1079. PMC 6710600. PMID 31362637.
  232. ^ Yu Liu; Rudy Lerosey-Aubril; Denis Audo; Dayou Zhai; Huijuan Mai; Javier Ortega-Hernández (2020). "Occurrence of the eudemersal radiodont Cambroraster in the early Cambrian Chengjiang Lagerstätte and the diversity of hurdiid ecomorphotypes". Geological Magazine. 157 (7): 1200–1206. Bibcode:2020GeoM..157.1200L. doi:10.1017/S0016756820000187. S2CID 216195570.
  233. ^ Zhixin Sun; Han Zeng; Fangchen Zhao (2020). "Occurrence of the hurdiid radiodont Cambroraster in the middle Cambrian (Wuliuan) Mantou Formation of North China". Journal of Paleontology. 94 (5): 881–886. Bibcode:2020JPal...94..881S. doi:10.1017/jpa.2020.21. S2CID 218949516.
  234. ^ A.Y. Ivantsov; M.A. Fedonkin; A.L. Nagovitsyn; M.A. Zakrevskaya (2019). "Cephalonega, a new generic name, and the system of Vendian Proarticulata". Paleontological Journal. 53 (5): 447–454. Bibcode:2019PalJ...53..447I. doi:10.1134/S0031030119050046. S2CID 203853224.
  235. ^ Hao Yun; Glenn A. Brock; Xingliang Zhang; Luoyang Li; Diego C. García-Bellido; John R. Paterson (2019). "A new chancelloriid from the Emu Bay Shale (Cambrian Stage 4) of South Australia". Journal of Systematic Palaeontology. 17 (13): 1077–1087. Bibcode:2019JSPal..17.1077Y. doi:10.1080/14772019.2018.1496952. S2CID 92098182.
  236. ^ Olev Vinn; Sabiela Musabelliu; Michał Zatoń (2019). "Cornulitids from the Upper Devonian of the Central Devonian Field, Russia". GFF. 141 (1): 68–76. Bibcode:2019GFF...141...68V. doi:10.1080/11035897.2018.1505777. S2CID 135417469.
  237. ^ a b Tara Selly; James D. Schiffbauer; Sarah M. Jacquet; Emily F. Smith; Lyle L. Nelson; Brock D. Andreasen; John Warren Huntley; Michael A. Strange; Gretchen R. O'Neil; Casey A. Thater; Natalia Bykova; Michael Steiner; Ben Yang; Yaoping Cai (2019). "A new cloudinid fossil assemblage from the terminal Ediacaran of Nevada, USA". Journal of Systematic Palaeontology. 18 (4): 357–379. doi:10.1080/14772019.2019.1623333. S2CID 199640050.
  238. ^ C. Earp (2019). "Costulatotheca schleigeri (Hyolitha: Orthothecida) from the Walhalla Group (Early Devonian) at Mount Pleasant, central Victoria, Australia". Alcheringa: An Australasian Journal of Palaeontology. 43 (2): 220–227. Bibcode:2019Alch...43..220E. doi:10.1080/03115518.2018.1556335. S2CID 133712457.
  239. ^ Haijing Sun; Zongjun Yin; Guoxiang Li; Fangchen Zhao; Han Zeng; Maoyan Zhu (2019). "Periodic shell decollation as an ecology-driven strategy in the early Cambrian Cupitheca". Palaeontology. 63 (3): 431–442. doi:10.1111/pala.12463. S2CID 214114798.
  240. ^ T.Q. Shao; J.C. Qin; Y. Shao; Y.H. Liu; D. Waloszek; A. Maas; B.C. Duan; Q.Wang; Y. Xu; H.Q. Zhang (2019). "New macrobenthic cycloneuralians from the Fortunian (lowermost Cambrian) of South China". Precambrian Research. 349: Article 105413. Bibcode:2020PreR..34905413S. doi:10.1016/j.precamres.2019.105413. S2CID 202200056.
  241. ^ Yang Zhao; Jakob Vinther; Luke A. Parry; Fan Wei; Emily Green; Davide Pisani; Xianguang Hou; Gregory D. Edgecombe; Peiyun Cong (2019). "Cambrian sessile, suspension feeding stem-group ctenophores and evolution of the comb jelly body plan". Current Biology. 29 (7): 1112–1125.e2. doi:10.1016/j.cub.2019.02.036. hdl:1983/40a6bcb8-a740-482c-a23c-7d563faea5c5. PMID 30905603. S2CID 84844387.
  242. ^ Marissa J. Betts; Thomas M. Claybourn; Glenn A. Brock; James B. Jago; Christian B. Skovsted; John R. Paterson (2019). "Shelly fossils from the lower Cambrian White Point Conglomerate, Kangaroo Island, South Australia". Acta Palaeontologica Polonica. 64 (3): 489–522. doi:10.4202/app.00586.2018. S2CID 207808778.
  243. ^ Lucy A. Muir; Joseph P. Botting; Bertrand Lefebvre; Christopher Upton; Yuan-Dong Zhang (2019). "Agglutinated tubes as a feature of Early Ordovician ecosystems" (PDF). Palaeoworld. 28 (1–2): 96–109. doi:10.1016/j.palwor.2019.01.004. S2CID 134911750. Archived (PDF) from the original on 2021-04-29. Retrieved 2021-01-21.
  244. ^ a b c d Anna Kozłowska; Denis Bates; Jan Zalasiewicz; Sigitas Radzevičius (2019). "Evolutionary significance of the retiolitine Gothograptus (Graptolithina) with four new species from the Silurian of the East European Platform (Baltica), Poland and Lithuania". Zootaxa. 4568 (3): 435–469. doi:10.11646/zootaxa.4568.3.2. PMID 31715843. S2CID 109681377.
  245. ^ A.H.M. VandenBerg (2019). "Extraordinary dimorphism in the Phyllograptid Harrisgraptus n. gen. from the early Bendigonian (Early Floian, Early Ordovician) of Victoria, Australia". Proceedings of the Royal Society of Victoria. 131 (1): 34–41. doi:10.1071/RS19004. S2CID 203413044.
  246. ^ John M. Malinky; Gerd Geyer (2019). "Cambrian Hyolitha of Siberian, Baltican and Avalonian aspect in east Laurentian North America: taxonomy and palaeobiogeography". Alcheringa: An Australasian Journal of Palaeontology. 43 (2): 171–203. Bibcode:2019Alch...43..171M. doi:10.1080/03115518.2019.1567813. S2CID 134773068.
  247. ^ George O. Poinar Jr; Douglas C. Currie (2019). "Mermithid nematode (Nematoda: Mermithidae) parasites of a fossil black fly (Diptera: Simuliidae) in Baltic amber". Nematology. 22 (6): 655–658. doi:10.1163/15685411-00003328. S2CID 213239194.
  248. ^ Martin R. Smith (2020). "An Ordovician nectocaridid hints at an endocochleate origin of Cephalopoda". Journal of Paleontology. 94 (1): 64–69. Bibcode:2020JPal...94...64S. doi:10.1017/jpa.2019.57. S2CID 201208912.
  249. ^ a b Petr Štorch; Josep Roqué Bernal; Juan Carlos Gutiérrez-Marco (2019). "A graptolite-rich Ordovician–Silurian boundary section in the south-central Pyrenees, Spain: stratigraphical and palaeobiogeographical significance". Geological Magazine. 156 (6): 1069–1091. Bibcode:2019GeoM..156.1069S. doi:10.1017/S001675681800047X. hdl:10261/204868. S2CID 134984790.
  250. ^ a b c Bing Pan; Christian B. Skovsted; Haijing Sun; Guoxiang Li (2019). "Biostratigraphical and palaeogeographical implications of Early Cambrian hyoliths from the North China Platform". Alcheringa: An Australasian Journal of Palaeontology. 43 (3): 351–380. Bibcode:2019Alch...43..351P. doi:10.1080/03115518.2019.1577492. S2CID 197559098.
  251. ^ Mark A. S. McMenamin (2019). "Cambrian chordates and vetulicolians". Geosciences. 9 (8): Article 354. Bibcode:2019Geosc...9..354M. doi:10.3390/geosciences9080354.
  252. ^ George Poinar; Diane R. Nelson (2019). "A new microinvertebrate with features of mites and tardigrades in Dominican amber". Invertebrate Biology. 138 (4): e12265. doi:10.1111/ivb.12265. S2CID 204157733.
  253. ^ Stephen Pates; Allison C. Daley; Nicholas J. Butterfield (2019). "First report of paired ventral endites in a hurdiid radiodont". Zoological Letters. 5: Article 18. doi:10.1186/s40851-019-0132-4. PMC 6560863. PMID 31210962.
  254. ^ Zhe Chen; Chuanming Zhou; Xunlai Yuan; Shuhai Xiao (2019). "Death march of a segmented and trilobate bilaterian elucidates early animal evolution". Nature. 573 (7774): 412–415. Bibcode:2019Natur.573..412C. doi:10.1038/s41586-019-1522-7. PMID 31485079. S2CID 201834647.
  255. ^ A.Yu. Ivantsov; M.A. Zakrevskaya; A.L. Nagovitsyn (2019). "Morphology of integuments of the Precambrian animals, Proarticulata". Invertebrate Zoology. 16 (1): 19–26. doi:10.15298/invertzool.16.1.03. S2CID 204258422.
  256. ^ Brandt M. Gibson; Imran A. Rahman; Katie M. Maloney; Rachel A. Racicot; Helke Mocke; Marc Laflamme; Simon A. F. Darroch (2019). "Gregarious suspension feeding in a modular Ediacaran organism". Science Advances. 5 (6): eaaw0260. Bibcode:2019SciA....5..260G. doi:10.1126/sciadv.aaw0260. PMC 6584682. PMID 31223655.
  257. ^ Yaoping Cai; Shuhai Xiao; Guoxiang Li; Hong Hua (2019). "Diverse biomineralizing animals in the terminal Ediacaran Period herald the Cambrian explosion". Geology. 47 (4): 380–384. Bibcode:2019Geo....47..380C. doi:10.1130/G45949.1. S2CID 134736452.
  258. ^ Dominik Letsch; Simon J.E. Large; Stefano M. Bernasconi; Christian Klug; Thomas M. Blattmann; Wilfried Winkler; Albrecht von Quadt (2019). "Northwest Africa's Ediacaran to early Cambrian fossil record, its oldest metazoans and age constraints for the basal Taroudant Group (Morocco)". Precambrian Research. 320: 438–453. Bibcode:2019PreR..320..438L. doi:10.1016/j.precamres.2018.11.016. S2CID 133866590.
  259. ^ Xiao Min; Hong Hua; Yaoping Cai; Bo Sun (2019). "Asexual reproduction of tubular fossils in the terminal Neoproterozoic Dengying Formation, South China". Precambrian Research. 322: 18–23. Bibcode:2019PreR..322...18M. doi:10.1016/j.precamres.2018.12.009. S2CID 134376877.
  260. ^ Frances S. Dunn; Philip R. Wilby; Charlotte G. Kenchington; Dmitriy V. Grazhdankin; Philip C. J. Donoghue; Alexander G. Liu (2019). "Anatomy of the Ediacaran rangeomorph Charnia masoni". Papers in Palaeontology. 5 (1): 157–176. Bibcode:2019PPal....5..157D. doi:10.1002/spp2.1234. PMC 6472560. PMID 31007942.
  261. ^ Scott D. Evans; James G. Gehling; Mary L. Droser (2019). "Slime travelers: Early evidence of animal mobility and feeding in an organic mat world". Geobiology. 17 (5): 490–509. Bibcode:2019Gbio...17..490E. doi:10.1111/gbi.12351. PMID 31180184. S2CID 182948176.
  262. ^ Scott D. Evans; Wei Huang; Jim G. Gehling; David Kisailus; Mary L. Droser (2019). "Stretched, mangled, and torn: Responses of the Ediacaran fossil Dickinsonia to variable forces". Geology. 47 (11): 1049–1053. Bibcode:2019Geo....47.1049E. doi:10.1130/G46574.1. S2CID 204257942.
  263. ^ Frances S. Dunn; Alexander G. Liu; James G. Gehling (2019). "Anatomical and ontogenetic reassessment of the Ediacaran frond Arborea arborea and its placement within total group Eumetazoa". Palaeontology. 62 (5): 851–865. Bibcode:2019Palgy..62..851D. doi:10.1111/pala.12431. hdl:1983/5677888d-1cd1-4e92-8aa8-57940f30626a. S2CID 134473478.
  264. ^ Shuhai Xiao; Zhe Chen; Chuanming Zhou; Xunlai Yuan (2019). "Surfing in and on microbial mats: Oxygen-related behavior of a terminal Ediacaran bilaterian animal". Geology. 47 (11): 1054–1058. Bibcode:2019Geo....47.1054X. doi:10.1130/G46474.1. S2CID 204257384.
  265. ^ Breandán Anraoi MacGabhann; James D. Schiffbauer; James W. Hagadorn; Peter Van Roy; Edward P. Lynch; Liam Morrison; John Murray (2019). "Resolution of the earliest metazoan record: Differential taphonomy of Ediacaran and Paleozoic fossil molds and casts". Palaeogeography, Palaeoclimatology, Palaeoecology. 513: 146–165. Bibcode:2019PPP...513..146M. doi:10.1016/j.palaeo.2018.11.009. S2CID 135003752.
  266. ^ Sara B. Pruss; Camille H. Dwyer; Emily F. Smith; Francis A. Macdonald; Nicholas J. Tosca (2019). "Phosphatized early Cambrian archaeocyaths and small shelly fossils (SSFs) of southwestern Mongolia". Palaeogeography, Palaeoclimatology, Palaeoecology. 513: 166–177. Bibcode:2019PPP...513..166P. doi:10.1016/j.palaeo.2017.07.002. S2CID 134404563. Archived from the original on 2023-10-03. Retrieved 2020-11-11.
  267. ^ David R. Cordie; Stephen Q. Dornbos; Pedro J. Marenco; Tatsuo Oji; Sersmaa Gonchigdorj (2019). "Depauperate skeletonized reef-dwelling fauna of the early Cambrian: Insights from archaeocyathan reef ecosystems of western Mongolia". Palaeogeography, Palaeoclimatology, Palaeoecology. 514: 206–221. Bibcode:2019PPP...514..206C. doi:10.1016/j.palaeo.2018.10.027. S2CID 134513460.
  268. ^ David R. Cordie; Stephen Q. Dornbos (2019). "Restricted morphospace occupancy of early Cambrian reef-building archaeocyaths". Paleobiology. 45 (2): 331–346. Bibcode:2019Pbio...45..331C. doi:10.1017/pab.2019.5. S2CID 91937105.
  269. ^ Brian R. Pratt; Julien Kimmig (2019). "Extensive bioturbation in a middle Cambrian Burgess Shale–type fossil Lagerstätte in northwestern Canada". Geology. 47 (3): 231–234. Bibcode:2019Geo....47..231P. doi:10.1130/G45551.1. S2CID 133857064.
  270. ^ Luke A. Parry; Gregory D. Edgecombe; Dan Sykes; Jakob Vinther (2019). "Jaw elements in Plumulites bengtsoni confirm that machaeridians are extinct armoured scaleworms". Proceedings of the Royal Society B: Biological Sciences. 286 (1907): Article ID 20191247. doi:10.1098/rspb.2019.1247. PMC 6661337. PMID 31337310.
  271. ^ Luke Parry; Jean-Bernard Caron (2019). "Canadia spinosa and the early evolution of the annelid nervous system". Science Advances. 5 (9): eaax5858. Bibcode:2019SciA....5.5858P. doi:10.1126/sciadv.aax5858. PMC 6739095. PMID 31535028.
  272. ^ Magdalena N. Georgieva; Crispin T. S. Little; Jonathan S. Watson; Mark A. Sephton; Alexander D. Ball; Adrian G. Glover (2019). "Identification of fossil worm tubes from Phanerozoic hydrothermal vents and cold seeps". Journal of Systematic Palaeontology. 17 (4): 287–329. Bibcode:2019JSPal..17..287G. doi:10.1080/14772019.2017.1412362. hdl:10141/622324. S2CID 91049004.
  273. ^ Magdalena N. Georgieva; Charles K. Paull; Crispin T. S. Little; Mary McGann; Diana Sahy; Daniel Condon; Lonny Lundsten; Jack Pewsey; David W. Caress; Robert C. Vrijenhoek (2019). "Discovery of an extensive deep-sea fossil serpulid reef associated with a cold seep, Santa Monica Basin, California". Frontiers in Marine Science. 6: Article 115. Bibcode:2019FrMaS...6..115G. doi:10.3389/fmars.2019.00115. S2CID 81982495.
  274. ^ Luoyang Li; Xingliang Zhang; Christian B. Skovsted; Hao Yun; Bing Pan; Guoxiang Li (2019). "Homologous shell microstructures in Cambrian hyoliths and molluscs". Palaeontology. 62 (4): 515–532. Bibcode:2019Palgy..62..515L. doi:10.1111/pala.12406. S2CID 134098738.
  275. ^ Fan Liu; Christian B. Skovsted; Timothy P. Topper; Zhifei Zhang; Degan Shu (2019). "Are hyoliths Palaeozoic lophophorates?". National Science Review. 7 (2): 453–469. doi:10.1093/nsr/nwz161. PMC 8289160. PMID 34692060.
  276. ^ Fan Wei (2019). "Conch size evolution of Silurian–Devonian tentaculitoids". Lethaia. 52 (4): 454–463. Bibcode:2019Letha..52..454W. doi:10.1111/let.12324. S2CID 133803449.
  277. ^ Jakob Vinther; Luke A. Parry (2019). "Bilateral jaw elements in Amiskwia sagittiformis bridge the morphological gap between gnathiferans and chaetognaths". Current Biology. 29 (5): 881–888.e1. Bibcode:2019CBio...29E.881V. doi:10.1016/j.cub.2019.01.052. hdl:1983/51b1b6c1-0220-4469-977f-480e847a9101. PMID 30799238. S2CID 72332845.
  278. ^ Jean-Bernard Caron; Brittany Cheung (2019). "Amiskwia is a large Cambrian gnathiferan with complex gnathostomulid-like jaws". Communications Biology. 2: Article number 164. doi:10.1038/s42003-019-0388-4. PMC 6499802. PMID 31069273.
  279. ^ Daniel F.F. Cardia; Reinaldo J. Bertini; Lucilene G. Camossi; Luiz A. Letizio (2019). "First record of Acanthocephala parasites eggs in coprolites preliminary assigned to Crocodyliformes from the Adamantina Formation (Bauru Group, Upper Cretaceous), São Paulo, Brazil". Anais da Academia Brasileira de Ciências. 91 (Suppl. 2): e20170848. doi:10.1590/0001-3765201920170848. hdl:11449/189712. PMID 31090797. S2CID 155091017.
  280. ^ Giannis Kesidis; Ben J. Slater; Sören Jensen; Graham E. Budd (2019). "Caught in the act: priapulid burrowers in early Cambrian substrates". Proceedings of the Royal Society B: Biological Sciences. 286 (1894): Article ID 20182505. doi:10.1098/rspb.2018.2505. PMC 6367179. PMID 30963879.
  281. ^ Deng Wang; Jean Vannier; Isabell Schumann; Xing Wang; Xiao-Guang Yang; Tsuyoshi Komiya; Kentaro Uesugi; Jie Sun; Jian Han (2019). "Origin of ecdysis: fossil evidence from 535-million-year-old scalidophoran worms". Proceedings of the Royal Society B: Biological Sciences. 286 (1906): Article ID 20190791. doi:10.1098/rspb.2019.0791. PMC 6650709. PMID 31288707.
  282. ^ Stephen Pates; Allison C. Daley (2019). "The Kinzers Formation (Pennsylvania, USA): the most diverse assemblage of Cambrian Stage 4 radiodonts". Geological Magazine. 156 (7): 1233–1246. Bibcode:2019GeoM..156.1233P. doi:10.1017/S0016756818000547. S2CID 134299859.
  283. ^ Jie Yang; Javier Ortega-Hernández; Harriet B. Drage; Kun-sheng Du; Xi-guang Zhang (2019). "Ecdysis in a stem-group euarthropod from the early Cambrian of China". Scientific Reports. 9 (1): Article number 5709. Bibcode:2019NatSR...9.5709Y. doi:10.1038/s41598-019-41911-w. PMC 6450865. PMID 30952888.
  284. ^ Yichen Wu; Jianni Liu (2019). "Anatomy and relationships of the fuxianhuiid euarthropod Guangweicaris from the early Cambrian Guanshan Biota in Kunming, Yunnan, Southwest China revisited". Acta Palaeontologica Polonica. 64 (3): 543–548. doi:10.4202/app.00542.2018. S2CID 201291723.
  285. ^ James W. Hagadorn; Warren D. Allmon (2019). "Paleobiology of a three-dimensionally preserved paropsonemid from the Devonian of New York". Palaeogeography, Palaeoclimatology, Palaeoecology. 513: 208–214. Bibcode:2019PPP...513..208H. doi:10.1016/j.palaeo.2018.08.007. S2CID 133683311.
  286. ^ Christopher S. Rogers; Timothy I. Astrop; Samuel M. Webb; Shosuke Ito; Kazumasa Wakamatsu; Maria E. McNamara (2019). "Synchrotron X-ray absorption spectroscopy of melanosomes in vertebrates and cephalopods: implications for the affinity of Tullimonstrum". Proceedings of the Royal Society B: Biological Sciences. 286 (1913): Article ID 20191649. doi:10.1098/rspb.2019.1649. PMC 6834042. PMID 31640518.
  287. ^ Christopher M. Lowery; Andrew J. Fraass (2019). "Morphospace expansion paces taxonomic diversification after end Cretaceous mass extinction". Nature Ecology & Evolution. 3 (6): 900–904. Bibcode:2019NatEE...3..900L. doi:10.1038/s41559-019-0835-0. hdl:1983/fb08c3c1-c203-4780-bc90-5994ec1030ff. PMID 30962557. S2CID 102354122.
  288. ^ Qinghai Zhang; Helmut Willems; Lin Ding; Xiaoxia Xu (2019). "Response of larger benthic foraminifera to the Paleocene-Eocene thermal maximum and the position of the Paleocene/Eocene boundary in the Tethyan shallow benthic zones: Evidence from south Tibet". GSA Bulletin. 131 (1–2): 84–98. Bibcode:2019GSAB..131...84Z. doi:10.1130/B31813.1. S2CID 134560025.
  289. ^ a b Fumio Kobayashi; Hiroshi Furutani (2019). "Late Early Permian fusulines along Gongendani, south of Mt. Ryozen, Shiga Prefecture, central Japan". Paleontological Research. 23 (2): 131–151. doi:10.2517/2018PR014. S2CID 146284689.
  290. ^ John H. Powell; Alda Nicora; Maria Cristina Perri; Roberto Rettori; Renato Posenato; Michael H. Stephenson; Ahmed Masri; Letizia M. Borlenghi; Valerio Gennari (2019). "Lower Triassic (Induan to Olenekian) conodonts, foraminifera and bivalves from the Al Mamalih area, Dead Sea, Jordan: constraints on the P-T boundary". Rivista Italiana di Paleontologia e Stratigrafia. 125 (1): 147–181. doi:10.13130/2039-4942/11270.
  291. ^ Felix Schlagintweit; Ioan I. Bucur; Milan N. Sudar (2019). "Bispiraloconulus serbiacus gen. et sp. nov., a giant arborescent benthic foraminifer from the Berriasian of Serbia". Cretaceous Research. 93: 98–106. Bibcode:2019CrRes..93...98S. doi:10.1016/j.cretres.2018.09.003. S2CID 134961646.
  292. ^ R. Robles-Salcedo; V. Vicedo; M. Parente; E. Caus (2019). "Canalispina iapygia gen. et sp. nov.: the last Siderolitidae (Foraminiferida) from the upper Maastrichtian of southern Italy". Cretaceous Research. 98: 84–94. Bibcode:2019CrRes..98...84R. doi:10.1016/j.cretres.2019.01.009. hdl:2072/361425. S2CID 133855907.
  293. ^ Yi-chun Zhang; Shu-zhong Shen; Yu-jie Zhang; Tong-xing Zhu; Xian-yin An; Bo-xin Huang; Chun-lin Ye; Feng Qiao; Hai-peng Xu (2019). "Middle Permian foraminifers from the Zhabuye and Xiadong areas in the central Lhasa Block and their paleobiogeographic implications". Journal of Asian Earth Sciences. 175: 109–120. Bibcode:2019JAESc.175..109Z. doi:10.1016/j.jseaes.2018.01.008. S2CID 134610485.
  294. ^ R. Villalonga; C. Boix; G. Frijia; M. Parente; J. M. Bernaus; E. Caus (2019). "Larger foraminifera and strontium isotope stratigraphy of middle Campanian shallow-water lagoonal facies of the Pyrenean Basin (NE Spain)". Facies. 65 (2): Article 20. Bibcode:2019Faci...65...20V. doi:10.1007/s10347-019-0565-4. S2CID 133918270.
  295. ^ Valerio Gennari; Roberto Rettori (2019). "Globigaetania angulata gen. n. sp. n. (Globivalvulininae, Foraminifera) from the Wordian (Middle Permian) of NW Iran". Rivista Italiana di Paleontologia e Stratigrafia. 125 (1): 1–11. doi:10.13130/2039-4942/11054.
  296. ^ Michel Septfontaine; Felix Schlagintweit; Koorosh Rashidi (2019). "Pachycolumella nov. gen., shallow-water benthic imperforate foraminifera and its species from the Maastrichtian and Paleocene of Iran". Micropaleontology. 65 (2): 145–160. Bibcode:2019MiPal..65..145S. doi:10.47894/mpal.65.2.04. S2CID 248222396. Archived from the original on 2019-03-27. Retrieved 2019-03-27.
  297. ^ Felix Schlagintweit; Michel Septfontaine; Koorosh Rashidi (2019). "Pseudochablaisia subglobosa gen. et sp. nov., a new pfenderinid foraminifera from the Upper Cretaceous of Iran". Cretaceous Research. 100: 105–113. Bibcode:2019CrRes.100..105S. doi:10.1016/j.cretres.2019.03.020. S2CID 134372582.
  298. ^ a b Felix Schlagintweit; Koorosh Rashidi (2019). "Serrakielina chahtorshiana n. gen. et n. sp., and other (larger) benthic Foraminifera from Danian-Selandian carbonates of Mount Chah Torsh (Yazd Block, Central Iran)". Micropaleontology. 65 (4): 305–338. Bibcode:2019MiPal..65..305S. doi:10.47894/mpal.65.4.04. S2CID 248091837. Archived from the original on 2019-07-20. Retrieved 2019-07-20.
  299. ^ Brent Wilson; Philip Farfan; Lee-Ann C. Hayek; Michael A. Kaminski; Abduljamiu O. Amao; Chantelle Hughes; Sadie Samsoondar; Shaliza Ali; Krystella Rattan; Anastasia Baboolal (2019). "Agglutinated and planktonic foraminifera of the Nariva Formation, Central Trinidad, as indicators of its age and paleoenvironment". Micropaleontology. 65 (1): 1–26. Bibcode:2019MiPal..65....1W. doi:10.47894/mpal.65.1.01. S2CID 248222670. Archived from the original on 2019-02-21. Retrieved 2019-02-20.
  300. ^ Mohamed Boukhary; Ahmed Abd El Naby (2019). "Tambareauella azilensis (Tambareau) n. gen. (Topotype), from Late Ypresian of Le Mas-d'Azil, southwestern France". Journal of African Earth Sciences. 151: 47–53. Bibcode:2019JAfES.151...47B. doi:10.1016/j.jafrearsci.2018.11.026. S2CID 135353519.
  301. ^ Sebastian Teichert; William Woelkerling; Axel Munnecke (2019). "Coralline red algae from the Silurian of Gotland indicate that the order Corallinales (Corallinophycidae, Rhodophyta) is much older than previously thought". Palaeontology. 62 (4): 599–613. Bibcode:2019Palgy..62..599T. doi:10.1111/pala.12418. S2CID 133907054.
  302. ^ Mirinae Lee; Robert J. Elias; Suk-Joo Choh; Dong-Jin Lee (2019). "Palaeobiological features of the coralomorph Amsassia from the Late Ordovician of South China". Alcheringa: An Australasian Journal of Palaeontology. 43 (1): 18–32. Bibcode:2019Alch...43...18L. doi:10.1080/03115518.2018.1471737. S2CID 134678668.
  303. ^ a b Michael Krings; Hans Kerp (2019). "A tiny parasite of unicellular microorganisms from the Lower Devonian Rhynie and Windyfield cherts, Scotland". Review of Palaeobotany and Palynology. 271: Article 104106. Bibcode:2019RPaPa.27104106K. doi:10.1016/j.revpalbo.2019.104106. S2CID 201312579.
  304. ^ a b c d e f g h i j k l m n o p q r s t u v w Pengju Liu; Małgorzata Moczydłowska (2019). "Ediacaran microfossils from the Doushantuo Formation chert nodules in the Yangtze Gorges area, South China, and new biozones". Fossils and Strata. Fossils and Strata Series. 65: 1–172. doi:10.1002/9781119564225. ISBN 978-1-119-56422-5. S2CID 241585964.
  305. ^ a b c d e f Qin Ye; Jinnan Tong; Zhihui An; Jun Hu; Li Tian; Kaiping Guan; Shuhai Xiao (2019). "A systematic description of new macrofossil material from the upper Ediacaran Miaohe Member in South China". Journal of Systematic Palaeontology. 17 (3): 183–238. Bibcode:2019JSPal..17..183Y. doi:10.1080/14772019.2017.1404499. S2CID 90479572.
  306. ^ Qing Tang; Jie Hu; Guwei Xie; Xunlai Yuan; Bin Wan; Chuanming Zhou; Xu Dong; Guohua Cao; Bruce S. Lieberman; Sally P. Leys; Shuhai Xiao (2019). "A problematic animal fossil from the early Cambrian Hetang Formation, South China". Journal of Paleontology. 93 (6): 1047–1057. Bibcode:2019JPal...93.1047T. doi:10.1017/jpa.2019.26. PMC 6800671. PMID 31631908.
  307. ^ Ben J. Slater; Graham E. Budd (2019). "Comment on: Tang et al. [2019]: A problematic animal fossil from the early Cambrian Hetang Formation, South China". Journal of Paleontology. 93 (6): 1276–1278. Bibcode:2019JPal...93.1276S. doi:10.1017/jpa.2019.54. S2CID 199110004.
  308. ^ Qing Tang; Jie Hu; Guwei Xie; Xunlai Yuan; Bin Wan; Chuanming Zhou; Xu Dong; Guohua Cao; Bruce S. Lieberman; Sally P. Leys; Shuhai Xiao (2019). "A problematic animal fossil from the early Cambrian Hetang Formation, South China—A reply". Journal of Paleontology. 93 (6): 1279–1282. Bibcode:2019JPal...93.1279T. doi:10.1017/jpa.2019.69. hdl:10919/96331. S2CID 210936232.
  309. ^ a b Zainab Al Rawahi; Tom Dunkley Jones (2019). "Calcareous nannofossil assemblages of the Late Cretaceous Fiqa Formation, north Oman". Journal of Micropalaeontology. 38 (1): 25–54. Bibcode:2019JMicP..38...25R. doi:10.5194/jm-38-25-2019. S2CID 135040635.
  310. ^ Max Wisshak; Liane Hüne (2019). "The new encrusting microproblematicum Circumpodium enigmaticum and its attachment trace Circumpodichnus serialis from the Middle Jurassic of Normandy (France)". Fossil Record. 22 (2): 77–90. Bibcode:2019FossR..22...77W. doi:10.5194/fr-22-77-2019. S2CID 207827357.
  311. ^ Heda Agić; Anette E. S. Högström; Małgorzata Moczydłowska; Sören Jensen; Teodoro Palacios; Guido Meinhold; Jan Ove R. Ebbestad; Wendy L. Taylor; Magne Høyberget (2019). "Organically-preserved multicellular eukaryote from the early Ediacaran Nyborg Formation, Arctic Norway". Scientific Reports. 9 (1): Article number 14659. Bibcode:2019NatSR...914659A. doi:10.1038/s41598-019-50650-x. PMC 6787099. PMID 31601898.
  312. ^ a b Lanyun Miao; Małgorzata Moczydłowska; Shixing Zhu; Maoyan Zhu (2019). "New record of organic-walled, morphologically distinct microfossils from the late Paleoproterozoic Changcheng Group in the Yanshan Range, North China". Precambrian Research. 321: 172–198. Bibcode:2019PreR..321..172M. doi:10.1016/j.precamres.2018.11.019. S2CID 134362289.
  313. ^ Yan Liang; Joseph Bernardo; Daniel Goldman; Jaak Nõlvak; Peng Tang; Wenhui Wang; Olle Hints (2019). "Morphological variation suggests that chitinozoans may be fossils of individual microorganisms rather than metazoan eggs". Proceedings of the Royal Society B: Biological Sciences. 286 (1908): Article ID 20191270. doi:10.1098/rspb.2019.1270. PMC 6710598. PMID 31362642.
  314. ^ Jaak Nõlvak; Yan Liang; Olle Hints (2019). "Early diversification of Ordovician chitinozoans on Baltica: New data from the Jägala waterfall section, northern Estonia". Palaeogeography, Palaeoclimatology, Palaeoecology. 525: 14–24. Bibcode:2019PPP...525...14N. doi:10.1016/j.palaeo.2019.04.002. S2CID 135138918.
  315. ^ a b Xiaodong Shang; Pengju Liu (2024). "Taxonomic reviews for genera Megasphaera, Membranospinosphaera and Spinomargosphaera of the Ediacaran spheroidal acritarchs". Precambrian Research. 407. 107409. Bibcode:2024PreR..40707409S. doi:10.1016/j.precamres.2024.107409.
  316. ^ Xiaodong Shang; Pengju Liu; Małgorzata Moczydłowska (2019). "Acritarchs from the Doushantuo Formation at Liujing section in Songlin area of Guizhou Province, South China: Implications for early–middle Ediacaran biostratigraphy". Precambrian Research. 334: Article 105453. Bibcode:2019PreR..33405453S. doi:10.1016/j.precamres.2019.105453. S2CID 202900689.
  317. ^ a b Carmine C. Wainman; Daniel J. Mantle; Carey Hannaford; Peter J. McCabe (2019). "Possible freshwater dinoflagellate cysts and colonial algae from the Upper Jurassic strata of the Surat Basin, Australia". Palynology. 43 (3): 411–422. Bibcode:2019Paly...43..411W. doi:10.1080/01916122.2018.1451785. S2CID 134883353.
  318. ^ Carla J. Harper; Michael Krings (2019). "Nimbosphaera rothwellii nov. gen. et sp., an enigmatic microfossil enveloped in a prominent sheath from the Lower Devonian Windyfield Chert, Scotland". International Journal of Plant Sciences. 180 (6): 558–570. doi:10.1086/702941. S2CID 195436223.
  319. ^ L. Morais; D.J.G. Lahr; I.D. Rudnitzki; B.T. Freitas; G.R. Romero; S.M. Porter; A.H. Knoll; T.R. Fairchild (2019). "Insights into vase-shaped microfossil diversity and Neoproterozoic biostratigraphy in light of recent Brazilian discoveries". Journal of Paleontology. 93 (4): 612–627. Bibcode:2019JPal...93..612M. doi:10.1017/jpa.2019.6. S2CID 189991021.
  320. ^ Christine Strullu-Derrien; Paul Kenrick; Tomasz Goral; Andrew H. Knoll (2019). "Testate amoebae in the 407-million-year-old Rhynie Chert". Current Biology. 29 (3): 461–467.e2. Bibcode:2019CBio...29E.461S. doi:10.1016/j.cub.2018.12.009. PMID 30661795. S2CID 58552832.
  321. ^ Michael Krings (2019). "Palaeolyngbya kerpii sp. nov., a large filamentous cyanobacterium with affinities to Oscillatoriaceae from the Lower Devonian Rhynie chert". PalZ. 93 (3): 377–386. Bibcode:2019PalZ...93..377K. doi:10.1007/s12542-019-00475-w. S2CID 198137423.
  322. ^ George Poinar; Fernando E. Vega (2019). "Mid-Cretaceous cellular slime mold (Eukarya: Dictyostelia?) in Burmese amber". Historical Biology: An International Journal of Paleobiology. 33 (5): 712–715. doi:10.1080/08912963.2019.1658095. S2CID 202029760.
  323. ^ Michael Krings; Carla J. Harper (2019). "A new species of Perexiflasca, enigmatic microfossils with suggested affinities to Chytridiomycota (Fungi) from the Lower Devonian Rhynie and Windyfield cherts". Geobios. 56: 107–114. Bibcode:2019Geobi..56..107K. doi:10.1016/j.geobios.2019.07.007. S2CID 201330854.
  324. ^ Michael Krings; Vladimir N. Sergeev (2019). "A coccoid, colony-forming cyanobacterium from the Lower Devonian Rhynie chert that resembles Eucapsis (Synechococcales) and Entophysalis (Chroococcales)". Review of Palaeobotany and Palynology. 268: 65–71. Bibcode:2019RPaPa.268...65K. doi:10.1016/j.revpalbo.2019.06.002. S2CID 197563039.
  325. ^ Emma N.U. Landon; Peng-Ju Liu; Zong-Jun Yin; Wei-Chen Sun; Xiao-Dong Shang; Philip C.J. Donoghue (2019). "Cellular preservation of excysting developmental stages of new eukaryotes from the early Ediacaran Weng'an Biota" (PDF). Palaeoworld. 28 (4): 461–468. doi:10.1016/j.palwor.2019.05.005. hdl:1983/5f1cbbee-9d1b-4fb6-b3db-55266de0599d. S2CID 182559934.
  326. ^ Takayuki Tashiro; Akizumi Ishida; Masako Hori; Motoko Igisu; Mizuho Koike; Pauline Méjean; Naoto Takahata; Yuji Sano; Tsuyoshi Komiya (2017). "Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada". Nature. 549 (7673): 516–518. Bibcode:2017Natur.549..516T. doi:10.1038/nature24019. PMID 28959955. S2CID 4470796.
  327. ^ Martin J. Whitehouse; Daniel J. Dunkley; Monika A. Kusiak; Simon A. Wilde (2019). "On the true antiquity of Eoarchean chemofossils – assessing the claim for Earth's oldest biogenic graphite in the Saglek Block of Labrador". Precambrian Research. 323: 70–81. Bibcode:2019PreR..323...70W. doi:10.1016/j.precamres.2019.01.001. hdl:20.500.11937/74140. S2CID 134499370.
  328. ^ Józef Kaźmierczak; Barbara Kremer (2019). "Pattern of cell division in ~3.4 Ga-old microbes from South Africa". Precambrian Research. 331: Article 105357. Bibcode:2019PreR..33105357K. doi:10.1016/j.precamres.2019.105357. S2CID 189977450.
  329. ^ Abderrazak El Albani; M. Gabriela Mangano; Luis A. Buatois; Stefan Bengtson; Armelle Riboulleau; Andrey Bekker; Kurt Konhauser; Timothy Lyons; Claire Rollion-Bard; Olabode Bankole; Stellina Gwenaelle Lekele Baghekema; Alain Meunier; Alain Trentesaux; Arnaud Mazurier; Jeremie Aubineau; Claude Laforest; Claude Fontaine; Philippe Recourt; Ernest Chi Fru; Roberto Macchiarelli; Jean Yves Reynaud; François Gauthier-Lafaye; Donald E. Canfield (2019). "Organism motility in an oxygenated shallow-marine environment 2.1 billion years ago". Proceedings of the National Academy of Sciences of the United States of America. 116 (9): 3431–3436. Bibcode:2019PNAS..116.3431E. doi:10.1073/pnas.1815721116. PMC 6397584. PMID 30808737.
  330. ^ Gregory Retallack; Xuegang Mao (2019). "Paleoproterozoic (ca. 1.9 Ga) megascopic life on land in Western Australia". Palaeogeography, Palaeoclimatology, Palaeoecology. 532: Article 109266. Bibcode:2019PPP...53209266R. doi:10.1016/j.palaeo.2019.109266. S2CID 199094301.
  331. ^ David Wacey; Eva Sirantoine; Martin Saunders; Paul Strother (2019). "1 billion-year-old cell contents preserved in monazite and xenotime". Scientific Reports. 9 (1): Article number 9068. Bibcode:2019NatSR...9.9068W. doi:10.1038/s41598-019-45575-4. PMC 6588638. PMID 31227773.
  332. ^ Xiao Min; Hong Hua; Lijing Liu; Bo Sun; Zaihang Cui; Tongchang Jiang (2019). "Phosphatized Epiphyton from the terminal Neoproterozoic and its significance". Precambrian Research. 331: Article 105358. Bibcode:2019PreR..33105358M. doi:10.1016/j.precamres.2019.105358. S2CID 189983017.
  333. ^ Wei-Chen Sun; Zong-Jun Yin; Philip Donoghue; Peng-Ju Liu; Xiao-Dong Shang; Mao-Yan Zhu (2019). "Tubular microfossils from the Ediacaran Weng'an Biota (Doushantuo Formation, South China) are not early animals". Palaeoworld. 28 (4): 469–477. doi:10.1016/j.palwor.2019.04.004. hdl:1983/2fa05771-9d96-4663-8438-29d52f2cc197. S2CID 150258707.
  334. ^ Ilana Lehn; Rodrigo Scalise Horodyski; Paulo Sérgio Gomes Paim (2019). "Marine and non-marine strata preserving Ediacaran microfossils". Scientific Reports. 9 (1): Article number 9809. Bibcode:2019NatSR...9.9809L. doi:10.1038/s41598-019-46304-7. PMC 6614404. PMID 31285486.
  335. ^ Zongjun Yin; Kelly Vargas; John Cunningham; Stefan Bengtson; Maoyan Zhu; Federica Marone; Philip Donoghue (2019). "The early Ediacaran Caveasphaera foreshadows the evolutionary origin of animal-like embryology". Current Biology. 29 (24): 4307–4314.e2. Bibcode:2019CBio...29E4307Y. doi:10.1016/j.cub.2019.10.057. hdl:1983/13fb76e4-5d57-4e39-b222-14f8a8fae303. PMID 31786065. S2CID 208332041.
  336. ^ Xiyang Zhang; Mingyue Dai; Min Wang; Yong'an Qi (2019). "Calcified coccoid from Cambrian Miaolingian: Revealing the potential cellular structure of Epiphyton". PLOS ONE. 14 (3): e0213695. Bibcode:2019PLoSO..1413695Z. doi:10.1371/journal.pone.0213695. PMC 6417771. PMID 30870473.
  337. ^ Michael Krings; Carla J. Harper (2019). "A microfossil resembling Merismopedia (Cyanobacteria) from the 410-million-yr-old Rhynie and Windyfield cherts – Rhyniococcus uniformis revisited". Nova Hedwigia. 108 (1–2): 17–35. doi:10.1127/nova_hedwigia/2018/0507. S2CID 92784831.
  338. ^ Sarah Kachovich; Jiani Sheng; Jonathan C. Aitchison (2019). "Adding a new dimension to investigations of early radiolarian evolution". Scientific Reports. 9 (1): Article number 6450. Bibcode:2019NatSR...9.6450K. doi:10.1038/s41598-019-42771-0. PMC 6478871. PMID 31015493.
  339. ^ Sean McMahon (2019). "Earth's earliest and deepest purported fossils may be iron-mineralized chemical gardens". Proceedings of the Royal Society B: Biological Sciences. 286 (1916): Article ID 20192410. doi:10.1098/rspb.2019.2410. PMC 6939263. PMID 31771469.
  340. ^ Lennart M. van Maldegem; Pierre Sansjofre; Johan W. H. Weijers; Klaus Wolkenstein; Paul K. Strother; Lars Wörmer; Jens Hefter; Benjamin J. Nettersheim; Yosuke Hoshino; Stefan Schouten; Jaap S. Sinninghe Damsté; Nilamoni Nath; Christian Griesinger; Nikolay B. Kuznetsov; Marcel Elie; Marcus Elvert; Erik Tegelaar; Gerd Gleixner; Christian Hallmann (2019). "Bisnorgammacerane traces predatory pressure and the persistent rise of algal ecosystems after Snowball Earth". Nature Communications. 10 (1): Article number 476. Bibcode:2019NatCo..10..476V. doi:10.1038/s41467-019-08306-x. PMC 6351664. PMID 30696819.
  341. ^ Benjamin J. Nettersheim; Jochen J. Brocks; Arne Schwelm; Janet M. Hope; Fabrice Not; Michael Lomas; Christiane Schmidt; Ralf Schiebel; Eva C. M. Nowack; Patrick De Deckker; Jan Pawlowski; Samuel S. Bowser; Ilya Bobrovskiy; Karin Zonneveld; Michal Kucera; Marleen Stuhr; Christian Hallmann (2019). "Putative sponge biomarkers in unicellular Rhizaria question an early rise of animals". Nature Ecology & Evolution. 3 (4): 577–581. Bibcode:2019NatEE...3..577N. doi:10.1038/s41559-019-0806-5. PMID 30833757. S2CID 71148672.
  342. ^ Gordon D. Love; J. Alex Zumberge; Paco Cárdenas; Erik A. Sperling; Megan Rohrssen; Emmanuelle Grosjean; John P. Grotzinger; Roger E. Summons (2020). "Sources of C30 steroid biomarkers in Neoproterozoic–Cambrian rocks and oils". Nature Ecology & Evolution. 4 (1): 34–36. doi:10.1038/s41559-019-1048-2. PMC 7236378. PMID 31768019.
  343. ^ Christian Hallmann; Benjamin J. Nettersheim; Jochen J. Brocks; Arne Schwelm; Janet M. Hope; Fabrice Not; Michael Lomas; Christiane Schmidt; Ralf Schiebel; Eva C. M. Nowack; Patrick De Deckker; Jan Pawlowski; Samuel S. Bowser; Ilya Bobrovskiy; Karin Zonneveld; Michal Kucera; Marleen Stuhr (2020). "Reply to: Sources of C30 steroid biomarkers in Neoproterozoic–Cambrian rocks and oils". Nature Ecology & Evolution. 4 (1): 37–39. doi:10.1038/s41559-019-1049-1. hdl:1885/219294. PMID 31768020. S2CID 208279461.
  344. ^ Joshua E. Goldford; Hyman Hartman; Robert Marsland III; Daniel Segrè (2019). "Environmental boundary conditions for the origin of life converge to an organo-sulfur metabolism". Nature Ecology & Evolution. 3 (12): 1715–1724. Bibcode:2019NatEE...3.1715G. doi:10.1038/s41559-019-1018-8. PMC 6881557. PMID 31712697.
  345. ^ Y. Soldatenko; A. El Albani; M. Ruzina; C. Fontaine; V. Nesterovsky; J.-L. Paquette; A. Meunier; M. Ovtcharova (2019). "Precise U-Pb age constrains on the Ediacaran biota in Podolia, East European Platform, Ukraine". Scientific Reports. 9 (1): Article number 1675. Bibcode:2019NatSR...9.1675S. doi:10.1038/s41598-018-38448-9. PMC 6368556. PMID 30737449.
  346. ^ A. D. Muscente; Natalia Bykova; Thomas H. Boag; Luis A. Buatois; M. Gabriela Mángano; Ahmed Eleish; Anirudh Prabhu; Feifei Pan; Michael B. Meyer; James D. Schiffbauer; Peter Fox; Robert M. Hazen; Andrew H. Knoll (2019). "Ediacaran biozones identified with network analysis provide evidence for pulsed extinctions of early complex life". Nature Communications. 10 (1): Article number 911. Bibcode:2019NatCo..10..911M. doi:10.1038/s41467-019-08837-3. PMC 6384941. PMID 30796215.
  347. ^ Rachel Wood; Alexander G. Liu; Frederick Bowyer; Philip R. Wilby; Frances S. Dunn; Charlotte G. Kenchington; Jennifer F. Hoyal Cuthill; Emily G. Mitchell; Amelia Penny (2019). "Integrated records of environmental change and evolution challenge the Cambrian Explosion". Nature Ecology & Evolution. 3 (4): 528–538. Bibcode:2019NatEE...3..528W. doi:10.1038/s41559-019-0821-6. PMID 30858589. S2CID 73728430.
  348. ^ Seth Finnegan; James G. Gehling; Mary L. Droser (2019). "Unusually variable paleocommunity composition in the oldest metazoan fossil assemblages". Paleobiology. 45 (2): 235–245. Bibcode:2019Pbio...45..235F. doi:10.1017/pab.2019.1. S2CID 91812415.
  349. ^ Alison T. Cribb; Charlotte G. Kenchington; Bryce Koester; Brandt M. Gibson; Thomas H. Boag; Rachel A. Racicot; Helke Mocke; Marc Laflamme; Simon A. F. Darroch (2019). "Increase in metazoan ecosystem engineering prior to the Ediacaran–Cambrian boundary in the Nama Group, Namibia". Royal Society Open Science. 6 (9): Article ID 190548. Bibcode:2019RSOS....690548C. doi:10.1098/rsos.190548. PMC 6774933. PMID 31598294.
  350. ^ Pupa U. P. A. Gilbert; Susannah M. Porter; Chang-Yu Sun; Shuhai Xiao; Brandt M. Gibson; Noa Shenkar; Andrew H. Knoll (2019). "Biomineralization by particle attachment in early animals". Proceedings of the National Academy of Sciences of the United States of America. 116 (36): 17659–17665. Bibcode:2019PNAS..11617659G. doi:10.1073/pnas.1902273116. PMC 6731633. PMID 31427519.
  351. ^ Tianchen He; Maoyan Zhu; Benjamin J. W. Mills; Peter M. Wynn; Andrey Yu. Zhuravlev; Rosalie Tostevin; Philip A. E. Pogge von Strandmann; Aihua Yang; Simon W. Poulton; Graham A. Shields (2019). "Possible links between extreme oxygen perturbations and the Cambrian radiation of animals". Nature Geoscience. 12 (6): 468–474. Bibcode:2019NatGe..12..468H. doi:10.1038/s41561-019-0357-z. PMC 6548555. PMID 31178922.
  352. ^ David R. Cordie; Stephen Q. Dornbos; Pedro J. Marenco (2019). "Increase in carbonate contribution from framework-building metazoans through early Cambrian reefs of the western Basin and Range, USA". PALAIOS. 34 (3): 159–174. Bibcode:2019Palai..34..159C. doi:10.2110/palo.2018.085. S2CID 133876711.
  353. ^ Ben J. Slater; Sebastian Willman (2019). "Early Cambrian small carbonaceous fossils (SCFs) from an impact crater in western Finland". Lethaia. 52 (4): 570–582. Bibcode:2019Letha..52..570S. doi:10.1111/let.12331. S2CID 146235711.
  354. ^ M. Gabriela Mángano; Christopher David Hawkes; Jean-Bernard Caron (2019). "Trace fossils associated with Burgess Shale non-biomineralized carapaces: bringing taphonomic and ecological controls into focus". Royal Society Open Science. 6 (1): Article ID 172074. Bibcode:2019RSOS....672074M. doi:10.1098/rsos.172074. PMC 6366168. PMID 30800334.
  355. ^ Dongjing Fu; Guanghui Tong; Tao Dai; Wei Liu; Yuning Yang; Yuan Zhang; Linhao Cui; Luoyang Li; Hao Yun; Yu Wu; Ao Sun; Cong Liu; Wenrui Pei; Robert R. Gaines; Xingliang Zhang (2019). "The Qingjiang biota—A Burgess Shale–type fossil Lagerstätte from the early Cambrian of South China". Science. 363 (6433): 1338–1342. Bibcode:2019Sci...363.1338F. doi:10.1126/science.aau8800. PMID 30898931. S2CID 85448914.
  356. ^ Cheung, Helier (24 March 2019). "Huge fossil discovery made in China's Hubei province". BBC News. Retrieved 24 March 2019.
  357. ^ David A.T. Harper; Timothy P. Topper; Borja Cascales-Miñana; Thomas Servais; Yuan-Dong Zhang; Per Ahlberg (2019). "The Furongian (late Cambrian) Biodiversity Gap: Real or apparent?". Palaeoworld. 28 (1–2): 4–12. doi:10.1016/j.palwor.2019.01.007. hdl:20.500.12210/34395. S2CID 134062318.
  358. ^ Christian M. Ø. Rasmussen; Björn Kröger; Morten L. Nielsen; Jorge Colmenar (2019). "Cascading trend of Early Paleozoic marine radiations paused by Late Ordovician extinctions". Proceedings of the National Academy of Sciences of the United States of America. 116 (15): 7207–7213. Bibcode:2019PNAS..116.7207R. doi:10.1073/pnas.1821123116. PMC 6462056. PMID 30910963.
  359. ^ Amelia Penny; Björn Kröger (2019). "Impacts of spatial and environmental differentiation on early Palaeozoic marine biodiversity". Nature Ecology & Evolution. 3 (12): 1655–1660. Bibcode:2019NatEE...3.1655P. doi:10.1038/s41559-019-1035-7. hdl:10138/325369. PMID 31740841. S2CID 208145315.
  360. ^ Björn Kröger; Franziska Franeck; Christian M. Ø. Rasmussen (2019). "The evolutionary dynamics of the early Palaeozoic marine biodiversity accumulation". Proceedings of the Royal Society B: Biological Sciences. 286 (1909): Article ID 20191634. doi:10.1098/rspb.2019.1634. PMC 6732384. PMID 31455187.
  361. ^ David A.T. Harper; Borja Cascales-Miñana; Thomas Servais (2019). "Early Palaeozoic diversifications and extinctions in the marine biosphere: a continuum of change" (PDF). Geological Magazine. 157 (1): 5–21. doi:10.1017/S0016756819001298. S2CID 212893855.
  362. ^ Andrew J. Rominger; Miguel A. Fuentes; Pablo A. Marquet (2019). "Nonequilibrium evolution of volatility in origination and extinction explains fat-tailed fluctuations in Phanerozoic biodiversity". Science Advances. 5 (6): eaat0122. Bibcode:2019SciA....5..122R. doi:10.1126/sciadv.aat0122. PMC 6594772. PMID 31249860.
  363. ^ Gareth G. Roberts; Philip D. Mannion (2019). "Timing and periodicity of Phanerozoic marine biodiversity and environmental change". Scientific Reports. 9 (1): Article number 6116. Bibcode:2019NatSR...9.6116R. doi:10.1038/s41598-019-42538-7. PMC 6467882. PMID 30992505.
  364. ^ Kilian Eichenseer; Uwe Balthasar; Christopher W. Smart; Julian Stander; Kristian A. Haaga; Wolfgang Kiessling (2019). "Jurassic shift from abiotic to biotic control on marine ecological success". Nature Geoscience. 12 (8): 638–642. Bibcode:2019NatGe..12..638E. doi:10.1038/s41561-019-0392-9. hdl:10026.1/14472. S2CID 197402218.
  365. ^ Franziska Franeck; Lee Hsiang Liow (2019). "Dissecting the paleocontinental and paleoenvironmental dynamics of the great Ordovician biodiversification". Paleobiology. 45 (2): 221–234. Bibcode:2019Pbio...45..221F. doi:10.1017/pab.2019.4. hdl:10852/79941. S2CID 91403245.
  366. ^ Julien Kimmig; Helena Couto; Wade W. Leibach; Bruce S. Lieberman (2019). "Soft-bodied fossils from the upper Valongo Formation (Middle Ordovician: Dapingian-Darriwilian) of northern Portugal". The Science of Nature. 106 (5–6): Article 27. Bibcode:2019SciNa.106...27K. doi:10.1007/s00114-019-1623-z. PMID 31129730. S2CID 164217158.
  367. ^ Dirk Knaust; André Desrochers (2019). "Exceptionally preserved soft-bodied assemblage in Ordovician carbonates of Anticosti Island, eastern Canada". Gondwana Research. 71: 117–128. Bibcode:2019GondR..71..117K. doi:10.1016/j.gr.2019.01.016. S2CID 134814852.
  368. ^ Guangxu Wang; Renbin Zhan; Ian G. Percival (2019). "The end-Ordovician mass extinction: A single-pulse event?". Earth-Science Reviews. 192: 15–33. Bibcode:2019ESRv..192...15W. doi:10.1016/j.earscirev.2019.01.023. S2CID 134266940.
  369. ^ Yves Candela; William R.B. Crighton (2019). "Synoptic revision of the Silurian fauna from the Pentland Hills, Scotland described by Lamont (1978)". Palaeontologia Electronica. 22 (2): Article number 22.2.19. doi:10.26879/868. S2CID 155184624.
  370. ^ Štěpán Manda; Petr Štorch; Jiří Frýda; Ladislav Slavík; Zuzana Tasáryová (2019). "The mid-Homerian (Silurian) biotic crisis in offshore settings of the Prague Synform, Czech Republic: Integration of the graptolite fossil record with conodonts, shelly fauna and carbon isotope data". Palaeogeography, Palaeoclimatology, Palaeoecology. 528: 14–34. Bibcode:2019PPP...528...14M. doi:10.1016/j.palaeo.2019.04.026. S2CID 155234754.
  371. ^ Błażej Berkowski; Michał Jakubowicz; Zdzisław Belka; Jan J. Król; Mikołaj K. Zapalski (2019). "Recurring cryptic ecosystems in Lower to Middle Devonian carbonate mounds of Hamar Laghdad (Anti-Atlas, Morocco)". Palaeogeography, Palaeoclimatology, Palaeoecology. 523: 1–17. Bibcode:2019PPP...523....1B. doi:10.1016/j.palaeo.2019.03.011. S2CID 133662623.
  372. ^ Elizabeth M. Dowding; Malte C. Ebach (2019). "Evaluating Devonian bioregionalization: quantifying biogeographic areas". Paleobiology. 45 (4): 636–651. Bibcode:2019Pbio...45..636D. doi:10.1017/pab.2019.30. S2CID 204162465.
  373. ^ Roger A. Close; Roger B. J. Benson; John Alroy; Anna K. Behrensmeyer; Juan Benito; Matthew T. Carrano; Terri J. Cleary; Emma M. Dunne; Philip D. Mannion; Mark D. Uhen; Richard J. Butler (2019). "Diversity dynamics of Phanerozoic terrestrial tetrapods at the local-community scale" (PDF). Nature Ecology & Evolution. 3 (4): 590–597. Bibcode:2019NatEE...3..590C. doi:10.1038/s41559-019-0811-8. PMID 30778186. S2CID 66884562.
  374. ^ Jennifer A. Clack; Carys E. Bennett; Sarah J. Davies; Andrew C. Scott; Janet E. Sherwin; Timothy R. Smithson (2019). "A Tournaisian (earliest Carboniferous) conglomerate-preserved non-marine faunal assemblage and its environmental and sedimentological context". PeerJ. 6: e5972. doi:10.7717/peerj.5972. PMC 6321757. PMID 30627480.
  375. ^ Jason D. Pardo; Bryan J. Small; Andrew R. Milner; Adam K. Huttenlocker (2019). "Carboniferous–Permian climate change constrained early land vertebrate radiations". Nature Ecology & Evolution. 3 (2): 200–206. Bibcode:2019NatEE...3..200P. doi:10.1038/s41559-018-0776-z. PMID 30664698. S2CID 58572291.
  376. ^ Gilles Didier; Olivier Chabrol; Michel Laurin (2019). "Parsimony-based test for identifying changes in evolutionary trends for quantitative characters: implications for the origin of the amniotic egg" (PDF). Cladistics. 35 (5): 576–599. doi:10.1111/cla.12371. PMID 34618939. S2CID 92735742.
  377. ^ Jun Chen; Yi-gang Xu (2019). "Establishing the link between Permian volcanism and biodiversity changes: Insights from geochemical proxies". Gondwana Research. 75: 68–96. Bibcode:2019GondR..75...68C. doi:10.1016/j.gr.2019.04.008. S2CID 189968466.
  378. ^ Yara Haridy; Bryan M. Gee; Florian Witzmann; Joseph J. Bevitt; Robert R. Reisz (2019). "Retention of fish-like odontode overgrowth in Permian tetrapod dentition supports outside-in theory of tooth origins". Biology Letters. 15 (9): Article ID 20190514. doi:10.1098/rsbl.2019.0514. PMC 6769137. PMID 31506034.
  379. ^ Michael R. Rampino; Shu-Zhong Shen (2019). "The end-Guadalupian (259.8 Ma) biodiversity crisis: the sixth major mass extinction?". Historical Biology: An International Journal of Paleobiology. 33 (5): 716–722. doi:10.1080/08912963.2019.1658096. S2CID 202858078.
  380. ^ Kévin Rey; Michael O. Day; Romain Amiot; François Fourel; Julie Luyt; Marc J. Van den Brandt; Christophe Lécuyer; Bruce S. Rubidge (2020). "Oxygen isotopes and ecological inferences of Permian (Guadalupian) tetrapods from the main Karoo Basin of South Africa" (PDF). Palaeogeography, Palaeoclimatology, Palaeoecology. 538: Article 109485. Bibcode:2020PPP...53809485R. doi:10.1016/j.palaeo.2019.109485. S2CID 214085715.
  381. ^ David P. Groenewald; Michael O. Day; Bruce S. Rubidge (2019). "Vertebrate assemblages from the north-central Main Karoo Basin, South Africa, and their implications for mid-Permian biogeography". Lethaia. 52 (4): 486–501. Bibcode:2019Letha..52..486G. doi:10.1111/let.12326. S2CID 155384983. Alt URL
  382. ^ Michael O. Day; Bruce S. Rubidge (2019). "Biesiespoort revisited: a case study on the relationship between tetrapod assemblage zones and Beaufort lithostratigraphy south of Victoria West". Palaeontologia Africana. 53: 51–65. hdl:10539/26240.
  383. ^ Robert A. Gastaldo; Johann Neveling; John W. Geissman; Cindy V. Looy (2019). "Testing the Daptocephalus and Lystrosaurus Assemblage Zones in a lithostratographic, magnetostratigraphic, and palynological framework in the Free State, South Africa". PALAIOS. 34 (11): 542–561. Bibcode:2019Palai..34..542G. doi:10.2110/palo.2019.019. S2CID 208268646.
  384. ^ Michael R. Rampino; Yoram Eshet-Alkalai; Athanasios Koutavas; Sedelia Rodriguez (2019). "End-Permian stratigraphic timeline applied to the timing of marine and non-marine extinctions". Palaeoworld. 29 (3): 577–589. doi:10.1016/j.palwor.2019.10.002. S2CID 210267038.
  385. ^ Jennifer Botha; Adam K. Huttenlocker; Roger M.H. Smith; Rose Prevec; Pia Viglietti; Sean P. Modesto (2020). "New geochemical and palaeontological data from the Permian-Triassic boundary in the South African Karoo Basin test the synchronicity of terrestrial and marine extinctions". Palaeogeography, Palaeoclimatology, Palaeoecology. 540: Article 109467. Bibcode:2020PPP...54009467B. doi:10.1016/j.palaeo.2019.109467. S2CID 213349989.
  386. ^ Ashley A. Dineen; Peter D. Roopnarine; Margaret L. Fraiser (2019). "Ecological continuity and transformation after the Permo-Triassic mass extinction in northeastern Panthalassa". Biology Letters. 15 (3): Article ID 20180902. doi:10.1098/rsbl.2018.0902. PMC 6451382. PMID 30862310.
  387. ^ Vanessa Julie Roden; Imelda M. Hausmann; Alexander Nützel; Barbara Seuss; Mike Reich; Max Urlichs; Hans Hagdorn; Wolfgang Kiessling (2019). "Fossil liberation: a model to explain high biodiversity in the Triassic Cassian Formation". Palaeontology. 63 (1): 85–102. doi:10.1111/pala.12441. S2CID 202911879.
  388. ^ Piotr Bajdek; Tomasz Szczygielski; Agnieszka Kapuścińska; Tomasz Sulej (2019). "Bromalites from a turtle-dominated fossil assemblage from the Triassic of Poland". Palaeogeography, Palaeoclimatology, Palaeoecology. 520: 214–228. Bibcode:2019PPP...520..214B. doi:10.1016/j.palaeo.2019.02.002. S2CID 135287034.
  389. ^ J.W. Atkinson; P.B. Wignall (2019). "How quick was marine recovery after the end-Triassic mass extinction and what role did anoxia play?" (PDF). Palaeogeography, Palaeoclimatology, Palaeoecology. 528: 99–119. Bibcode:2019PPP...528...99A. doi:10.1016/j.palaeo.2019.05.011. S2CID 164911938.
  390. ^ Bryony A. Caswell; Stephanie J. Dawn (2019). "Recovery of benthic communities following the Toarcian oceanic anoxic event in the Cleveland Basin, UK". Palaeogeography, Palaeoclimatology, Palaeoecology. 521: 114–126. Bibcode:2019PPP...521..114C. doi:10.1016/j.palaeo.2019.02.014. hdl:10072/384441. S2CID 134807954.
  391. ^ Sam M. Slater; Richard J. Twitchett; Silvia Danise; Vivi Vajda (2019). "Substantial vegetation response to Early Jurassic global warming with impacts on oceanic anoxia". Nature Geoscience. 12 (6): 462–467. Bibcode:2019NatGe..12..462S. doi:10.1038/s41561-019-0349-z. S2CID 155624907.
  392. ^ L.L. Delsett; P. Alsen (2019). "New marine reptile fossils from the Oxfordian (Late Jurassic) of Greenland". Geological Magazine. 157 (10): 1612–1621. doi:10.1017/S0016756819000724. S2CID 199098887.
  393. ^ Marta S. Fernández; Yanina Herrera; Verónica V. Vennari; Lisandro Campos; Marcelo de la Fuente; Marianella Talevi; Beatriz Aguirre-Urreta (2019). "Marine reptiles from the Jurassic/Cretaceous transition at the High Andes, Mendoza, Argentina". Journal of South American Earth Sciences. 92: 658–673. Bibcode:2019JSAES..92..658F. doi:10.1016/j.jsames.2019.03.013. S2CID 134577778.
  394. ^ Maxime Lasseron; Ronan Allain; Emmanuel Gheerbrant; Hamid Haddoumi; Nour-Eddine Jalil; Grégoire Métais; Jean-Claude Rage; Romain Vullo; Samir Zouhri (2019). "New data on the microvertebrate fauna from the Upper Jurassic or lowest Cretaceous of Ksar Metlili (Anoual Syncline, eastern Morocco)" (PDF). Geological Magazine. 157 (3): 367–392. doi:10.1017/S0016756819000761. S2CID 204263709.
  395. ^ Toban J. Wild; Jeffrey D. Stilwell (2019). "Palaeobiogeographic and tectonic significance of mid-Cretaceous invertebrate taxa from Batavia Knoll, eastern Indian Ocean". Palaeogeography, Palaeoclimatology, Palaeoecology. 522: 89–97. Bibcode:2019PPP...522...89W. doi:10.1016/j.palaeo.2019.03.014. S2CID 134962178.
  396. ^ J. Marcelo Krause; Jahandar Ramezani; Aldo M. Umazano; Diego Pol; José L. Carballido; Juliana Sterli; Pablo Puerta; N. Rubén Cúneo; Eduardo S. Bellosi (2020). "High-resolution chronostratigraphy of the Cerro Barcino Formation (Patagonia): Paleobiologic implications for the mid-cretaceous dinosaur-rich fauna of South America". Gondwana Research. 80: 33–49. Bibcode:2020GondR..80...33K. doi:10.1016/j.gr.2019.10.005. S2CID 210265289.
  397. ^ Lida Xing; Donghao Wang; Gang Li; Ryan C. McKellar; Ming Bai; Huarong Chen; Susan E. Evans (2019). "Possible egg masses from amphibians, gastropods, and insects in mid-Cretaceous Burmese amber" (PDF). Historical Biology: An International Journal of Paleobiology. 33 (7): 1043–1052. doi:10.1080/08912963.2019.1677642. S2CID 208565653.
  398. ^ Martin Qvarnström; Stavros Anagnostakis; Anders Lindskog; Udo Scheer; Vivi Vajda; Bo W. Rasmussen; Johan Lindgren; Mats E. Eriksson (2019). "Multi-proxy analyses of Late Cretaceous coprolites from Germany". Lethaia. 52 (4): 550–569. Bibcode:2019Letha..52..550Q. doi:10.1111/let.12330. S2CID 155939790.
  399. ^ Attila Ősi; Márton Szabó; Heinz Kollmann; Michael Wagreich; Réka Kalmár; László Makádi; Zoltán Szentesi; Herbert Summesberger (2019). "Vertebrate remains from the Turonian (Upper Cretaceous) Gosau Group of Gams, Austria" (PDF). Cretaceous Research. 99: 190–208. Bibcode:2019CrRes..99..190O. doi:10.1016/j.cretres.2019.03.001. S2CID 134929335.
  400. ^ Jesús Alvarado-Ortega; Kleyton Magno Cantalice Severiano; Jair Israel Barrientos-Lara; Jesús Alberto Díaz-Cruz; Bruno Andrés Than-Marchese (2019). "The Huehuetla quarry, a Turonian deposit of marine vertebrates in the Sierra Norte of Puebla, central Mexico". Palaeontologia Electronica. 22 (1): Article number 22.1.13. doi:10.26879/921.
  401. ^ Tai Kubo (2019). "Biogeographical network analysis of Cretaceous terrestrial tetrapods: a phylogeny-based approach". Systematic Biology. 68 (6): 1034–1051. doi:10.1093/sysbio/syz024. PMID 31135923.
  402. ^ Ryan C. McKellar; Emma Jones; Michael S. Engel; Ralf Tappert; Alexander P. Wolfe; Karlis Muehlenbachs; Pierre Cockx; Eva B. Koppelhus; Philip J. Currie (2019). "A direct association between amber and dinosaur remains provides paleoecological insights". Scientific Reports. 9 (1): Article number 17916. Bibcode:2019NatSR...917916M. doi:10.1038/s41598-019-54400-x. PMC 6884503. PMID 31784622.
  403. ^ Mariela Soledad Fernández; Xia Wang; Mátyás Vremir; Chris Laurent; Darren Naish; Gary Kaiser; Gareth Dyke (2019). "A mixed vertebrate eggshell assemblage from the Transylvanian Late Cretaceous". Scientific Reports. 9 (1): Article number 1944. Bibcode:2019NatSR...9.1944F. doi:10.1038/s41598-018-36305-3. PMC 6374508. PMID 30760740.
  404. ^ Marcelo A. Reguero (2019). "Antarctic paleontological heritage: Late Cretaceous–Paleogene vertebrates from Seymour (Marambio) Island, Antarctic Peninsula". Advances in Polar Science. 30 (3): 328–355. doi:10.13679/j.advps.2019.0015. Archived from the original on 2019-09-06. Retrieved 2019-09-06.
  405. ^ Piotr Bajdek (2019). "Divergence rates of subviral pathogens of angiosperms abruptly decreased at the Cretaceous-Paleogene boundary". Rethinking Ecology. 4: 89–101. doi:10.3897/rethinkingecology.4.33014. S2CID 196664424.
  406. ^ Heather L. Jones; Christopher M. Lowery; Timothy J. Bralower (2019). "Delayed calcareous nannoplankton boom-bust successions in the earliest Paleocene Chicxulub (Mexico) impact crater". Geology. 47 (8): 753–756. Bibcode:2019Geo....47..753J. doi:10.1130/G46143.1. S2CID 200028577.
  407. ^ Sarah A. Alvarez; Samantha J. Gibbs; Paul R. Bown; Hojung Kim; Rosie M. Sheward; Andy Ridgwell (2019). "Diversity decoupled from ecosystem function and resilience during mass extinction recovery" (PDF). Nature. 574 (7777): 242–245. Bibcode:2019Natur.574..242A. doi:10.1038/s41586-019-1590-8. PMID 31554971. S2CID 202760217.
  408. ^ Rowan J. Whittle; James D. Witts; Vanessa C. Bowman; J. Alistair Crame; Jane E. Francis; Jon Ineson (2019). "Nature and timing of biotic recovery in Antarctic benthic marine ecosystems following the Cretaceous–Palaeogene mass extinction". Palaeontology. 62 (6): 919–934. Bibcode:2019Palgy..62..919W. doi:10.1111/pala.12434. hdl:1983/664225b7-7261-41b0-b453-7b6a5c860e8a. S2CID 197558669.
  409. ^ T. R. Lyson; I. M. Miller; A. D. Bercovici; K. Weissenburger; A. J. Fuentes; W. C. Clyde; J. W. Hagadorn; M. J. Butrim; K. R. Johnson; R. F. Fleming; R. S. Barclay; S. A. Maccracken; B. Lloyd; G. P. Wilson; D. W. Krause; S. G. B. Chester (2019). "Exceptional continental record of biotic recovery after the Cretaceous–Paleogene mass extinction". Science. 366 (6468): 977–983. doi:10.1126/science.aay2268. PMID 31649141. S2CID 204883579.
  410. ^ Gudrun Daxner-Höck; Margarita A. Erbajeva; Ursula B. Göhlich; Paloma López-Guerrero; Tserendash Narantsetseg; Bastien Mennecart; Adriana Oliver; Davit Vasilyan; Reinhard Ziegler (2019). "The Oligocene vertebrate assemblage of Shine Us (Khaliun Basin, south western Mongolia)" (PDF). Annalen des Naturhistorischen Museums in Wien, Serie A. 121: 195–256. JSTOR 26595691.
  411. ^ Elena Syromyatnikova; Georgios L. Georgalis; Serdar Mayda; Tanju Kaya; Gerçek Saraç (2019). "A new early Miocene herpetofauna from Kilçak, Turkey" (PDF). Russian Journal of Herpetology. 26 (4): 205–224. doi:10.30906/1026-2296-2019-26-4-205-224. S2CID 204646324.
  412. ^ Davit Vasilyan (2019). "Fish, amphibian and reptilian assemblage from the middle Miocene locality Gračanica—Bugojno palaeolake, Bosnia and Herzegovina" (PDF). Palaeobiodiversity and Palaeoenvironments. 100 (2): 437–455. doi:10.1007/s12549-019-00381-8. S2CID 195225145.
  413. ^ Steven R. May (2019). "The Lapara Creek Fauna: Early Clarendonian of south Texas, USA". Palaeontologia Electronica. 22 (1): Article number 22.1.15. doi:10.26879/929. S2CID 146390137.
  414. ^ Marcos D. Ercoli; Alicia Álvarez; Carla Santamans; Sonia A. González Patagua; Juan Pablo Villalba Ulberich; Ornela E. Constantini (2019). "Los Alisos, a new fossiliferous locality for Guanaco Formation (late Miocene) in Jujuy (Argentina), and a first approach of its paleoecological and biochronology implications". Journal of South American Earth Sciences. 93: 203–213. Bibcode:2019JSAES..93..203E. doi:10.1016/j.jsames.2019.04.024. hdl:11336/121466. S2CID 155281728.
  415. ^ Charles L. Powell; Robert W. Boessenecker; N. Adam Smith; Robert J. Fleck; Sandra J. Carlson; James R. Allen; Douglas J. Long; Andrei M. Sarna-Wojcicki; Raj B. Guruswami-Naidu (2019). "Geology and paleontology of the late Miocene Wilson Grove Formation at Bloomfield Quarry, Sonoma County, California". U.S. Geological Survey Scientific Investigations Report. Scientific Investigations Report. 2019–5021: 1–77. Bibcode:2019usgs.rept...25P. doi:10.3133/sir20195021. S2CID 155285057.
  416. ^ Jaelyn Eberle; J. Howard Hutchison; Kristen Kennedy; Wighart Von Koenigswald; Ross D.E. MacPhee; Grant Zazula (2019). "The first Tertiary fossils of mammals, turtles, and fish from Canada's Yukon". American Museum Novitates (3943): 1–28. doi:10.1206/3943.1. hdl:2246/6967. S2CID 204965404.
  417. ^ Mike W. Morley; Paul Goldberg; Vladimir A. Uliyanov; Maxim B. Kozlikin; Michael V. Shunkov; Anatoly P. Derevianko; Zenobia Jacobs; Richard G. Roberts (2019). "Hominin and animal activities in the microstratigraphic record from Denisova Cave (Altai Mountains, Russia)". Scientific Reports. 9 (1): Article number 13785. Bibcode:2019NatSR...913785M. doi:10.1038/s41598-019-49930-3. PMC 6763451. PMID 31558742.
  418. ^ Mathieu Duval; Fang Fang; Kantapon Suraprasit; Jean-Jacques Jaeger; Mouloud Benammi; Yaowalak Chaimanee; Javier Iglesias Cibanal; Rainer Grün (2019). "Direct ESR dating of the Pleistocene vertebrate assemblage from Khok Sung locality, Nakhon Ratchasima Province, Northeast Thailand". Palaeontologia Electronica. 22 (3): Article number 22.3.69. doi:10.26879/941. hdl:1885/258582. S2CID 208990001.
  419. ^ Hugues-Alexandre Blain; Almudena Martínez Monzón; Juan Manuel López-García; Iván Lozano-Fernández; Annelise Folie (2019). "Amphibians and squamate reptiles from the late Pleistocene of the "Caverne Marie-Jeanne" (Hastière-Lavaux, Namur, Belgium): Systematics, paleobiogeography, and paleoclimatic and paleoenvironmental reconstructions". Comptes Rendus Palevol. 18 (7): 849–875. Bibcode:2019CRPal..18..849B. doi:10.1016/j.crpv.2019.04.006. S2CID 197564252.
  420. ^ Karen E. Samonds; Brooke E. Crowley; Tojoarilala Rinasoa Nadia Rasolofomanana; Miora Christelle Andriambelomanana; Harimalala Tsiory Andrianavalona; Tolotra Niaina Ramihangihajason; Ravoniaina Rakotozandry; Zafindratsaravelo Bototsemily Nomenjanahary; Mitchell T. Irwin; Neil A. Wells; Laurie R. Godfrey (2019). "A new late Pleistocene subfossil site (Tsaramody, Sambaina basin, central Madagascar) with implications for the chronology of habitat and megafaunal community change on Madagascar's Central Highlands". Journal of Quaternary Science. 34 (6): 379–392. Bibcode:2019JQS....34..379S. doi:10.1002/jqs.3096. S2CID 201320848.
  421. ^ Benjamin T. Fuller; John R. Southon; Simon M. Fahrni; Aisling B. Farrell; Gary T. Takeuchi; Olaf Nehlich; Eric J. Guiry; Michael P. Richards; Emily L. Lindsey; John M. Harris (2020). "Pleistocene paleoecology and feeding behavior of terrestrial vertebrates recorded in a pre-LGM asphaltic deposit at Rancho La Brea, California". Palaeogeography, Palaeoclimatology, Palaeoecology. 537: Article 109383. Bibcode:2020PPP...53709383F. doi:10.1016/j.palaeo.2019.109383. S2CID 210297351.
  422. ^ Christopher M. Wurster; Hamdi Rifai; Bin Zhou; Jordahna Haig; Michael I. Bird (2019). "Savanna in equatorial Borneo during the late Pleistocene". Scientific Reports. 9 (1): Article number 6392. Bibcode:2019NatSR...9.6392W. doi:10.1038/s41598-019-42670-4. PMC 6483998. PMID 31024024.
  423. ^ Gilbert J. Price; Julien Louys; Garry K. Smith; Jonathan Cramb (2019). "Shifting faunal baselines through the Quaternary revealed by cave fossils of eastern Australia". PeerJ. 6: e6099. doi:10.7717/peerj.6099. PMC 6346992. PMID 30697475.
  424. ^ Frédérik Saltré; Joël Chadoeuf; Katharina J. Peters; Matthew C. McDowell; Tobias Friedrich; Axel Timmermann; Sean Ulm; Corey J. A. Bradshaw (2019). "Climate-human interaction associated with southeast Australian megafauna extinction patterns". Nature Communications. 10 (1): Article number 5311. Bibcode:2019NatCo..10.5311S. doi:10.1038/s41467-019-13277-0. PMC 6876570. PMID 31757942.
  425. ^ Laurie R. Godfrey; Nick Scroxton; Brooke E. Crowley; Stephen J. Burns; Michael R. Sutherland; Ventura R. Pérez; Peterson Faina; David McGee; Lovasoa Ranivoharimanana (2019). "A new interpretation of Madagascar's megafaunal decline: The "Subsistence Shift Hypothesis"". Journal of Human Evolution. 130: 126–140. Bibcode:2019JHumE.130..126G. doi:10.1016/j.jhevol.2019.03.002. PMID 31010539. S2CID 128362254.
  426. ^ Ronald E. Martin; Thomas Servais (2019). "Did the evolution of the phytoplankton fuel the diversification of the marine biosphere?". Lethaia. 53 (1): 5–31. doi:10.1111/let.12343. S2CID 197563329.
  427. ^ Erin E. Saupe; Huijie Qiao; Yannick Donnadieu; Alexander Farnsworth; Alan T. Kennedy-Asser; Jean-Baptiste Ladant; Daniel J. Lunt; Alexandre Pohl; Paul Valdes; Seth Finnegan (2019). "Extinction intensity during Ordovician and Cenozoic glaciations explained by cooling and palaeogeography" (PDF). Nature Geoscience. 13 (1): 65–70. Bibcode:2020NatGe..13...65S. doi:10.1038/s41561-019-0504-6. hdl:1983/c88c3d46-e95d-43e6-aeaf-685580089635. S2CID 209381464.
  428. ^ L. Francisco Henao Diaz; Luke J. Harmon; Mauro T. C. Sugawara; Eliot T. Miller; Matthew W. Pennell (2019). "Macroevolutionary diversification rates show time dependency". Proceedings of the National Academy of Sciences of the United States of America. 116 (15): 7403–7408. Bibcode:2019PNAS..116.7403H. doi:10.1073/pnas.1818058116. PMC 6462100. PMID 30910958.
  429. ^ John J. Wiens; Joshua P. Scholl (2019). "Diversification rates, clade ages, and macroevolutionary methods". Proceedings of the National Academy of Sciences of the United States of America. 116 (49): 24400. Bibcode:2019PNAS..11624400W. doi:10.1073/pnas.1915908116. PMC 6900499. PMID 31719201.
  430. ^ L. Francisco Henao Diaz; Luke J. Harmon; Mauro T. C. Sugawara; Eliot T. Miller; Matthew W. Pennell (2019). "Reply to Wiens and Scholl: The time dependency of diversification rates is a widely observed phenomenon". Proceedings of the National Academy of Sciences of the United States of America. 116 (49): 24401. Bibcode:2019PNAS..11624401H. doi:10.1073/pnas.1917189116. PMC 6900524. PMID 31719200.
  431. ^ Manabu Sakamoto; Marcello Ruta; Chris Venditti (2019). "Extreme and rapid bursts of functional adaptations shape bite force in amniotes". Proceedings of the Royal Society B: Biological Sciences. 286 (1894): Article ID 20181932. doi:10.1098/rspb.2018.1932. PMC 6367170. PMID 30963871.
  432. ^ Matthew R. McCurry; Alistair R. Evans; Erich M. G. Fitzgerald; Colin R. McHenry; Joseph Bevitt; Nicholas D. Pyenson (2019). "The repeated evolution of dental apicobasal ridges in aquatic-feeding mammals and reptiles". Biological Journal of the Linnean Society. 127 (2): 245–259. doi:10.1093/biolinnean/blz025.
  433. ^ Joëlle Barido-Sottani; Gabriel Aguirre-Fernández; Melanie J. Hopkins; Tanja Stadler; Rachel Warnock (2019). "Ignoring stratigraphic age uncertainty leads to erroneous estimates of species divergence times under the fossilized birth–death process". Proceedings of the Royal Society B: Biological Sciences. 286 (1902): Article ID 20190685. doi:10.1098/rspb.2019.0685. PMC 6532507. PMID 31064306.
  434. ^ Hans P. Püschel; Joseph E. O'Reilly; Davide Pisani; Philip C. J. Donoghue (2019). "The impact of fossil stratigraphic ranges on tip-calibration, and the accuracy and precision of divergence time estimates". Palaeontology. 63 (1): 67–83. doi:10.1111/pala.12443. hdl:1983/04b0c77b-7d07-4555-aec0-9c19161e1770. S2CID 199111737.
  435. ^ Valentina Rossi; Maria E. McNamara; Sam M. Webb; Shosuke Ito; Kazumasa Wakamatsu (2019). "Tissue-specific geometry and chemistry of modern and fossilized melanosomes reveal internal anatomy of extinct vertebrates". Proceedings of the National Academy of Sciences of the United States of America. 116 (36): 17880–17889. Bibcode:2019PNAS..11617880R. doi:10.1073/pnas.1820285116. PMC 6731645. PMID 31427524.
  436. ^ L. Barry Albright III; Albert E. Sanders; Robert E. Weems; David J. Cicimurri; James L. Knight (2019). "Cenozoic vertebrate biostratigraphy of South Carolina, U.S.A., and additions to the fauna" (PDF). Bulletin of the Florida Museum of Natural History. 57 (2): 77–236. doi:10.58782/flmnh.qqgg4577.
  437. ^ Frantz Ossa Ossa; Axel Hofmann; Jorge E. Spangenberg; Simon W. Poulton; Eva E. Stüeken; Ronny Schoenberg; Benjamin Eickmann; Martin Wille; Mike Butler; Andrey Bekker (2019). "Limited oxygen production in the Mesoarchean ocean". Proceedings of the National Academy of Sciences of the United States of America. 116 (14): 6647–6652. Bibcode:2019PNAS..116.6647O. doi:10.1073/pnas.1818762116. PMC 6452703. PMID 30894492.
  438. ^ Chadlin M. Ostrander; Sune G. Nielsen; Jeremy D. Owens; Brian Kendall; Gwyneth W. Gordon; Stephen J. Romaniello; Ariel D. Anbar (2019). "Fully oxygenated water columns over continental shelves before the Great Oxidation Event". Nature Geoscience. 12 (3): 186–191. Bibcode:2019NatGe..12..186O. doi:10.1038/s41561-019-0309-7. PMC 6398953. PMID 30847006.
  439. ^ Birger Rasmussen; Janet R. Muhling; Nicholas J. Tosca; Harilaos Tsikos (2019). "Evidence for anoxic shallow oceans at 2.45 Ga: Implications for the rise of oxygenic photosynthesis". Geology. 47 (7): 622–626. Bibcode:2019Geo....47..622R. doi:10.1130/G46162.1. S2CID 155825490.
  440. ^ Malcolm S. W. Hodgskiss; Peter W. Crockford; Yongbo Peng; Boswell A. Wing; Tristan J. Horner (2019). "A productivity collapse to end Earth's Great Oxidation". Proceedings of the National Academy of Sciences of the United States of America. 116 (35): 17207–17212. Bibcode:2019PNAS..11617207H. doi:10.1073/pnas.1900325116. PMC 6717284. PMID 31405980.
  441. ^ Bernard Marty; David V. Bekaert; Michael W. Broadley; Claude Jaupart (2019). "Geochemical evidence for high volatile fluxes from the mantle at the end of the Archaean" (PDF). Nature. 575 (7783): 485–488. Bibcode:2019Natur.575..485M. doi:10.1038/s41586-019-1745-7. PMID 31748723. S2CID 208190652.
  442. ^ Kazumi Ozaki; Katharine J. Thompson; Rachel L. Simister; Sean A. Crowe; Christopher T. Reinhard (2019). "Anoxygenic photosynthesis and the delayed oxygenation of Earth's atmosphere". Nature Communications. 10 (1): Article number 3026. arXiv:1907.13001. Bibcode:2019NatCo..10.3026O. doi:10.1038/s41467-019-10872-z. PMC 6616575. PMID 31289261.
  443. ^ Jérémie Aubineau; Abderrazak El Albani; Andrey Bekker; Andrea Somogyi; Olabode M. Bankole; Roberto Macchiarelli; Alain Meunier; Armelle Riboulleau; Jean-Yves Reynaud; Kurt O. Konhauser (2019). "Microbially induced potassium enrichment in Paleoproterozoic shales and implications for reverse weathering on early Earth". Nature Communications. 10 (1): Article number 2670. Bibcode:2019NatCo..10.2670A. doi:10.1038/s41467-019-10620-3. PMC 6572813. PMID 31209248.
  444. ^ Amber J. M. Jarrett; Grant M. Cox; Jochen J. Brocks; Emmanuelle Grosjean; Chris J. Boreham; Dianne S. Edwards (2019). "Microbial assemblage and palaeoenvironmental reconstruction of the 1.38 Ga Velkerri Formation, McArthur Basin, northern Australia". Geobiology. 17 (4): 360–380. Bibcode:2019Gbio...17..360J. doi:10.1111/gbi.12331. PMC 6618112. PMID 30734481.
  445. ^ A.T. Brasier; P.F. Dennis; J. Still; J. Parnell; T.Culwick; M.D. Brasier; D. Wacey; S.A. Bowden; S. Crook; A.J. Boyce; D.K. Muirhead (2019). "Detecting ancient life: Investigating the nature and origin of possible stromatolites and associated calcite from a one billion year old lake" (PDF). Precambrian Research. 328: 309–320. Bibcode:2019PreR..328..309B. doi:10.1016/j.precamres.2019.04.025. hdl:2164/14227. S2CID 155354410.
  446. ^ J. Parnell; A. J. Boyce (2019). "Neoproterozoic copper cycling, and the rise of metazoans". Scientific Reports. 9 (1): Article number 3638. Bibcode:2019NatSR...9.3638P. doi:10.1038/s41598-019-40484-y. PMC 6403403. PMID 30842538.
  447. ^ Graham A. Shields; Benjamin J. W. Mills; Maoyan Zhu; Timothy D. Raub; Stuart J. Daines; Timothy M. Lenton (2019). "Unique Neoproterozoic carbon isotope excursions sustained by coupled evaporite dissolution and pyrite burial" (PDF). Nature Geoscience. 12 (10): 823–827. Bibcode:2019NatGe..12..823S. doi:10.1038/s41561-019-0434-3. hdl:10871/39006. S2CID 201827639.
  448. ^ Jie Long; Shixi Zhang; Kunli Luo (2019). "Cryogenian magmatic activity and early life evolution". Scientific Reports. 9 (1): Article number 6586. Bibcode:2019NatSR...9.6586L. doi:10.1038/s41598-019-43177-8. PMC 6488696. PMID 31036856.
  449. ^ Maxwell A. Lechte; Malcolm W. Wallace; Ashleigh van Smeerdijk Hood; Weiqiang Li; Ganqing Jiang; Galen P. Halverson; Dan Asael; Stephanie L. McColl; Noah J. Planavsky (2019). "Subglacial meltwater supported aerobic marine habitats during Snowball Earth". Proceedings of the National Academy of Sciences of the United States of America. 116 (51): 25478–25483. Bibcode:2019PNAS..11625478L. doi:10.1073/pnas.1909165116. PMC 6926012. PMID 31792178.
  450. ^ Feifei Zhang; Shuhai Xiao; Stephen J. Romaniello; Dalton Hardisty; Chao Li; Victor Melezhik; Boris Pokrovsky; Meng Cheng; Wei Shi; Timothy M. Lenton; Ariel D. Anbar (2019). "Global marine redox changes drove the rise and fall of the Ediacara biota". Geobiology. 17 (6): 594–610. Bibcode:2019Gbio...17..594Z. doi:10.1111/gbi.12359. PMC 6899691. PMID 31353777.
  451. ^ Alexander G. Liu; Sean McMahon; Jack J. Matthews; John W. Still; Alexander T. Brasier (2019). "Petrological evidence supports the death mask model for the preservation of Ediacaran soft-bodied organisms in South Australia" (PDF). Geology. 47 (3): 215–218. Bibcode:2019Geo....47..215L. doi:10.1130/G45918.1. hdl:2164/13537. S2CID 133939666. Archived from the original (PDF) on 2019-04-30. Retrieved 2019-07-19.
  452. ^ Weiming Ding; Lin Dong; Yuanlin Sun; Haoran Ma; Yihe Xu; Runyu Yang; Yongbo Peng; Chuanming Zhou; Bing Shen (2019). "Early animal evolution and highly oxygenated seafloor niches hosted by microbial mats". Scientific Reports. 9 (1): Article number 13628. Bibcode:2019NatSR...913628D. doi:10.1038/s41598-019-49993-2. PMC 6754419. PMID 31541156.
  453. ^ Ilya Bobrovskiy; Anna Krasnova; Andrey Ivantsov; Ekaterina Luzhnaya (Serezhnikova); Jochen J. Brocks (2019). "Simple sediment rheology explains the Ediacara biota preservation". Nature Ecology & Evolution. 3 (4): 582–589. Bibcode:2019NatEE...3..582B. doi:10.1038/s41559-019-0820-7. PMID 30911145. S2CID 85495899.
  454. ^ Tais W. Dahl; James N. Connelly; Da Li; Artem Kouchinsky; Benjamin C. Gill; Susannah Porter; Adam C. Maloof; Martin Bizzarro (2019). "Atmosphere–ocean oxygen and productivity dynamics during early animal radiations". Proceedings of the National Academy of Sciences of the United States of America. 116 (39): 19352–19361. Bibcode:2019PNAS..11619352D. doi:10.1073/pnas.1901178116. PMC 6765300. PMID 31501322.
  455. ^ Dongtao Xu; Xinqiang Wang; Xiaoying Shi; Dongjie Tang; Xiangkuan Zhao; Lianjun Feng; Huyue Song (2020). "Nitrogen cycle perturbations linked to metazoan diversification during the early Cambrian". Palaeogeography, Palaeoclimatology, Palaeoecology. 538: Article 109392. Bibcode:2020PPP...53809392X. doi:10.1016/j.palaeo.2019.109392. S2CID 210297394.
  456. ^ Francisco Javier Cuen Romero; José Eduardo Valdez Holguín; Blanca Estela Buitrón Sánchez; Rogelio Monreal; Luis Fernando Enríquez Ocaña; Eduardo Aguirre Hinojosa; José Alfredo Ochoa Granillo; Francisco Javier Grijalva Noriega; Juan José Palafox Reyes (2019). "Paleoecology of Cambrian communities of central Sonora, Mexico: Paleoenvironmental and biostratigraphic considerations". Journal of South American Earth Sciences. 92: 631–645. Bibcode:2019JSAES..92..631C. doi:10.1016/j.jsames.2019.04.005. S2CID 146746134.
  457. ^ Thomas Wotte; Christian B. Skovsted; Martin J. Whitehouse; Artem Kouchinsky (2019). "Isotopic evidence for temperate oceans during the Cambrian Explosion". Scientific Reports. 9 (1): Article number 6330. Bibcode:2019NatSR...9.6330W. doi:10.1038/s41598-019-42719-4. PMC 6474879. PMID 31004083.
  458. ^ Tais W. Dahl; Marie-Louise Siggaard-Andersen; Niels H. Schovsbo; Daniel O. Persson; Søren Husted; Iben W. Hougård; Alexander J. Dickson; Kurt Kjær; Arne T. Nielsen (2019). "Brief oxygenation events in locally anoxic oceans during the Cambrian solves the animal breathing paradox". Scientific Reports. 9 (1): Article number 11669. Bibcode:2019NatSR...911669D. doi:10.1038/s41598-019-48123-2. PMC 6690889. PMID 31406148.
  459. ^ Francis A. Macdonald; Nicholas L. Swanson-Hysell; Yuem Park; Lorraine Lisiecki; Oliver Jagoutz (2019). "Arc-continent collisions in the tropics set Earth's climate state". Science. 364 (6436): 181–184. Bibcode:2019Sci...364..181M. doi:10.1126/science.aav5300. PMID 30872536. S2CID 78094267.
  460. ^ Birger Schmitz; Kenneth A. Farley; Steven Goderis; Philipp R. Heck; Stig M. Bergström; Samuele Boschi; Philippe Claeys; Vinciane Debaille; Andrei Dronov; Matthias van Ginneken; David A.T. Harper; Faisal Iqbal; Johan Friberg; Shiyong Liao; Ellinor Martin; Matthias M. M. Meier; Bernhard Peucker-Ehrenbrink; Bastien Soens; Rainer Wieler; Fredrik Terfelt (2019). "An extraterrestrial trigger for the mid-Ordovician ice age: Dust from the breakup of the L-chondrite parent body". Science Advances. 5 (9): eaax4184. Bibcode:2019SciA....5.4184S. doi:10.1126/sciadv.aax4184. PMC 6750910. PMID 31555741.
  461. ^ Alycia L. Stigall; Cole T. Edwards; Rebecca L. Freeman; Christian M.Ø. Rasmussen (2019). "Coordinated biotic and abiotic change during the Great Ordovician Biodiversification Event: Darriwilian assembly of early Paleozoic building blocks". Palaeogeography, Palaeoclimatology, Palaeoecology. 530: 249–270. Bibcode:2019PPP...530..249S. doi:10.1016/j.palaeo.2019.05.034. S2CID 189971369.
  462. ^ Guillermo L. Albanesi; Christopher R. Barnes; Julie A. Trotter; Ian S. Williams; Stig M. Bergström (2019). "Comparative Lower-Middle Ordovician conodont oxygen isotope palaeothermometry of the Argentine Precordillera and Laurentian margins". Palaeogeography, Palaeoclimatology, Palaeoecology. 549: Article 109115. doi:10.1016/j.palaeo.2019.03.016. hdl:1885/217374. S2CID 207311242.
  463. ^ Y. Datu Adiatma; Matthew R. Saltzman; Seth A. Young; Elizabeth M. Griffith; Nevin P. Kozik; Cole T. Edwards; Stephen A. Leslie; Alyssa M. Bancroft (2019). "Did early land plants produce a stepwise change in atmospheric oxygen during the Late Ordovician (Sandbian ~458 Ma)?". Palaeogeography, Palaeoclimatology, Palaeoecology. 534: Article 109341. Bibcode:2019PPP...53409341A. doi:10.1016/j.palaeo.2019.109341. S2CID 201309297.
  464. ^ Man Lu; YueHan Lu; Takehito Ikejiri; Nicholas Hogancamp; Yongge Sun; Qihang Wu; Richard Carroll; Ibrahim Çemen; Jack Pashin (2019). "Geochemical evidence of first forestation in the southernmost Euramerica from Upper Devonian (Famennian) black shales". Scientific Reports. 9 (1): Article number 7581. Bibcode:2019NatSR...9.7581L. doi:10.1038/s41598-019-43993-y. PMC 6527553. PMID 31110279.
  465. ^ Gerilyn S. Soreghan; Michael J. Soreghan; Nicholas G. Heavens (2019). "Explosive volcanism as a key driver of the late Paleozoic ice age". Geology. 47 (7): 600–604. Bibcode:2019Geo....47..600S. doi:10.1130/G46349.1. S2CID 155998115.
  466. ^ José Rafael W. Benicio; André Jasper; Rafael Spiekermann; Luciane Garavaglia; Etiene Fabbrin Pires-Oliveira; Neli Teresinha Galarce Machado; Dieter Uhl (2019). "Recurrent palaeo-wildfires in a Cisuralian coal seam: A palaeobotanical view on high-inertinite coals from the Lower Permian of the Paraná Basin, Brazil". PLOS ONE. 14 (3): e0213854. Bibcode:2019PLoSO..1413854B. doi:10.1371/journal.pone.0213854. PMC 6417680. PMID 30870527.
  467. ^ David P.G. Bond; Paul B. Wignall; Stephen E. Grasby (2019). "The Capitanian (Guadalupian, Middle Permian) mass extinction in NW Pangea (Borup Fiord, Arctic Canada): A global crisis driven by volcanism and anoxia". GSA Bulletin. 132 (5–6): 931–942. doi:10.1130/B35281.1. S2CID 199104686.
  468. ^ Benjamin J. Burger; Margarita Vargas Estrada; Mae Sexauer Gustin (2019). "What caused Earth's largest mass extinction event? New evidence from the Permian-Triassic boundary in northeastern Utah". Global and Planetary Change. 177: 81–100. Bibcode:2019GPC...177...81B. doi:10.1016/j.gloplacha.2019.03.013. S2CID 134324242.
  469. ^ Christopher R. Fielding; Tracy D. Frank; Stephen McLoughlin; Vivi Vajda; Chris Mays; Allen P. Tevyaw; Arne Winguth; Cornelia Winguth; Robert S. Nicoll; Malcolm Bocking; James L. Crowley (2019). "Age and pattern of the southern high-latitude continental end-Permian extinction constrained by multiproxy analysis". Nature Communications. 10 (1): Article number 385. Bibcode:2019NatCo..10..385F. doi:10.1038/s41467-018-07934-z. PMC 6344581. PMID 30674880.
  470. ^ Jun Shen; Jiubin Chen; Thomas J. Algeo; Shengliu Yuan; Qinglai Feng; Jianxin Yu; Lian Zhou; Brennan O'Connell; Noah J. Planavsky (2019). "Evidence for a prolonged Permian–Triassic extinction interval from global marine mercury records". Nature Communications. 10 (1): Article number 1563. Bibcode:2019NatCo..10.1563S. doi:10.1038/s41467-019-09620-0. PMC 6450928. PMID 30952859.
  471. ^ Jun Shen; Jianxin Yu; Jiubin Chen; Thomas J. Algeo; Guozhen Xu; Qinglai Feng; Xiao Shi; Noah J. Planavsky; Wenchao Shu; Shucheng Xie (2019). "Mercury evidence of intense volcanic effects on land during the Permian-Triassic transition". Geology. 47 (12): 1117–1121. Bibcode:2019Geo....47.1117S. doi:10.1130/G46679.1. S2CID 204262451.
  472. ^ Zhicai Zhu; Yongqing Liu; Hongwei Kuang; Michael J. Benton; Andrew J. Newell; Huan Xu; Wei An; Shu'an Ji; Shichao Xu; Nan Peng; Qingguo Zhai (2019). "Altered fluvial patterns in North China indicate rapid climate change linked to the Permian-Triassic mass extinction". Scientific Reports. 9 (1): Article number 16818. Bibcode:2019NatSR...916818Z. doi:10.1038/s41598-019-53321-z. PMC 6856103. PMID 31727990.
  473. ^ Y.D. Sun; M.J. Zulla; M.M. Joachimski; D.P.G. Bond; P.B. Wignall; Z.T. Zhang; M.H. Zhang (2019). "Ammonium ocean following the end-Permian mass extinction" (PDF). Earth and Planetary Science Letters. 518: 211–222. Bibcode:2019E&PSL.518..211S. doi:10.1016/j.epsl.2019.04.036. S2CID 182059065.
  474. ^ Paul B. Wignall; David P.G. Bond; Stephen E. Grasby; Sara B. Pruss; Jeffrey Peakall (2019). "Controls on the formation of microbially induced sedimentary structures and biotic recovery in the Lower Triassic of Arctic Canada". GSA Bulletin. 132 (5–6): 918–930. doi:10.1130/B35229.1. S2CID 202194000.
  475. ^ Nicolas Goudemand; Carlo Romano; Marc Leu; Hugo Bucher; Julie A. Trotter; Ian S. Williams (2019). "Dynamic interplay between climate and marine biodiversity upheavals during the early Triassic Smithian -Spathian biotic crisis". Earth-Science Reviews. 195: 169–178. Bibcode:2019ESRv..195..169G. doi:10.1016/j.earscirev.2019.01.013. S2CID 135340068.
  476. ^ Grasby, Stephen E.; Knies, Jochen; Beauchamp, Benoit; Bond, David P. G.; Wignall, Paul; Sun, Yadong (2019). "Global warming leads to Early Triassic nutrient stress across northern Pangea". Bulletin of the Geological Society of America. 132 (5–6): 943–954. doi:10.1130/B32036.1. hdl:10037/16198. S2CID 199097068.
  477. ^ Tore Grane Klausen; Björn Nyberg; William Helland-Hansen (2019). "The largest delta plain in Earth's history". Geology. 47 (5): 470–474. Bibcode:2019Geo....47..470K. doi:10.1130/G45507.1. hdl:1956/22168. S2CID 149746881.
  478. ^ Sofie Lindström; Hamed Sanei; Bas van de Schootbrugge; Gunver K. Pedersen; Charles E. Lesher; Christian Tegner; Carmen Heunisch; Karen Dybkjær; Peter M. Outridge (2019). "Volcanic mercury and mutagenesis in land plants during the end-Triassic mass extinction". Science Advances. 5 (10): eaaw4018. Bibcode:2019SciA....5.4018L. doi:10.1126/sciadv.aaw4018. PMC 6810405. PMID 31681836.
  479. ^ Luis F. De Lena; David Taylor; Jean Guex; Annachiara Bartolini; Thierry Adatte; David van Acken; Jorge E. Spangenberg; Elias Samankassou; Torsten Vennemann; Urs Schaltegger (2019). "The driving mechanisms of the carbon cycle perturbations in the late Pliensbachian (Early Jurassic)". Scientific Reports. 9 (1): Article number 18430. Bibcode:2019NatSR...918430D. doi:10.1038/s41598-019-54593-1. PMC 6895128. PMID 31804521.
  480. ^ François-Nicolas Krencker; Sofie Lindström; Stéphane Bodin (2019). "A major sea-level drop briefly precedes the Toarcian oceanic anoxic event: implication for Early Jurassic climate and carbon cycle". Scientific Reports. 9 (1): Article number 12518. Bibcode:2019NatSR...912518K. doi:10.1038/s41598-019-48956-x. PMC 6715628. PMID 31467345.
  481. ^ Slah Boulila; Bruno Galbrun; Driss Sadki; Silvia Gardin; Annachiara Bartolini (2019). "Constraints on the duration of the early Toarcian T-OAE and evidence for carbon-reservoir change from the High Atlas (Morocco)" (PDF). Global and Planetary Change. 175: 113–128. Bibcode:2019GPC...175..113B. doi:10.1016/j.gloplacha.2019.02.005. S2CID 134411583.
  482. ^ Denis Audo; Ninon Robin; Javier Luque; Michal Krobicki; Joachim T. Haug; Carolin Haug; Clément Jauvion; Sylvain Charbonnier (2019). "Palaeoecology of Voulteryon parvulus (Eucrustacea, Polychelida) from the Middle Jurassic of La Voulte-sur-Rhône Fossil-Lagerstätte (France)". Scientific Reports. 9 (1): Article number 5332. Bibcode:2019NatSR...9.5332A. doi:10.1038/s41598-019-41834-6. PMC 6441058. PMID 30926859.
  483. ^ Maria Patricia Velasco-de León; Erika L. Ortiz-Martínez; Diego E. Lozano-Carmona; Miguel A. Flores-Barragan (2019). "Paleofloristic comparison of the Ayuquila and Otlaltepec basins, Middle Jurassic, Oaxaca, Mexico". Journal of South American Earth Sciences. 93: 1–13. Bibcode:2019JSAES..93....1V. doi:10.1016/j.jsames.2019.04.008. S2CID 149686009.
  484. ^ G. Muttoni; D.V. Kent (2019). "Jurassic monster polar shift confirmed by sequential paleopoles from Adria, promontory of Africa". Journal of Geophysical Research: Solid Earth. 124 (4): 3288–3306. Bibcode:2019JGRB..124.3288M. doi:10.1029/2018JB017199. hdl:2434/633611. S2CID 133906623.
  485. ^ Susannah C.R. Maidment; Adrian Muxworthy (2019). "A chronostratigraphic framework for the Upper Jurassic Morrison Formation, western U.S.A.". Journal of Sedimentary Research. 89 (10): 1017–1038. Bibcode:2019JSedR..89.1017M. doi:10.2110/jsr.2019.54. hdl:10141/622707. S2CID 210343715.
  486. ^ Patrick Zell; Wolfgang Stinnesbeck; Dominik Hennhoefer; Aisha Al Suwaidi; Sven Brysch; Gabriele Gruber; Nils Schorndorf (2019). "Repeated turnovers in Late Jurassic faunal assemblages of the Gulf of Mexico: Correlation with cold ocean water". Journal of South American Earth Sciences. 91: 1–7. Bibcode:2019JSAES..91....1Z. doi:10.1016/j.jsames.2019.01.008. S2CID 135123611.
  487. ^ Sonia Campos-Soto; M. Isabel Benito; Alberto Cobos; Esmeralda Caus; I. Emma Quijada; Pablo Suarez-Gonzalez; Ramón Mas; Rafael Royo-Torres; Luis Alcalá (2019). "Revisiting the age and palaeoenvironments of the Upper Jurassic–Lower Cretaceous? dinosaur-bearing sedimentary record of eastern Spain: implications for Iberian palaeogeography". Journal of Iberian Geology. 45 (3): 471–510. Bibcode:2019JIbG...45..471C. doi:10.1007/s41513-019-00106-y. hdl:10651/52154. S2CID 155353782.
  488. ^ M. A. Rogov; N. G. Zverkov; V. A. Zakharov; M. S. Arkhangelsky (2019). "Marine reptiles and climates of the Jurassic and Cretaceous of Siberia". Stratigraphy and Geological Correlation. 27 (4): 398–423. Bibcode:2019SGC....27..398R. doi:10.1134/S0869593819040051. S2CID 201058264.
  489. ^ Madeleine L. Vickers; Gregory D. Price; Rhodri M. Jerrett; Paul Sutton; Matthew P. Watkinson; Meriel FitzPatrick (2019). "The duration and magnitude of Cretaceous cool events: Evidence from the northern high latitudes" (PDF). GSA Bulletin. 131 (11–12): 1979–1994. Bibcode:2019GSAB..131.1979V. doi:10.1130/B35074.1. hdl:10026.1/13669. S2CID 150315891.
  490. ^ N. F. Alley; S. B. Hore; L. A. Frakes (2019). "Glaciations at high-latitude Southern Australia during the Early Cretaceous". Australian Journal of Earth Sciences. 67 (8): 1045–1095. doi:10.1080/08120099.2019.1590457. S2CID 155844277.
  491. ^ Zikun Jiang; Benpei Liu; Yongdong Wang; Min Huang; Tom Kapitany; Ning Tian; Yong Cao; Yuanzheng Lu; Shenghui Deng (2019). "Tree ring phototropism and implications for the rotation of the North China Block". Scientific Reports. 9 (1): Article number 4856. Bibcode:2019NatSR...9.4856J. doi:10.1038/s41598-019-41339-2. PMC 6425038. PMID 30890749.
  492. ^ Michael D. D'Emic; Brady Z. Foreman; Nathan A. Jud; Brooks B. Britt; Mark Schmitz; James L. Crowley (2019). "Chronostratigraphic revision of the Cloverly Formation (Lower Cretaceous, Western Interior, USA)". Bulletin of the Peabody Museum of Natural History. 60 (1): 3–40. doi:10.3374/014.060.0101. S2CID 132032611.
  493. ^ L. J. Krumenacker (2019). "Paleontological and chronostratigraphic correlations of the mid-Cretaceous Wayan-Vaughn depositional system of southwestern Montana and southeastern Idaho". Historical Biology: An International Journal of Paleobiology. 32 (10): 1301–1311. doi:10.1080/08912963.2019.1582035. S2CID 92145214.
  494. ^ Alexandre V. Demers-Potvin; Hans C. E. Larsson (2019). "Palaeoclimatic reconstruction for a Cenomanian-aged angiosperm flora near Schefferville, Labrador". Palaeontology. 62 (6): 1027–1048. Bibcode:2019Palgy..62.1027D. doi:10.1111/pala.12444. S2CID 240760598.
  495. ^ Stuart A. Robinson; Alexander J. Dickson; Alana Pain; Hugh C. Jenkyns; Charlotte L. O'Brien; Alexander Farnsworth; Daniel J. Lunt (2019). "Southern Hemisphere sea-surface temperatures during the Cenomanian–Turonian: Implications for the termination of Oceanic Anoxic Event 2". Geology. 47 (2): 131–134. Bibcode:2019Geo....47..131R. doi:10.1130/G45842.1. hdl:1983/ca684dc8-5aa3-4072-b8e4-7f619ec193cb. S2CID 135086715.
  496. ^ Klaus Wallmann; Sascha Flögel; Florian Scholz; Andrew W. Dale; Tronje P. Kemena; Sebastian Steinig; Wolfgang Kuhnt (2019). "Periodic changes in the Cretaceous ocean and climate caused by marine redox see-saw". Nature Geoscience. 12 (6): 456–461. Bibcode:2019NatGe..12..456W. doi:10.1038/s41561-019-0359-x. S2CID 164921754.
  497. ^ Prince C. Owusu Agyemang; Eric M. Roberts; Robert Bussert; David Evans; Johannes Müller (2019). "U-Pb detrital zircon constraints on the depositional age and provenance of the dinosaur-bearing Upper Cretaceous Wadi Milk Formation of Sudan". Cretaceous Research. 97: 52–72. Bibcode:2019CrRes..97...52O. doi:10.1016/j.cretres.2019.01.005. S2CID 134676587.
  498. ^ Robert Spicer; Paul Valdes; Alice Hughes; Jian Yang; Teresa Spicer; Alexei Herman; Alexander Farnsworth (2019). "New insights into the thermal regime and hydrodynamics of the early Late Cretaceous Arctic". Geological Magazine. 157 (10): 1729–1746. doi:10.1017/S0016756819000463. hdl:1983/dad97ea1-b7f0-458f-8df7-94591f78fb72. S2CID 189973052.
  499. ^ T. M. Cullen; F. J. Longstaffe; U. G. Wortmann; M. B. Goodwin; L. Huang; D. C. Evans (2019). "Stable isotopic characterization of a coastal floodplain forest community: a case study for isotopic reconstruction of Mesozoic vertebrate assemblages". Royal Society Open Science. 6 (2): Article ID 181210. Bibcode:2019RSOS....681210C. doi:10.1098/rsos.181210. PMC 6408390. PMID 30891263.
  500. ^ Thomas M. Lehman; Steven L. Wick; Alyson A. Brink; Thomas A.Shiller II (2019). "Stratigraphy and vertebrate fauna of the lower shale member of the Aguja Formation (lower Campanian) in West Texas". Cretaceous Research. 99: 291–314. Bibcode:2019CrRes..99..291L. doi:10.1016/j.cretres.2019.02.028. S2CID 135044927.
  501. ^ David A. Eberth; Sandra L. Kamo (2019). "First high-precision U–Pb CA–ID–TIMS age for the Battle Formation (Upper Cretaceous), Red Deer River valley, Alberta, Canada: implications for ages, correlations, and dinosaur biostratigraphy of the Scollard, Frenchman, and Hell Creek formations". Canadian Journal of Earth Sciences. 56 (10): 1041–1051. Bibcode:2019CaJES..56.1041E. doi:10.1139/cjes-2018-0098. S2CID 135346069.
  502. ^ David A. Eberth; Sandra L. Kamo (2019). "High-precision U-Pb CA-ID-TIMS dating and chronostratigraphy of the dinosaur-rich Horseshoe Canyon Formation (Upper Cretaceous, Campanian–Maastrichtian), Red Deer River valley, Alberta, Canada". Canadian Journal of Earth Sciences. 57 (10): 1220–1237. doi:10.1139/cjes-2019-0019. S2CID 210299227.
  503. ^ Susana Salazar-Jaramillo; Paul J. McCarthy; Andres Ochoa; Sarah J. Fowell; Fred J. Longstaffe (2019). "Paleoclimate reconstruction of the Prince Creek Formation, Arctic Alaska, during Maastrichtian global warming". Palaeogeography, Palaeoclimatology, Palaeoecology. 532: Article 109265. Bibcode:2019PPP...53209265S. doi:10.1016/j.palaeo.2019.109265. S2CID 198404660.
  504. ^ Blair Schoene; Michael P. Eddy; Kyle M. Samperton; C. Brenhin Keller; Gerta Keller; Thierry Adatte; Syed F. R. Khadri (2019). "U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction". Science. 363 (6429): 862–866. Bibcode:2019Sci...363..862S. doi:10.1126/science.aau2422. OSTI 1497969. PMID 30792300. S2CID 67876950.
  505. ^ Courtney J. Sprain; Paul R. Renne; Loÿc Vanderkluysen; Kanchan Pande; Stephen Self; Tushar Mittal (2019). "The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary". Science. 363 (6429): 866–870. Bibcode:2019Sci...363..866S. doi:10.1126/science.aav1446. PMID 30792301. S2CID 67876911.
  506. ^ Benjamin J. Linzmeier; Andrew D. Jacobson; Bradley B. Sageman; Matthew T. Hurtgen; Meagan E. Ankney; Sierra V. Petersen; Thomas S. Tobin; Gabriella D. Kitch; Jiuyuan Wang (2019). "Calcium isotope evidence for environmental variability before and across the Cretaceous-Paleogene mass extinction". Geology. 48 (1): 34–38. doi:10.1130/G46431.1. S2CID 204941164.
  507. ^ Robert A. DePalma; Jan Smit; David A. Burnham; Klaudia Kuiper; Phillip L. Manning; Anton Oleinik; Peter Larson; Florentin J. Maurrasse; Johan Vellekoop; Mark A. Richards; Loren Gurche; Walter Alvarez (2019). "A seismically induced onshore surge deposit at the KPg boundary, North Dakota". Proceedings of the National Academy of Sciences of the United States of America. 116 (17): 8190–8199. Bibcode:2019PNAS..116.8190D. doi:10.1073/pnas.1817407116. PMC 6486721. PMID 30936306.
  508. ^ Sean P. S. Gulick; Timothy J. Bralower; Jens Ormö; Brendon Hall; Kliti Grice; Bettina Schaefer; Shelby Lyons; Katherine H. Freeman; Joanna V. Morgan; Natalia Artemieva; Pim Kaskes; Sietze J. de Graaff; Michael T. Whalen; Gareth S. Collins; Sonia M. Tikoo; Christina Verhagen; Gail L. Christeson; Philippe Claeys; Marco J. L. Coolen; Steven Goderis; Kazuhisa Goto; Richard A. F. Grieve; Naoma McCall; Gordon R. Osinski; Auriol S. P. Rae; Ulrich Riller; Jan Smit; Vivi Vajda; Axel Wittmann; the Expedition 364 Scientists (2019). "The first day of the Cenozoic". Proceedings of the National Academy of Sciences of the United States of America. 116 (39): 19342–19351. Bibcode:2019PNAS..11619342G. doi:10.1073/pnas.1909479116. PMC 6765282. PMID 31501350.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  509. ^ Michael J. Henehan; Andy Ridgwell; Ellen Thomas; Shuang Zhang; Laia Alegret; Daniela N. Schmidt; James W. B. Rae; James D. Witts; Neil H. Landman; Sarah E. Greene; Brian T. Huber; James R. Super; Noah J. Planavsky; Pincelli M. Hull (2019). "Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact". Proceedings of the National Academy of Sciences of the United States of America. 116 (45): 22500–22504. Bibcode:2019PNAS..11622500H. doi:10.1073/pnas.1905989116. PMC 6842625. PMID 31636204.
  510. ^ J. S. K. Barnet; K. Littler; T. Westerhold; D. Kroon; M. J. Leng; I. Bailey; U. Röhl; J. C. Zachos (2019). "A high-fidelity benthic stable isotope record of Late Cretaceous–Early Eocene climate change and carbon-cycling". Paleoceanography and Paleoclimatology. 34 (4): 672–691. Bibcode:2019PaPa...34..672B. doi:10.1029/2019PA003556. hdl:20.500.11820/71e8a0b8-eec2-46bd-8559-bfc98ee3d21c. S2CID 134124572.
  511. ^ Maureen A. O'Leary; Mamadou L. Bouaré; Kerin M. Claeson; Kelly Heilbronn; Robert V. Hill; Jacob A. McCartney; Jocelyn A. Sessa; Famory Sissoko; Leif Tapanila; Elisabeth Wheeler; Eric M. Roberts (2019). "Stratigraphy and paleobiology of the Upper Cretaceous-Lower Paleogene sediments from the Trans-Saharan Seaway in Mali". Bulletin of the American Museum of Natural History. 436: 1–177. hdl:2246/6950.
  512. ^ Richard E. Zeebe; Lucas J. Lourens (2019). "Solar System chaos and the Paleocene–Eocene boundary age constrained by geology and astronomy". Science. 365 (6456): 926–929. arXiv:1909.00283. Bibcode:2019Sci...365..926Z. doi:10.1126/science.aax0612. PMID 31467222. S2CID 201672305.
  513. ^ Margret Steinthorsdottir; Vivi Vajda; Mike Pole; Guy Holdgate (2019). "Moderate levels of Eocene pCO2 indicated by Southern Hemisphere fossil plant stomata". Geology. 47 (10): 914–918. Bibcode:2019Geo....47..914S. doi:10.1130/G46274.1. S2CID 201612631.
  514. ^ Jiang Zhu; Christopher J. Poulsen; Jessica E. Tierney (2019). "Simulation of Eocene extreme warmth and high climate sensitivity through cloud feedbacks". Science Advances. 5 (9): eaax1874. Bibcode:2019SciA....5.1874Z. doi:10.1126/sciadv.aax1874. PMC 6750925. PMID 31555736.
  515. ^ Felix J. Elling; Julia Gottschalk; Katiana D. Doeana; Stephanie Kusch; Sarah J. Hurley; Ann Pearson (2019). "Archaeal lipid biomarker constraints on the Paleocene-Eocene carbon isotope excursion". Nature Communications. 10 (1): Article number 4519. Bibcode:2019NatCo..10.4519E. doi:10.1038/s41467-019-12553-3. PMC 6778145. PMID 31586063.
  516. ^ M.K. Fung; M.F. Schaller; C.M. Hoff; M.E. Katz; J.D. Wright (2019). "Widespread and intense wildfires at the Paleocene-Eocene boundary". Geochemical Perspectives Letters. 10: 1–6. doi:10.7185/geochemlet.1906. S2CID 174793793.
  517. ^ Stephen M. Jones; Murray Hoggett; Sarah E. Greene; Tom Dunkley Jones (2019). "Large Igneous Province thermogenic greenhouse gas flux could have initiated Paleocene-Eocene Thermal Maximum climate change". Nature Communications. 10 (1): Article number 5547. Bibcode:2019NatCo..10.5547J. doi:10.1038/s41467-019-12957-1. PMC 6895149. PMID 31804460.
  518. ^ Margot J. Cramwinckel; Robin van der Ploeg; Peter K. Bijl; Francien Peterse; Steven M. Bohaty; Ursula Röhl; Stefan Schouten; Jack J. Middelburg; Appy Sluijs (2019). "Harmful algae and export production collapse in the equatorial Atlantic during the zenith of Middle Eocene Climatic Optimum warmth" (PDF). Geology. 47 (3): 247–250. Bibcode:2019Geo....47..247C. doi:10.1130/G45614.1. hdl:1874/380358. S2CID 76650803.
  519. ^ Martino Giorgioni; Luigi Jovane; Eric S. Rego; Daniel Rodelli; Fabrizio Frontalini; Rodolfo Coccioni; Rita Catanzariti; Ercan Özcan (2019). "Carbon cycle instability and orbital forcing during the Middle Eocene Climatic Optimum". Scientific Reports. 9 (1): Article number 9357. Bibcode:2019NatSR...9.9357G. doi:10.1038/s41598-019-45763-2. PMC 6597698. PMID 31249387.
  520. ^ Sudipta Sarkar; Chandranath Basak; Martin Frank; Christian Berndt; Mads Huuse; Shray Badhani; Joerg Bialas (2019). "Late Eocene onset of the Proto-Antarctic Circumpolar Current". Scientific Reports. 9 (1): Article number 10125. Bibcode:2019NatSR...910125S. doi:10.1038/s41598-019-46253-1. PMC 6626031. PMID 31300669.
  521. ^ Kasia K. Śliwińska; Erik Thomsen; Stefan Schouten; Petra L. Schoon; Claus Heilmann-Clausen (2019). "Climate- and gateway-driven cooling of Late Eocene to earliest Oligocene sea surface temperatures in the North Sea Basin". Scientific Reports. 9 (1): Article number 4458. Bibcode:2019NatSR...9.4458S. doi:10.1038/s41598-019-41013-7. PMC 6418185. PMID 30872690.
  522. ^ David K. Hutchinson; Helen K. Coxall; Matt OʹRegan; Johan Nilsson; Rodrigo Caballero; Agatha M. de Boer (2019). "Arctic closure as a trigger for Atlantic overturning at the Eocene-Oligocene Transition". Nature Communications. 10 (1): Article number 3797. Bibcode:2019NatCo..10.3797H. doi:10.1038/s41467-019-11828-z. PMC 6706372. PMID 31439843.
  523. ^ T. Su; A. Farnsworth; R. A. Spicer; J. Huang; F.-X. Wu; J. Liu; S.-F. Li; Y.-W. Xing; Y.-J. Huang; W.-Y.-D. Deng; H. Tang; C.-L. Xu; F. Zhao; G. Srivastava; P. J. Valdes; T. Deng; Z.-K. Zhou (2019). "No high Tibetan Plateau until the Neogene". Science Advances. 5 (3): eaav2189. Bibcode:2019SciA....5.2189S. doi:10.1126/sciadv.aav2189. PMC 6402856. PMID 30854430.
  524. ^ Tao Deng; Xiaoming Wang; Feixiang Wu; Yang Wang; Qiang Li; Shiqi Wang; Sukuan Hou (2019). "Review: Implications of vertebrate fossils for paleo-elevations of the Tibetan Plateau". Global and Planetary Change. 174: 58–69. Bibcode:2019GPC...174...58D. doi:10.1016/j.gloplacha.2019.01.005. S2CID 134086182.
  525. ^ Svetlana Botsyun; Pierre Sepulchre; Yannick Donnadieu; Camille Risi; Alexis Licht; Jeremy K. Caves Rugenstein (2019). "Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene" (PDF). Science. 363 (6430): eaaq1436. doi:10.1126/science.aaq1436. PMID 30819936. S2CID 67876956.
  526. ^ Paul J. Valdes; Ding Lin; Alex Farnsworth; Robert A. Spicer; Shi-Hu Li; Su Tao (2019). "Comment on "Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene"" (PDF). Science. 365 (6459): eaax8474. doi:10.1126/science.aax8474. hdl:1983/3054fc84-fa32-41ad-9ca7-a938f5903beb. PMID 31604210. S2CID 202699060.
  527. ^ Svetlana Botsyun; Pierre Sepulchre; Yannick Donnadieu; Camille Risi; Alexis Licht; Jeremy K. Caves Rugenstein (2019). "Response to Comment on "Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene"" (PDF). Science. 365 (6459): eaax8990. doi:10.1126/science.aax8990. PMID 31604211. S2CID 202699145.
  528. ^ Jeremy K. Caves Rugenstein; Daniel E. Ibarra; Friedhelm von Blanckenburg (2019). "Neogene cooling driven by land surface reactivity rather than increased weathering fluxes". Nature. 571 (7763): 99–102. Bibcode:2019Natur.571...99C. doi:10.1038/s41586-019-1332-y. PMID 31270485. S2CID 195791097.
  529. ^ Cynthia M. Liutkus-Pierce; Kevin K. Takashita-Bynum; Luke A. Beane; Cole T. Edwards; Oliver E. Burns; Sara Mana; Sidney Hemming; Aryeh Grossman; James D. Wright; Francis M. Kirera (2019). "Reconstruction of the early Miocene Critical Zone at Loperot, southwestern Turkana, Kenya". Frontiers in Ecology and Evolution. 7: Article 44. doi:10.3389/fevo.2019.00044. S2CID 67871617.
  530. ^ Or M. Bialik; Martin Frank; Christian Betzler; Ray Zammit; Nicolas D. Waldmann (2019). "Two-step closure of the Miocene Indian Ocean Gateway to the Mediterranean". Scientific Reports. 9 (1): Article number 8842. Bibcode:2019NatSR...9.8842B. doi:10.1038/s41598-019-45308-7. PMC 6586870. PMID 31222018.
  531. ^ Valeriia Kirillova; Anne H. Osborne; Tjördis Störling; Martin Frank (2019). "Miocene restriction of the Pacific-North Atlantic throughflow strengthened Atlantic overturning circulation". Nature Communications. 10 (1): Article number 4025. Bibcode:2019NatCo..10.4025K. doi:10.1038/s41467-019-12034-7. PMC 6731301. PMID 31492857.
  532. ^ Barbara Carrapa; Mark Clementz; Ran Feng (2019). "Ecological and hydroclimate responses to strengthening of the Hadley circulation in South America during the Late Miocene cooling". Proceedings of the National Academy of Sciences of the United States of America. 116 (20): 9747–9752. Bibcode:2019PNAS..116.9747C. doi:10.1073/pnas.1810721116. PMC 6525538. PMID 31036635.
  533. ^ Giulia Bosio; Elisa Malinverno; Alberto Collareta; Claudio Di Celma; Anna Gioncada; Mariano Parente; Fabrizio Berra; Felix G. Marx; Agostina Vertino; Mario Urbina; Giovanni Bianucci (2020). "Strontium Isotope Stratigraphy and the thermophilic fossil fauna from the middle Miocene of the East Pisco Basin (Peru)". Journal of South American Earth Sciences. 97: Article 102399. Bibcode:2020JSAES..9702399B. doi:10.1016/j.jsames.2019.102399. hdl:2434/701078. S2CID 210613759.
  534. ^ Pratigya J. Polissar; Cassaundra Rose; Kevin T. Uno; Samuel R. Phelps; Peter deMenocal (2019). "Synchronous rise of African C4 ecosystems 10 million years ago in the absence of aridification". Nature Geoscience. 12 (8): 657–660. Bibcode:2019NatGe..12..657P. doi:10.1038/s41561-019-0399-2. S2CID 199473686.
  535. ^ Laurence Dumouchel; René Bobe (2019). "Paleoecological implications of dental mesowear and hypsodonty in fossil ungulates from Kanapoi". Journal of Human Evolution. 140: Article 102548. doi:10.1016/j.jhevol.2018.11.004. PMID 30638945. S2CID 58605235.
  536. ^ Tara R. Edwards; Brian J. Armstrong; Jessie Birkett-Rees; Alexander F. Blackwood; Andy I.R. Herries; Paul Penzo-Kajewski; Robyn Pickering; Justin W. Adams (2019). "Combining legacy data with new drone and DGPS mapping to identify the provenance of Plio-Pleistocene fossils from Bolt's Farm, Cradle of Humankind (South Africa)". PeerJ. 7: e6202. doi:10.7717/peerj.6202. PMC 6336010. PMID 30656072.
  537. ^ Oana A. Dumitru; Jacqueline Austermann; Victor J. Polyak; Joan J. Fornós; Yemane Asmerom; Joaquín Ginés; Angel Ginés; Bogdan P. Onac (2019). "Constraints on global mean sea level during Pliocene warmth". Nature. 574 (7777): 233–236. Bibcode:2019Natur.574..233D. doi:10.1038/s41586-019-1543-2. PMID 31471591. S2CID 201786472.
  538. ^ G. R. Grant; T. R. Naish; G. B. Dunbar; P. Stocchi; M. A. Kominz; P. J. J. Kamp; C. A. Tapia; R. M. McKay; R. H. Levy; M. O. Patterson (2019). "The amplitude and origin of sea-level variability during the Pliocene epoch". Nature. 574 (7777): 237–241. Bibcode:2019Natur.574..237G. doi:10.1038/s41586-019-1619-z. PMID 31578526. S2CID 203638257.
  539. ^ M. Willeit; A. Ganopolski; R. Calov; V. Brovkin (2019). "Mid-Pleistocene transition in glacial cycles explained by declining CO2 and regolith removal". Science Advances. 5 (4): eaav7337. Bibcode:2019SciA....5.7337W. doi:10.1126/sciadv.aav7337. PMC 6447376. PMID 30949580.
  540. ^ Daniel R. Muhs; Joaquín Meco; James R. Budahn; Gary L. Skipp; Juan F. Betancort; Alejandro Lomoschitz (2019). "The antiquity of the Sahara Desert: New evidence from the mineralogy and geochemistry of Pliocene paleosols on the Canary Islands, Spain". Palaeogeography, Palaeoclimatology, Palaeoecology. 533: Article 109245. Bibcode:2019PPP...53309245M. doi:10.1016/j.palaeo.2019.109245. S2CID 198399468.
  541. ^ Hugues-Alexandre Blain; Ana Fagoaga; Francisco Javier Ruiz-Sánchez; Josep Francesc Bisbal-Chinesta; Massimo Delfino (2019). "Latest Villafranchian climate and landscape reconstructions at Pirro Nord (southern Italy)". Geology. 47 (9): 829–832. Bibcode:2019Geo....47..829B. doi:10.1130/G46392.1. S2CID 197557996.
  542. ^ Yuzhen Yan; Michael L. Bender; Edward J. Brook; Heather M. Clifford; Preston C. Kemeny; Andrei V. Kurbatov; Sean Mackay; Paul A. Mayewski; Jessica Ng; Jeffrey P. Severinghaus; John A. Higgins (2019). "Two-million-year-old snapshots of atmospheric gases from Antarctic ice". Nature. 574 (7780): 663–666. Bibcode:2019Natur.574..663Y. doi:10.1038/s41586-019-1692-3. PMID 31666720. S2CID 204942679.
  543. ^ Jiawei Da; Yi Ge Zhang; Gen Li; Xianqiang Meng; Junfeng Ji (2019). "Low CO2 levels of the entire Pleistocene epoch". Nature Communications. 10 (1): Article number 4342. Bibcode:2019NatCo..10.4342D. doi:10.1038/s41467-019-12357-5. PMC 6761161. PMID 31554805.
  544. ^ Bernd Wagner; Hendrik Vogel; Alexander Francke; Tobias Friedrich; Timme Donders; Jack H. Lacey; Melanie J. Leng; Eleonora Regattieri; Laura Sadori; Thomas Wilke; Giovanni Zanchetta; Christian Albrecht; Adele Bertini; Nathalie Combourieu-Nebout; Aleksandra Cvetkoska; Biagio Giaccio; Andon Grazhdani; Torsten Hauffe; Jens Holtvoeth; Sebastien Joannin; Elena Jovanovska; Janna Just; Katerina Kouli; Ilias Kousis; Andreas Koutsodendris; Sebastian Krastel; Markus Lagos; Niklas Leicher; Zlatko Levkov; Katja Lindhorst; Alessia Masi; Martin Melles; Anna M. Mercuri; Sebastien Nomade; Norbert Nowaczyk; Konstantinos Panagiotopoulos; Odile Peyron; Jane M. Reed; Leonardo Sagnotti; Gaia Sinopoli; Björn Stelbrink; Roberto Sulpizio; Axel Timmermann; Slavica Tofilovska; Paola Torri; Friederike Wagner-Cremer; Thomas Wonik; Xiaosen Zhang (2019). "Mediterranean winter rainfall in phase with African monsoons during the past 1.36 million years" (PDF). Nature. 573 (7773): 256–260. Bibcode:2019Natur.573..256W. doi:10.1038/s41586-019-1529-0. PMID 31477908. S2CID 201713405.
  545. ^ Fajun Sun; Yang Wang; Yuan Wang; Chang-zhu Jin; Tao Deng; Burt Wolff (2019). "Paleoecology of Pleistocene mammals and paleoclimatic change in South China: Evidence from stable carbon and oxygen isotopes". Palaeogeography, Palaeoclimatology, Palaeoecology. 524: 1–12. Bibcode:2019PPP...524....1S. doi:10.1016/j.palaeo.2019.03.021. S2CID 134558136.
  546. ^ Kantapon Suraprasit; Sutee Jongautchariyakul; Chotima Yamee; Cherdchan Pothichaiya; Hervé Bocherens (2019). "New fossil and isotope evidence for the Pleistocene zoogeographic transition and hypothesized savanna corridor in peninsular Thailand". Quaternary Science Reviews. 221: Article 105861. Bibcode:2019QSRv..22105861S. doi:10.1016/j.quascirev.2019.105861. S2CID 202196643.
  547. ^ Mirosław Masojć; Ahmed Nassr; Ju Yong Kim; Joanna Krupa-Kurzynowska; Young Kwan Sohn; Marcin Szmit; Jin Cheul Kim; Ji Sung Kim; Han Woo Choi; Małgorzata Wieczorek; Axel Timmermann (2019). "Saharan green corridors and Middle Pleistocene hominin dispersals across the Eastern Desert, Sudan". Journal of Human Evolution. 130: 141–150. Bibcode:2019JHumE.130..141M. doi:10.1016/j.jhevol.2019.01.004. PMID 31010540. S2CID 128361376.
  548. ^ Ian J. Orland; Feng He; Miryam Bar-Matthews; Guangshan Chen; Avner Ayalon; John E. Kutzbach (2019). "Resolving seasonal rainfall changes in the Middle East during the last interglacial period". Proceedings of the National Academy of Sciences of the United States of America. 116 (50): 24985–24990. Bibcode:2019PNAS..11624985O. doi:10.1073/pnas.1903139116. PMC 6911216. PMID 31767759.
  549. ^ Claire C. Treat; Thomas Kleinen; Nils Broothaerts; April S. Dalton; René Dommain; Thomas A. Douglas; Judith Z. Drexler; Sarah A. Finkelstein; Guido Grosse; Geoffrey Hope; Jack Hutchings; Miriam C. Jones; Peter Kuhry; Terri Lacourse; Outi Lähteenoja; Julie Loisel; Bastiaan Notebaert; Richard J. Payne; Dorothy M. Peteet; A. Britta K. Sannel; Jonathan M. Stelling; Jens Strauss; Graeme T. Swindles; Julie Talbot; Charles Tarnocai; Gert Verstraeten; Christopher J. Williams; Zhengyu Xia; Zicheng Yu; Minna Väliranta; Martina Hättestrand; Helena Alexanderson; Victor Brovkin (2019). "Widespread global peatland establishment and persistence over the last 130,000 y". Proceedings of the National Academy of Sciences of the United States of America. 116 (11): 4822–4827. Bibcode:2019PNAS..116.4822T. doi:10.1073/pnas.1813305116. PMC 6421451. PMID 30804186.
  550. ^ Simon J. M. Davis (2019). "Rabbits and Bergmann's rule: how cold was Portugal during the last glaciation?". Biological Journal of the Linnean Society. 128 (3): 526–549. doi:10.1093/biolinnean/blz098.
  551. ^ Ana Fagoaga; César Laplana; Rafael Marquina-Blasco; Jorge Machado; M. Dolores Marin-Monfort; Vicente D. Crespo; Cristo M. Hernández; Carolina Mallol; Bertila Galván; Francisco J. Ruiz-Sánchez (2019). "Palaeoecological context for the extinction of the Neanderthals: A small mammal study of Stratigraphic Unit V of the El Salt site, Alcoi, eastern Spain". Palaeogeography, Palaeoclimatology, Palaeoecology. 530: 163–175. Bibcode:2019PPP...530..163F. doi:10.1016/j.palaeo.2019.05.007. S2CID 200019385.
  552. ^ Mario Pino; Ana M. Abarzúa; Giselle Astorga; Alejandra Martel-Cea; Nathalie Cossio-Montecinos; R. Ximena Navarro; Maria Paz Lira; Rafael Labarca; Malcolm A. LeCompte; Victor Adedeji; Christopher R. Moore; Ted E. Bunch; Charles Mooney; Wendy S. Wolbach; Allen West; James P. Kennett (2019). "Sedimentary record from Patagonia, southern Chile supports cosmic-impact triggering of biomass burning, climate change, and megafaunal extinctions at 12.8 ka". Scientific Reports. 9 (1): Article number 4413. Bibcode:2019NatSR...9.4413P. doi:10.1038/s41598-018-38089-y. PMC 6416299. PMID 30867437.
  553. ^ E. Grace Veatch; Matthew W. Tocheri; Thomas Sutikna; Kate McGrath; E. Wahyu Saptomo; Jatmiko; Kristofer M. Helgen (2019). "Temporal shifts in the distribution of murine rodent body size classes at Liang Bua (Flores, Indonesia) reveal new insights into the paleoecology of Homo floresiensis and associated fauna". Journal of Human Evolution. 130: 45–60. Bibcode:2019JHumE.130...45V. doi:10.1016/j.jhevol.2019.02.002. hdl:2440/121139. PMID 31010543. S2CID 91562355.
  554. ^ Lucas Stephens; Dorian Fuller; Nicole Boivin; Torben Rick; Nicolas Gauthier; Andrea Kay; Ben Marwick; Chelsey Geralda; Denise Armstrong; C. Michael Barton; Tim Denham; Kristina Douglass; Jonathan Driver; Lisa Janz; Patrick Roberts; J. Daniel Rogers; Heather Thakar; Mark Altaweel; Amber L. Johnson; Maria Marta Sampietro Vattuone; Mark Aldenderfer; Sonia Archila; Gilberto Artioli; Martin T. Bale; Timothy Beach; Ferran Borrell; Todd Braje; Philip I. Buckland; Nayeli Guadalupe Jiménez Cano; et al. (2019). "Archaeological assessment reveals Earth's early transformation through land use". Science. 365 (6456): 897–902. Bibcode:2019Sci...365..897S. doi:10.1126/science.aax1192. hdl:10026.1/14903. PMID 31467217. S2CID 201674203.
  555. ^ Deke Xu; Houyuan Lu; Guoqiang Chu; Li Liu; Caiming Shen; Fengjiang Li; Can Wang; Naiqin Wu (2019). "Synchronous 500-year oscillations of monsoon climate and human activity in Northeast Asia". Nature Communications. 10 (1): Article number 4105. Bibcode:2019NatCo..10.4105X. doi:10.1038/s41467-019-12138-0. PMC 6739325. PMID 31511523.
  556. ^ Yi-Wei Chen; Jonny Wu; John Suppe (2019). "Southward propagation of Nazca subduction along the Andes". Nature. 565 (7740): 441–447. Bibcode:2019Natur.565..441C. doi:10.1038/s41586-018-0860-1. PMID 30675041. S2CID 59159777.
  557. ^ Jan Westerweel; Pierrick Roperch; Alexis Licht; Guillaume Dupont-Nivet; Zaw Win; Fernando Poblete; Gilles Ruffet; Hnin Hnin Swe; Myat Kai Thi; Day Wa Aung (2019). "Burma Terrane part of the Trans-Tethyan arc during collision with India according to palaeomagnetic data". Nature Geoscience. 12 (10): 863–868. Bibcode:2019NatGe..12..863W. doi:10.1038/s41561-019-0443-2. PMC 6774779. PMID 31579400.
  558. ^ Qing Yan; Robert Korty; Zhongshi Zhang; Huijun Wang (2019). "Evolution of tropical cyclone genesis regions during the Cenozoic era". Nature Communications. 10 (1): Article number 3076. Bibcode:2019NatCo..10.3076Y. doi:10.1038/s41467-019-11110-2. PMC 6625981. PMID 31300651.
  559. ^ Christine L. Batchelor; Martin Margold; Mario Krapp; Della K. Murton; April S. Dalton; Philip L. Gibbard; Chris R. Stokes; Julian B. Murton; Andrea Manica (2019). "The configuration of Northern Hemisphere ice sheets through the Quaternary". Nature Communications. 10 (1): Article number 3713. Bibcode:2019NatCo..10.3713B. doi:10.1038/s41467-019-11601-2. PMC 6697730. PMID 31420542.
  560. ^ Elena R. Schroeter; Kevin Blackburn; Michael B. Goshe; Mary H. Schweitzer (2019). "Proteomic method to extract, concentrate, digest and enrich peptides from fossils with coloured (humic) substances for mass spectrometry analyses". Royal Society Open Science. 6 (8): Article ID 181433. Bibcode:2019RSOS....681433S. doi:10.1098/rsos.181433. PMC 6731700. PMID 31598217.