Razen tega obstaja še neskončna množica uniformnih zvezdnih prizem in uniformnih zvezdnih antiprizem. Tako kot neizrojeni zvezdni mnogokotniki, ki imajo mnogokotniško gostoto večjo od 1 in pripadajo krožnim mnogokotnikom s prekrivajočimi se ploščicami, zvezdni poliedri ne potekajo skozi središče in imajo politopsko gostoto večjo od 1, ter odgovarjajo sfernim poliedrom s prekrivajočimi se ploščicami. Obstaja 48 takšnih uniformnih zvezdnih poliedrov. Ostalih 9 neprizmatičnih uniformnih zvezdnih poliedrov, ki tečejo skozi središče, je polpoliedrov in ne odgovarjajo sfernim poliedrom, ker se jim ne da na enoličen način projicirati središča na sfero.
Obstojata dva Schwarzeva trikotnika, ki enolično generirata nekonveksne uniformne poliedre: eden je pravokotni trikotnik (3/2 3 2) in en splošni trikotnik (3/2 3 3).
Znani so štirje Schwarzevi trikotniki, ki nekonveksne oblike, od tega sta dva za pravokotne trikotnike (3/2 4 2) in (4/3 3 2) ter dva za splošne trikotnike: (4/3 4 3) in (3/2 4 4), ki generirajo nekonveksne oblike.
Znanih je 8 konveksnih in 46 nekonveksnih oblik z ikozaedersko simetrijo z osnovno domeno Möbiusovega trikotnika (5 3 2). Nekatere od prirezanih oblik imajo zrcalno ogliščno simetrijo.
Eden izmed ostalih nekonveksnih poliedrov je veliki dvojnoprirezani dirombidodekaeder, ki je znan kot Skillingova oblika. Je ogliščno uniformen. Pari robov sovpadajo v prostoru. Štiri stranske ploskve se tako srečajo na istem robu. Ima simetrijo Ih.
Izrojene oblike
Coxeter (1907-2003) je našel večje število izrojenih zvezdnih poliedrov s pomočjo Wythoffove konstrukcije. Ti poliedri vsebujejo prekrivajoče se robove in oglišča. Takšni izrojeni obliki sta: