Sera gazları, Dünya'nın yüzeyi, atmosferi ve bulutları tarafından yayılan kızılötesi radyasyon spektrumu dahilinde belirli dalga boylarındaki radyasyonu emen ve yayan, atmosferin hem doğal hem de antropojenik gaz hâlindeki bileşenleridir. Bu özellikleri nedeniyle, sera etkisine neden olurlar. Su buharı (H2O), karbondioksit (CO2), nitröz oksit (N2O), metan (CH4) ve ozon (O3) başlıca sera gazlarıdır.[1] Sera gazları olmadan, Dünya yüzeyinin ortalama sıcaklığı mevcut ortalama olan 15 °C yerine yaklaşık -18 °C olurdu.[2][3][4]
Sanayi Devrimi'nin başlangıcından bu yana (yaklaşık 1750) insan faaliyetleri sebebiyle, atmosferik karbondioksit konsantrasyonunda 1750'de %47'lik bir artış görülmüştür. Atmosferik karbondioksit konsantrasyonunun bu kadar yüksek olduğu en yakın zamanın 3 milyon yıldan fazla bir zaman öncesi olduğu gözlemlenmiştir.[5] Bu artış, doğal karbon döngüsünde yer alan çeşitli "karbon yutakları" tarafından emisyonların yarısından fazlasının emilmesine rağmen meydana gelmiştir.[6]
Mevcut sera gazı emisyon oranları devam ederse, Dünya yüzeyinin ortalama sıcaklığı 2036 yılına kadar 2 °C (3,6 °F) kadar artabilir. Bu artış miktarı Birleşmiş Milletler Hükümetlerarası İklim Değişikliği Paneli (IPCC) tarafından "tehlikeli" seviyelerden kaçınabilmek için üst sınır olarak belirlendi.[7] Antropojenik karbondioksit emisyonlarının büyük çoğunluğu fosil yakıtların, özellikle kömür, petrol ve doğal gazın yakılmasından kaynaklanır ve ormansızlaşma ve arazi kullanımındaki diğer değişiklikler de buna katkıda bulunur.[8][9]
Dünya Atmosferindeki Gazlar
Sera dışı gazlar
Dünya atmosferinin ana bileşenleri olan nitrojen (N2) (%78), oksijen (O2) (%21) ve argon (Ar) (%0,9), sera gazı değildir çünkü aynı elementten iki atom içeren moleküller N2 ve O2, titreştiklerinde elektrik yüklerinin dağılımında net bir değişime sahip değildir ve Ar gibi tek atomlu gazların titreşim modları yoktur. Dolayısıyla kızılötesi radyasyondan neredeyse hiç etkilenmezler. Karbon monoksit (CO) ve hidrojen klorür (HCl) gibi farklı elementlerden sadece iki atom içeren bazı moleküller, kızılötesi radyasyonu emer, ancak bu moleküller, reaktiviteleri veya çözünürlükleri nedeniyle atmosferde kısa ömürlüdür. Bu nedenle, sera gazı etkisine önemli ölçüde bir katkıda bulunmazlar ve sera gazları tartışılırken çoğu zaman ihmal edilirler.
Sera gazları
Sera gazları, Dünya tarafından yayılan dalga boyu aralığında kızılötesi radyasyonu emen ve yayan gazlardır.[1] Karbondioksit (%0,04), azot oksit, metan ve ozon Dünya atmosferinin neredeyse %0,1'ini oluşturan ve kayda değer bir sera etkisine sahip olan eser gazlardır.
Sırasıyla, Dünya atmosferinde en bol bulunan sera gazları şunlardır:
Su buharı (H2O)
Karbondioksit (CO2)
Metan (CH4)
Nitröz Oksit (N2O)
Ozon (O3)
Kloroflorokarbonlar (CFC'ler)
Hidroflorokarbonlar (HCFC'leri ve HFC'leri içerir)
Atmosferik konsantrasyonlar, kaynaklar (insan faaliyetlerinden ve doğal sistemlerden kaynaklanan gaz emisyonları) ve yutaklar (gazın atmosferden farklı bir kimyasal bileşiğe dönüştürülerek veya su kütleleri tarafından absorbe edilerek uzaklaştırılması) arasındaki denge ile belirlenir.
Belirli bir süre sonra atmosferde kalan emisyon oranı, "havadan taşınan kısımdır" (İngilizce: Airborne fraction). Yıllık havada taşınan kısım, belirli bir yıldaki atmosferik artışın o yılki toplam emisyonlara oranıdır. 2006 yılı itibarıyla CO2'nin yıllık hava kaynaklı oranı yaklaşık 0,45 idi. Yıllık havada taşınan kısım 1959-2006 döneminde yılda %0.25 ± 0.21 oranında artmıştır.[10]
Dolaylı radyatif etkiler
Bazı gazların dolaylı ışınım etkileri vardır (sera gazları olsun ya da olmasın). Bu iki şekilde olur. Bir yolu, atmosferde parçalandıklarında başka bir sera gazı üretmeleridir. Örneğin, metan ve karbon monoksit (CO), karbon dioksit vermek için oksitlenir (ve metan oksidasyonu ayrıca su buharı üretir). CO'nun CO2'ye oksidasyonu, nedeni belirsiz olmasına rağmen, ışınım zorlamasında doğrudan net bir artışa neden olur.
Dünya yüzeyinden termal IR emisyonunun zirvesi, CO2'nin güçlü titreşim absorpsiyon bandına çok yakındır (dalga boyu 15 mikron veya dalga sayısı 667 cm − 1). Öte yandan, tek CO2 titreşim bandı IR'yi yalnızca çok daha kısa dalga boylarında (4,7 mikron veya 2145 cm-1) emer; burada, Dünya yüzeyinden yayılan enerji emisyonu en az on kat daha düşüktür.
Metanın CO2'ye oksidasyonu, OH radikaliyle reaksiyona girmeyi gerektirir, CO2 metandan daha zayıf bir sera gazı olduğundan, radyatif emilim ve emisyonda anlık bir azalma sağlar. Bununla birlikte, her ikisi de OH radikallerini tükettiği için CO ve CH4 oksidasyonları birbirine bağlıdır. Her durumda, toplam ışıma etkisinin hesaplanması hem doğrudan hem de dolaylı zorlamayı içerir.
İkinci bir tür dolaylı etki, atmosferdeki bu gazları içeren kimyasal reaksiyonlar sera gazlarının konsantrasyonlarını değiştirdiğinde meydana gelir. Örneğin, atmosferdeki metan olmayan uçucu organik bileşiklerin (NMVOC'ler) yok edilmesi ozon üretebilir. Dolaylı etkinin boyutu, büyük ölçüde gazın nereye ve ne zaman yayıldığına bağlı olabilir.[11]
Metanın CO2 oluşturmanın yanı sıra dolaylı etkileri de vardır. Atmosferde metanla tepkimeye giren ana kimyasal hidroksil radikalidir (OH), bu nedenle daha fazla metan, OH konsantrasyonunun azalması anlamına gelir. Etkili bir şekilde, metan kendi atmosferik ömrünü ve dolayısıyla genel ışıma etkisini arttırır. Metanın oksidasyonu hem ozon hem de su üretebilir; ve normalde kuru stratosferde önemli bir su buharı kaynağıdır. CO ve NMVOC'ler okside olduklarında CO2 üretirler. OH'yi atmosferden uzaklaştırırlar ve bu da daha yüksek metan konsantrasyonlarına yol açar. Bunun şaşırtıcı etkisi, CO2'nin küresel ısınma potansiyelinin CO2'ninkinin üç katı olmasıdır.[12] NMVOC'leri karbondioksite dönüştüren süreç aynı zamanda troposferik ozon oluşumuna da yol açabilir. Halokarbonlar, stratosferik ozonu tahrip ettikleri için dolaylı bir etkiye sahiptir. Son olarak, hidrojen stratosferik su buharı üretmesinin yanı sıra ozon üretimine ve CH4 artışına yol açabilir.[11]
Bulutların Dünya'nın sera etkisine katkısı
Dünyanın sera etkisine en büyük gaz olmayan katkı maddesi olan bulutlar da kızılötesi radyasyonu emer ve yayar ve dolayısıyla sera gazı ışınım özellikleri üzerinde bir etkiye sahiptir. Bulutlar, atmosferde asılı kalan su damlacıkları veya buz kristalleridir.[13][14]
Genel sera etkisi üzerindeki etkiler
Her bir gazın sera etkisine katkısı, o gazın özelliklerine, bolluğuna ve neden olabileceği dolaylı etkilere göre belirlenir. Örneğin, bir metan kütlesinin doğrudan ışınım etkisi, 20 yıllık bir zaman çerçevesinde aynı karbondioksit kütlesinden yaklaşık 84 kat daha güçlüdür,[15] ancak çok daha küçük konsantrasyonlarda mevcuttur, böylece toplam doğrudan ışıma etkisi şimdiye kadar daha küçük olmuştur. Bu durum kısmen de, ek karbon sekestrasyonunun yokluğunda daha kısa atmosferik ömrü olması nedeniyledir.
Öte yandan metan, doğrudan ışınım etkisine ek olarak, ozon oluşumuna katkıda bulunduğu için büyük, dolaylı bir ışıma etkisine sahiptir. Shindell vd. (2005),[16] metanın iklim değişikliğine katkısının, bu etkinin bir sonucu olarak önceki tahminlerin en az iki katı olduğunu savunmaktadır.[17]
Sera etkisine doğrudan katkılarına göre sıralandıklarında en önemlileri şunlardır:[13]
(A) Su buharı büyük ölçüde yerel olarak değişir[19]
(B) Stratosferdeki konsantrasyon. Dünya atmosferindeki ozonun yaklaşık %90'ı stratosferde bulunur.
Yukarıda listelenen ana sera gazlarına ek olarak, diğer sera gazları arasında sülfür hekzaflorür, hidroflorokarbonlar ve perflorokarbonlar bulunur (bkz. IPCC sera gazları listesi). Bazı sera gazları genellikle listelenmez. Örneğin, nitrojen triflorür yüksek bir küresel ısınma potansiyeline (GWP) sahiptir ancak yalnızca çok küçük miktarlarda mevcuttur.[20]
Belirli bir andaki doğrudan etkilerin oranı
Belirli bir gazın sera etkisinin belirli bir yüzdesine neden olduğunu söylemek mümkün değildir. Bunun nedeni, bazı gazların diğerleriyle aynı frekanslarda radyasyonu emmesi ve yaymasıdır, bu sebeple toplam sera etkisi basitçe her bir gazın etkisinin toplamına eşit değildir. Ek olarak, metan gibi bazı gazların, halen ölçülmeye çalışılan önemli dolaylı etkilerinin olduğu bilinmektedir.[21]
Atmosferik ömür
Yaklaşık dokuz günlük bir atmosferde kalma süresine sahip olan su buharının yanı sıra,[22] ana sera gazlarının atmosferi terk etmesi uzun yıllar alır.[23] Sera gazlarının atmosferi terk etmesinin ne kadar sürdüğünü kesin olarak bilmek kolay olmasa da, başlıca sera gazları için tahminler vardır.
Bir türün atmosferik ömrü, atmosferdeki konsantrasyonundaki ani bir artış veya düşüşün ardından dengeyi yeniden sağlamak için gereken süreyi ölçer. Tek tek atomlar veya moleküller kaybolabilir veya toprak, okyanuslar ve diğer sular veya bitki örtüsü ve diğer biyolojik sistemler gibi bataklıklarda birikerek fazlalıkları arka plan konsantrasyonlarına indirgeyebilir. Bunu başarmak için geçen ortalama süre, ortalama yaşam süresidir.
Karbondioksitin değişken bir atmosferik ömrü vardır ve kesin olarak belirtilemez.[15][24] Yayılan CO2'nin yarısından fazlası bir yüzyıl içinde atmosferden uzaklaştırılsa da, salınan CO2'nin bir kısmı (yaklaşık %20) binlerce yıl boyunca atmosferde kalır.[25][26][27] Benzer sorunlar, çoğu CO2'den daha uzun ortalama ömre sahip diğer sera gazları için de geçerlidir, örn. N2O'nun ortalama atmosferik ömrü 121 yıldır.[15]
Radyatif zorlama ve yıllık sera gazı endeksi
Dünya, güneşten aldığı ışıyan enerjinin bir kısmını emer, bir kısmını ışık olarak yansıtır ve geri kalanını ısı olarak uzaya geri yansıtır veya yayar. Dünyanın yüzey sıcaklığı, gelen ve giden enerji arasındaki bu dengeye bağlıdır. Bu enerji dengesi değişirse, Dünya'nın yüzeyi ısınır veya soğur ve küresel iklimde çeşitli değişikliklere yol açar.[28]
Bir dizi doğal ve insan yapımı mekanizma, küresel enerji dengesini etkileyebilir ve Dünya'nın iklimindeki değişiklikleri zorlayabilir. Sera gazları böyle bir mekanizma. Sera gazları, Dünya yüzeyinden yayılan enerjinin bir kısmını emer ve yayarak bu ısının atmosferin alt kısmında tutulmasına neden olur.[28] Yukarıda açıklandığı gibi, bazı sera gazları atmosferde onlarca yıl hatta yüzyıllarca kalır ve bu nedenle Dünya'nın enerji dengesini uzun bir süre etkileyebilir. Işınım zorlaması, Dünya'nın enerji dengesini etkileyen faktörlerin etkisini (metre kare başına Watt cinsinden) ölçer; sera gazı konsantrasyonlarındaki değişiklikler dahil. Pozitif ışıma zorlaması net gelen enerjiyi artırarak ısınmaya yol açarken, negatif ışıma zorlaması soğumaya yol açar.[29]
Yıllık Sera Gazı Endeksi (AGGI), NOAA'daki atmosferik bilim adamları tarafından, yeterli küresel ölçümlerin mevcut olduğu herhangi bir yıl için uzun ömürlü ve iyi karışmış sera gazlarından kaynaklanan toplam doğrudan ışınım zorlamasının 1990 yılında mevcut olana oranı olarak tanımlanmaktadır.[30][31] Bu ışınımsal zorlama seviyeleri, 1750 yılında mevcut olanlarla (yani endüstriyel çağın başlamasından öncekilere) görelidir. 1990’ın seçilme sebebi, Kyoto Protokolü’nün temel alındığı yıl ve IPCC İklim Değişikliği Bilimsel Değerlendirmesinin ilk yayın yılı olmasıdır.
Küresel ısınma potansiyeli
Küresel ısınma potansiyeli (İngilizce: Global warming potential (GWP)) hem molekülün bir sera gazı olarak etkinliğine hem de atmosferik ömrüne bağlıdır. GWP, aynı CO2 kütlesine göre ölçülür ve belirli bir zaman ölçeği için değerlendirilir. Bu nedenle, bir gazın yüksek (pozitif) bir ışınım zorlaması var ama aynı zamanda kısa bir ömrü varsa, 20 yıllık bir ölçekte büyük bir GWP'ye, ancak 100 yıllık bir ölçekte küçük bir GWP'ye sahip olacaktır. Tersine, bir molekülün atmosferik ömrü CO2'den daha uzunsa, zaman ölçeği düşünüldüğünde GWP'si artacaktır. Karbondioksit, tüm zaman dilimlerinde 1 GWP'ye sahip olacak şekilde tanımlanır.
Metanın atmosferik ömrü 12 ± 3 yıldır. 2007 IPCC raporu, GWP'sini 20 yıllık bir zaman ölçeğinde 72, 100 yılda 25 ve 500 yılda 7.6 olarak listeliyor.[32] Bununla birlikte, 2014'te yapılan bir analiz, metanın ilk etkisinin CO2'ninkinden yaklaşık 100 kat daha fazla olmasına rağmen, daha kısa atmosferik ömür nedeniyle, altmış ya da yetmiş yıl sonra, iki gazın etkisinin yaklaşık olarak eşit olacağını ve bu noktadan sonra metanın göreceli etkisinin düşmeye devam edeceğini belirtiyor.[33] Daha uzun sürelerde GWP'deki bu düşüşün sebebi, metanın atmosferdeki kimyasal reaksiyonlar yoluyla suya ve CO2'ye indirgenmesidir.
Çeşitli sera gazları için atmosferik ömür ve GWP'nin CO2'ye göre örnekleri aşağıdaki tabloda verilmiştir:
Çeşitli sera gazları için farklı zaman ölçütlerindeki CO2'ye göre atmosferik ömür ve GWP
Gaz adı
Kimyasal formül
Ömrü (yıl)
Belirli bir zaman ufku için küresel ısınma potansiyeli (GWP)
CFC-12'nin kullanımı (bazı temel kullanımlar hariç), ozon tabakasını incelten özelliklerinden dolayı aşamalı olarak kaldırılmıştır.[34] Daha az aktif HCFC bileşiklerinin aşamalı olarak kaldırılması 2030'da tamamlanacaktır.[35]
Doğal ve antropojenik kaynaklar
Tamamen insan tarafından üretilen sentetik halokarbonların yanı sıra, çoğu sera gazının hem doğal hem de insan kaynaklı kaynakları vardır. Sanayi öncesi Holosen döneminde, büyük doğal kaynaklar ve yutaklar kabaca dengelendiği için mevcut gazların konsantrasyonları yaklaşık olarak sabitti. Endüstriyel çağda, temel olarak fosil yakıtların yakılması ve ormanların kesilmesi gibi insan faaliyetleri sebebiyle atmosfere fazladan sera gazları eklemiştir.[36]
IPCC (AR4) tarafından derlenen 2007 Dördüncü Değerlendirme Raporu, "atmosferik sera gazları ve aerosol konsantrasyonlarındaki değişiklikler, arazi örtüsü ve güneş radyasyonu iklim sisteminin enerji dengesini değiştirir" ve "antropojenik sera gazı konsantrasyonlarındaki artışların, 20. yüzyılın ortalarından bu yana küresel ortalama sıcaklıklardaki artışların çoğuna neden olması çok muhtemeldir" sonuçlarını yayınladı.
Buz çekirdekleri, son 800.000 yıldaki sera gazı konsantrasyon değişimlerine dair kanıt sağlar. Hem CO2 hem de CH4 buzul ve buzullararası fazlar arasında farklılık gösterir ve bu gazların konsantrasyonları sıcaklıkla güçlü bir şekilde ilişkilidir. Buz çekirdeği kaydında gösterilenlerden daha önceki dönemler için doğrudan veriler mevcut değildir. Bu kayıtlar, CO2 mol fraksiyonlarının son 800.000 yıl boyunca 180 ppm ila 280 ppm aralığında kaldığını ve sadece son 250 yılda artış gösterdiğini söylemektedir. Bununla birlikte, çeşitli modellemeler, geçmiş çağlarda daha büyük varyasyonlar önermektedir; 500 milyon yıl önce CO2 seviyeleri muhtemelen şimdi olduğundan 10 kat daha yüksekti.[37] Aslında, daha yüksek CO2 konsantrasyonlarının Phanerozoyik çağın çoğunda hüküm sürdüğü düşünülmektedir; Mesozoyik çağda konsantrasyonların şu ankinin dört ila altı katı ve erken Paleozoik çağda Devoniyen döneminin ortasına kadar on ila on beş katı olduğu düşünülmektedir.[38][39][40] Kara bitkilerinin yayılmasının Devoniyenin sonlarında CO2 konsantrasyonlarını azalttığı düşünülmektedir ve bitki aktiviteleri hem CO2 kaynakları hem de yutakları olarak stabilize edici geri bildirimler sağlamada o zamandan beri önemli olmuştur.[41] Daha önce, ekvatora yakın uzanan 200 milyon yıllık aralıklı, yaygın buzullaşma dönemi (Kartopu Dünyası), devasa bir volkanik patlama sonucu atmosferdeki CO2 konsantrasyonunu aniden 12'ye yükselten gaz çıkışı ile yaklaşık 550 milyon yıl önce, aniden sona erdi. Bu konsantrasyon modern seviyelerin yaklaşık 350 katıdır. Bu dönem Prekambriyen çağının kapanışını işaret etti ve çok hücreli hayvan ve bitki yaşamının evrimleştiği Phanerozoik çağın genel olarak daha sıcak koşulları tarafından takip edildi. O zamandan beri benzer ölçekte volkanik karbondioksit emisyonu meydana gelmemiştir. Modern çağda, yanardağlardan atmosfere salınan emisyonlar yılda yaklaşık 0,645 milyar ton CO2 iken, insanlar her yıl 29 milyar tonluk CO2 emisyonu oluşturmaktadır.[42][43][44]
Buz çekirdekleri
Antarktika buz çekirdeklerinden yapılan ölçümler, endüstriyel emisyonlar başlamadan önce atmosferik CO2 mol fraksiyonlarının milyonda yaklaşık 280 parça (ppm) olduğunu ve önceki on bin yıl boyunca 260 ile 280 arasında kaldığını göstermektedir.[45] Atmosferdeki karbondioksit mol fraksiyonları, 1900'lerden bu yana yaklaşık yüzde 35 artarak, hacimce milyonda 280 parçadan 2009'da milyonda 387 parçaya yükseldi. Fosilleşmiş yaprakların stomalarından elde edilen kanıtları kullanan bir çalışma, yedi ila on bin yıl önceki dönemde 300 ppm'nin üzerindeki karbondioksit mol fraksiyonları ile daha fazla değişkenlik olduğunu öne sürse de,[46] diğerleri bu bulguların gerçek CO2 değişkenliği yerine büyük olasılıkla kalibrasyon veya kontaminasyon sorunlarını yansıttığını iddia etti.[47][48] Havanın buza hapsolma şekli (buzdaki gözenekler, fırının derinliklerinde kabarcıklar oluşturmak için yavaşça kapanır) ve analiz edilen her buz örneğinde temsil edilen zaman periyodu nedeniyle, bu rakamlar, yıllık veya on yıllık seviyeler yerine birkaç yüzyıllık ortalamaları almaktadır.
Sanayi Devrimi'nden bu yana değişiklikler
Sanayi Devrimi'nin başlangıcından bu yana, birçok sera gazının konsantrasyonları artmıştır. Örneğin, karbondioksitin mol fraksiyonu, modern sanayi öncesi seviyelere göre 280 ppm'den 415 ppm'ye yani 120 ppm kadar yükselmiştir. İlk 30 ppm’lik artış, Sanayi Devrimi'nin başlangıcından 1958'e kadar yaklaşık 200 yılda gerçekleşti; ancak sonraki 90 ppm’lik artış, 1958'den 2014'e 56 yıl içinde gerçekleşti.[49][50]
Son veriler ayrıca konsantrasyonun daha yüksek bir oranda arttığını göstermektedir. 1960'larda, ortalama yıllık artış, 2000'den 2007'ye kadar olanın yalnızca %37'siydi.[51]
1870'ten 2017'ye kadar toplam kümülatif emisyonlar, fosil yakıtlar ve endüstriden 425 ± 20 GtC (1539 GtCO2) ve arazi kullanım değişikliğinden kaynaklanan 180 ± 60 GtC (660 GtCO2) idi.1870-2017 döneminde kümülatif emisyonların yaklaşık %31'ine ormansızlaşma gibi arazi kullanımı değişikliği, %32'sine kömür, %25'ine petrol ve %10'una gaz neden oldu.[52]
İnsan aktivitesinden üretilen diğer sera gazları hem miktar hem de artış oranında benzer artışlar göstermektedir. Birçok gözlem, çeşitli şekillerde Atmosferik Kimya Gözlem Veritabanlarında çevrimiçi olarak mevcuttur.
Kyoto Protokolü
Kyoto Protokolü EK-A bölümünde altı seragazı ve salınım kaynaklarını listelemiştir.[53]
Bu gazlar şunlardır:
Atmosferdeki yoğunluğu ve iklim değişikliğine etkisi
İklim değişikliği açısından atmosferdeki sera gazı miktarı hesaplanırken karbon dioksit eşdeğeri olarak ppm (milyonda bir parçacık birimi) esas alınır. 2015 itibarıyla güncel sera gazı yoğunluğu yaklaşık 400 CO2 eşdeğeri ppm düzeyindedir. Bu sadece karbon dioksit gazının değil hesaplamaya giren diğerlerinin de uygun çarpanlarla denkleştirilerek bulunan bir sayıdır. Bu hesaplamada gazların Küresel Isınma Potansiyeli gözönünde bulundurulur. Örneğin yukarıdaki listede GWP değeri yukarıdan aşağı inildikçe artmaktadır.[54] GWP değeri büyük olan gazlar, aynı miktardaki karbon dioksite göre küresel ısınma'yı çok daha büyük ölçüde etkileyebilmektedirler. Ancak salınan karbon dioksit miktarı çok yüksek olduğu kürsel ısınmanın birinci derece sorumlusu olan gaz olarak gösterilmektedir.
WW2 US Army Air Forces unit 353rd Fighter GroupP-51 Mustang of the 353rd Fighter GroupActive1942–1945CountryUnited StatesBranchUnited States Army Air ForcesRoleFighterPart ofVIII Fighter CommandGarrison/HQEuropean Theatre of World War IINickname(s)Slybird GroupColorsYellow/black checkered cowlInsignia4th Fighter Group Emblem350th Fighter SquadronLH351st Fighter SquadronYJ352nd Fighter SquadronSXAircraft flownFighterP-40 Warhawk, 1942–1943P-47 Thunderbolt 1943–1944P-51 Mustang 1944...
Lemur sportif utara Lepilemur septentrionalis Status konservasiTerancam kritisIUCN11622 TaksonomiKerajaanAnimaliaFilumChordataKelasMammaliaOrdoPrimatesFamiliLepilemuridaeGenusLepilemurSpesiesLepilemur septentrionalis Tata namaSinonim takson sahafarensis Rumpler & Albignac, 1975 Distribusi EndemikMadagaskar lbs Lemur sportif utara adalah sebuah spesies lemur dalam keluarga Lepilemuridae. Hewan tersebut adalah endemik di Madagaskar. Akibat kerusakan ekologi dan gangguan manusia, lemur terse...
Hawaiian reggae rock band The GreenThe Green performing in Berkeley 2020Background informationOriginOahu, HawaiiGenresRoots, Reggae, Hawaiian, Rock, PopYears active2009 (2009)–PresentLabelsEasy Star RecordsMembers Caleb Keolanui Ikaika Antone JP Kennedy Zion Thompson Brad BW Watanabe Jordan Espinoza Past membersLeslie LudiazoWebsitethegreen808.com The Green is a reggae band formed in 2009 from Oahu, Hawaii.[1] Their sound blends dub-heavy roots reggae, smooth lovers' rock, and ...
Lihat pula: Shelter Bulak dan Terminal Kedung Cowek Terminal KenjeranTerminal Penumpang Tipe C(nonaktif)Jalur Lintasan Angkutan Kota Terminal KenjeranLokasiJalan Abdul Latif, Kelurahan Kenjeran, Kecamatan Bulak, Kota Surabaya, Provinsi Jawa Timur, Kodepos 60123Kawasan Utara Surabaya IndonesiaKoordinat7°14′25″S 112°47′41″E / 7.240345°S 112.794613°E / -7.240345; 112.794613Koordinat: 7°14′25″S 112°47′41″E / 7.240345°S 112.794613...
Tokyo, contoh pulau panas perkotaan. Suhu normal Tokyo naik dibanding wilayah sekitarnya. Pulau panas perkotaan (Inggris: urban heat island (UHI)) adalah sebuah wilayah metropolitan yang lebih hangat dibanding wilayah pedesaan sekitarnya. Fenomena ini pertama diselidiki dan dijelaskan oleh Luke Howard pada 1810-an, meski ia bukanlah satu-satunya yang menjelaskan fenomena ini.[1] Perbedaan suhu biasanya lebih besar pada malam hari daripada siang hari, dan lebih tampak ketika angin lema...
Napoleon memeriksa Garda Imperial sebelum Pertempuran Jena, 14 Oktober 1806. Garda Imperial (bahasa Prancis: Garde Impériale) adalah pasukan elit dalam Angkatan perang Prancis di bawah komando Napoleon I. Garda Imperial Prancis berawal dari kesatuan yang kecil tetapi tumbuh menajdi besar seiring waktu. Garda ini bertugas sebagai pengawal Napoleon, selain juga sebagai pasukan cadangan. Napoleon sangat berhati-hati dalam menggunakan Garda Imperial dalam suatu pertempuran. Garda ini dibagi ...
Ini adalah nama Korea; marganya adalah Lee. MinMin di Mnet 20 Choice AwardInformasi latar belakangNama lahirLee Min Young (이민영)Nama lainMinLahir21 Juni 1991 (umur 32)AsalKorea SelatanGenreK-Pop, Pop, Dance-pop, Electropop, Teen Pop, MandopopPekerjaanPenyanyi, Dancer, Artis, MC, ModelInstrumenVokalTahun aktif2010 (2010)–sekarangLabelJYP Entertainment (2003-2008) AQ Entertainment (JYP Entertainment sub-label) (2010-2017)Artis terkaitmiss A (2010-sekarang) JYP Nation (2003–se...
Roy Barnes Roy Eugene Barnes (lahir 11 Maret 1948)[1] adalah seorang jaksa dan politikus Amerika Serikat yang menjabat sebagai gubernur negara bagian Goergia ke-80 dari 1999 sampai 2003.[1] Pada 2020, ia merupakan anggota Partai Demokrat terkini yang memegang jabatan Gubernur Georgia. Referensi ^ a b Cook, James F. (2005). The Governors of Georgia, 1754-2004, 3rd Edition, Revised and Expanded. Macon, GA: Mercer University Press. Pranala luar Wikiquote memiliki koleksi kutipan ...
Anton Ferdinand Ferdinand saat di West Ham UnitedInformasi pribadiNama lengkap Anton Julian FerdinandTanggal lahir 18 Februari 1985 (umur 39)Tempat lahir Peckham, London, InggrisTinggi 1,83 m (6 ft 0 in)[1]Posisi bermain BekInformasi klubKlub saat ini ReadingNomor 4Karier junior2002–2003 West Ham UnitedKarier senior*Tahun Tim Tampil (Gol)2003–2008 West Ham United 138 (5)2008–2011 Sunderland 85 (0)2011–2013 Queens Park Rangers 44 (0)2013 → Bursaspor (pinj...
الأوضاع القانونية لزواج المثليين زواج المثليين يتم الاعتراف به وعقده هولندا1 بلجيكا إسبانبا كندا جنوب أفريقيا النرويج السويد المكسيك البرتغال آيسلندا الأرجنتين الدنمارك البرازيل فرنسا الأوروغواي نيوزيلندا3 المملكة المتحدة4 لوكسمبورغ الولايات المتحدة5 جمهورية أيرلندا ...
Zulia Estado Zulia BenderaLambangHimne daerah: Sobre Palmas Lokasi Zulia di VenezuelaKoordinat: 9°50′N 72°15′W / 9.84°N 72.25°W / 9.84; -72.25Koordinat: 9°50′N 72°15′W / 9.84°N 72.25°W / 9.84; -72.25NegaraVenezuelaDibentuk1864Ibu kotaMaracaiboLuas • Total63,100 km2 (24,400 sq mi)Populasi • Perkiraan (2016)4,957,765 jiwa Negara Bagian Zulia (bahasa Spanyol: Estado Zulia) adalah salah...
Foto kamp buruh pendidikan ulang Shayang di provinsi Hubei, dari arsip-arsip Museum Laogai Pendidikan ulang dengan menjadi buruh (Hanzi sederhana: 劳动教养; Hanzi tradisional: 勞動教養; Pinyin: láodòng jiàoyǎng), disingkat laojiao (Hanzi sederhana: 劳教; Hanzi tradisional: 勞教; Pinyin: láojiào) adalah sebuah sistem penahanan administratif di Tiongkok daratan. Aktif dari 1957 sampai 2013, sistem tersebut dipakai untuk menahan orang-orang yang dituduh ...
City in Pomeranian Voivodeship, Poland Danzig redirects here. For other uses, see Danzig (disambiguation) and Gdańsk (disambiguation). Place in Pomeranian Voivodeship, PolandGdańskMotława RiverArtus CourtSt. Mary's Church and Main Town HallMannerist Great ArmouryNeptune's FountainWorld War II MuseumWesterplatte Monument FlagCoat of armsMotto(s): Nec temere, nec timide (Neither rashly, nor timidly)GdańskShow map of PolandGdańskShow map of Pomeranian VoivodeshipGdańskShow map of Balt...
Pour les articles homonymes, voir Bibliothèque bleue (homonymie). Un des succès de la Bibliothèque bleue : Huon de Bordeaux imprimé à Troyes par la veuve Oudot (Anne Hussard) vers 1720. La Bibliothèque bleue est une forme primitive de littérature de colportage apparue en France au début du XVIIe siècle. Principes La création et la diffusion de la bibliothèque bleue fut une activité particulièrement lucrative pour les imprimeurs. Vers la fin du XIXe siècle, le nombre d...
Former French colonial mandate in West Africa (1916–60); present-day Togo This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: French Togoland – news · newspapers · books · scholar · JSTOR (November 2016) (Learn how and when to remove this message) ‹ The template Infobox country is being considered for ...
Một tờ khai hàng hóa dành cho buôn bán tiểu ngạch áp dụng tại cửa khẩu Hekou của Vân Nam, Trung Quốc. Buôn bán tiểu ngạch, còn gọi cách khác là mậu dịch tiểu ngạch hoặc thương mại tiểu ngạch, là một hình thức thương mại quốc tế hợp pháp được tiến hành giữa nhân dân hai nước sinh sống ở các địa phương hai bên biên giới mà kim ngạch của mỗi giao dịch hàng hóa hữu hình có giá tr...
Anna Akhmatova var en av akmeismens främsta företrädare. Akmeism var en modernistisk inriktning inom den ryska poesin, som var som starkast på 1910-talet. Dess främsta företrädare och grundare var Nikolaj Gumiljov.[1] Även författarna Anna Achmatova, som en tid var gift med Gumiljov, och Osip Mandelstam tillhörde akmeismen. Achmatova och Mandelstam har ansetts vara de två främsta ryska 1900-talslyrikerna.[1] Rörelsen, även om den var tämligen måttfull, var en reaktion mot symb...
Catena montuosa di KyreniaI Monti di KyreniaContinenteEuropa Stati Cipro Cima più elevataKyparissovouno (1 024 m s.l.m.) Lunghezza160 km Tipi di roccecalcare, marmo La Catena montuosa di Kyrenia o Pentadaktylos (in greco Πενταδάκτυλος?, Pentadaktylos; in turco Beşparmak. In entrambe le lingue con significato dalle cinque dita) è una catena montuosa lunga e stretta che si estende per circa 160 km lungo la costa settentrionale di Cipro, t...
Points and lines with equal incidences This article is about points and lines. For incidences of polytopes, see Configuration (polytope). Configurations (4362) (a complete quadrangle, at left) and (6243) (a complete quadrilateral, at right). In mathematics, specifically projective geometry, a configuration in the plane consists of a finite set of points, and a finite arrangement of lines, such that each point is incident to the same number of lines and each line is incident to the same number...