Polpolieder (tudi hemipolieder) je uniformni zvezdni polieder. Njegove stranske ploskve potekajo skozi njegovo središče. Te pol (»hemi«) stranske ploskve ležijo vzporedno z nekim drugim simetričnim poliedrom. Njihovo število je samo polovica stranskih ploskev tega drugega poliedra. Iz tega izhaja tudi predpona »hemi«.[1]
Predpona »hemi« se uporablja tudi za določene projektivne poliedre kot je npr. polkocka, ki je slika preslikave 2 v 1 sfernega poliedra s centralno simetrijo.
Wythoffov simbol in slika oglišč
Wythoffovi simboli imajo obliko p/(p − q) p/q | r; njihove slike oglišč so križni štirikotnik|križni štirikotniki. Slika oglišč je enaka p/q.2r.p/(p − q).2r. 2r-kotniške stranske ploskve tečejo skozi središče modela. Notacija p/(p − q) vključuje {p/q} stranskih ploskev, ki se obračajo nazaj okoli slike oglišč.
Devet oblik skupaj s Wythoffovimi simboli je:
Orientabilnost
Samo oktahemioktaeder predstavlja orientabilno ploskev. Vsi ostali polpoliedri so neorientabilni ali ploskve s samo eno stranjo.
Dualna telesa polpoliedrov
Ker imajo polpoliedri stranske ploskve, ki potekajo skozi središče, imajo pripadajoče dualne oblike oglišča v neskončnosti ali na realni projektivni ravnini v neskončnosti [2]. V knjigi Magnus Wenninger (rojen 1919) dualni modeli so prikazani kot sekajoče se prizme, ki so podaljšane v obeh smereh za isto sliko oglišč do neskončnosti, da bi se obdržala simetrija. V resnici se modeli prizem odrežejo v določeni točki, kar je ugodno za izdelovalce. Wenninger predlaga, da so te oblike nov razred stelacije, ki jo imenujemo stelacija v neskončnosti. Predlagal je tudi, da ta vrsta konstrukcije ne potrjuje običajnih definicij.
Obstoja devet takšnih dualov:
Odnosi s kvazipravilnimi poliedri
Polpoliedri se pojavljajo v parih kot facetiranje kvazipravilnih poliedrov s štirimi stranskimi ploskvami na oglišču. Ti kvazipravilni poliedri imajo sliko oglišč m.n.m.n. Njihovi robovi tvorijo tudi n-kotne in m-kotne stranske ploskve, ki tvorijo polstranske ploskve polpoliedra. Tako se lahko polpolieder dobi iz kvazipravilnih poliedrov tako, da se zavrže m- in n-kotnike in se potem vpelje polstranske ploskve. Ker se je zavrglo m- in n-kotnike, se lahko vsakega od dveh polpoliedrov dobi iz kvazipravilnega poliedra. Tega pa se ne da narediti za oktaeder in tetraeder, kjer velja m = n = 3 in sta facetiranji skladni. Ta vrsta konstrukcije ne deluje za kvazipranevilne poliedre s šestimi stranskimi ploskvami na oglišču ker njihovi robovi ne tvorijo nobene pravilne polstranske ploskve. [1]
Ker imajo polpoliedri tako kot kvazipravilni poliedri, ki imajo dve vrsti stranskih ploskev, ki se izmenoma pojavljajo okrog vsakega oglišča, se jih obravnava tudi kot kvazipravilne.[1]
Tukaj m in n odgovarjata zgornjemu p/q in h pomeni 2r (glej zgoraj).
Sklici