Спортивная генетика

Спорти́вная гене́тика — направление генетики, изучающее геном человека в аспекте двигательной (в частности — спортивной) деятельности. Впервые термин «генетика двигательной деятельности» (Genetics of Fitness and Physical Performance) был предложен Клодом Бушаром в 1983 году. Тогда он опубликовал два обзора в одном номере журнала «Exercise and Sport Science reviews» [Bouchard, 1983a, b], где представил обобщающие факты, во-первых, об индивидуальных различиях в ответ на физические нагрузки, во-вторых, о наследуемости многих физических, физиологических и биохимических качествах, вовлеченных в процесс физической активности.

Генетика двигательной деятельности включает в себя спортивную генетику и некоторые аспекты антропогенетики и медицинской генетики. Кроме того, в арсенале генетики двигательной деятельности имеются самые различные методы: молекулярные (выявление полиморфизмов генов с помощью полимеразной цепной реакции (ПЦР), QTL-картирование, биочиповая технология), цитогенетические (изучение структуры хромосомного набора и отдельных хромосом), молекулярно-цитогенетические (метод флюоресцентной гибридизации in situ (FISH)), генеалогические, и, наконец, биохимические.

Следует отметить, что ещё в 1980 году произошло официальное становление спортивной генетики как отрасли знания в области антропогенетики и генетики развития. На олимпийском научном конгрессе «Спорт в современном обществе» в Тбилиси было провозглашено создание «Международного научного общества (и соответственно — общества в нашей стране) по спортивной генетике и соматологии». Однако эта новая научная отрасль знания ещё не оформилась как учебная дисциплина. Спортивная генетика не вошла равноправным разделом в учебные планы институтов и академий физической культуры, факультетов физвоспитания педагогических институтов. В учебниках и руководствах для спортсменов и тренеров (за небольшим исключением) все ещё отсутствуют генетические сведения.

Развитие генетики двигательной деятельности можно поделить на два главных периода: догеномный и геномный.

Генетика двигательной деятельности до расшифровки структуры генома человека

Ещё до начала осуществления международного проекта «Геном человека» было известно, что многие качества человека, такие, как телосложение, сила, быстрота, выносливость, свойства нервной системы и так далее, генетически детерминированы и передаются по наследству. В тот период, знания о наследуемости признаков получали на основе методов наблюдения и близнецовых методов. Так, например, было установлено, что в 50 % случаев дети выдающихся спортсменов имеют выраженные спортивные способности и в 70 % случаев если оба родителя являлись спортсменами. Кроме того, был обнаружен этнический характер наследования выдающихся физических способностей: в спринте все ещё нет равных американским неграм, а в беге на средние и длинные дистанции — кенийцам и эфиопам. В связи с последним фактом в Университете Глазго (Глазго, Шотландия) был создан Центр по изучению феномена кенийских и эфиопских бегунов.

Более наглядно наследуемость физических качеств была показана с помощью близнецовых методов. Для этого были использованы данные по различным признакам в больших выборках монозиготных и дизиготных близнецов. В результате были выявлены коэффициенты наследуемости для каждого из этих признаков. Следует иметь в виду, что коэффициенты наследуемости могут варьировать в различных популяциях.

Говоря о наследуемости признаков, необходимо принимать во внимание, что развитие и проявление физических качеств человека зависит в различном соотношении, как от генетических, так и средовых факторов. Чем больше генетические факторы влияют на те или иные физические качества (высокая степень наследуемости), тем менее эти качества тренируемы, и наоборот. В связи с этим на раннем этапе спортивной специализации актуальным является выявление у детей генетической предрасположенности к тем видам спорта, успех в которых будет зависеть, прежде всего, от качеств с высокой степенью наследуемости (взрывная сила, быстрота, гибкость и др.).

Генетика двигательной деятельности после расшифровки структуры генома человека

В конце 80-х годов с активным внедрением методов картирования генов, а также в рамках проекта «Геном человека» начали появляться данные о генах, ассоциированных с проявлением и развитием физических качеств человека. В 1995 году американский (до этого работавший в Канаде) учёный Клод Бушар начал грандиозный международный проект «HERITAGE» (сокращение от слов HEalth, RIsk Factors, Exercise Training And GEnetics), в котором участвовало несколько исследовательских центров, и изучалась связь между генотипическими и фенотипическими данными у свыше 800 человек после нескольких недель различных физических нагрузок.

Бушар и его коллеги вели поиск полиморфных локусов, ассоциированных с двигательной деятельностью человека в двух направлениях. Одно из них предполагало сканирование всего генома с помощью набора генетических маркеров с известной хромосомной локализацией на предмет ассоциаций определённых локусов с различными количественными признаками. В дальнейшем предполагалось прицельное секвенирование (определение нуклеотидной последовательности) участков, расположенных вокруг найденных локусов и выявление в них полиморфизмов, сцепленных с известными генетическими маркерами. Данный метод, именуемый как QTL-картирование (картирование локусов количественных признаков (Quantitative Trait Loci)), достаточно трудоемок и должен применяться в отношении близких родственников (например, монозиготных и дизиготных близнецов).

Несмотря на высокую эффективность метода QTL-картирования, все же самым распространённым методом по обнаружению информативных полиморфных локусов считается анализ ассоциаций полиморфизмов генов-кандидатов с различными физическими качествами человека. Поиск полиморфных генов-кандидатов и их использование в изучении генетической предрасположенности к выполнению различных физических нагрузок основан на знании молекулярных механизмов мышечной или любой другой деятельности и предположении, что полиморфизм данного гена может повлиять на уровень метаболических процессов в организме.

Прогресс в понимании наследуемости физических качеств человека в результате исследований HERITAGE был значительным. К. Бушар и его коллеги публиковали сотни работ в различных физиологических и генетических журналах, а резюмировали все достижения в этой области в нескольких выпусках журнала Medicine & Science in Sports and Exercise в виде генетической карты двигательной деятельности человека (2000—2009).

Все же, с точки зрения популярности, самым успешным в области генетики двигательной деятельности человека можно назвать молодого британского ученого Хью Монтгомери. В 1998 году ему удалось опубликоваться в самом престижном журнале Nature, что гарантировало пристальное внимание всей научной, и вообще, мировой общественности [Montgomery, 1998]. В заголовках мировых информационных изданий значилось открытие «гена спорта», исследовав который можно было выявить у любого желающего предрасположенность к тому или иному виду спорта. Ген, о котором идёт речь, носит название «ген ангиотензин-конвертирующего фермента» (ACE).

Ранее Х. Монтгомери и соавторы уже публиковали данные об инсерционно-делеционном полиморфизме этого гена, и его связи с ростом миокарда у армейских рекрутов при занятиях физическими упражнениями [Montgomery, 1997]. Выводы Х. Монтгомери состояли в следующем: носительство мутантного варианта гена ACE (носительство аллеля D) благоприятствует проявлению скоростно-силовых качеств и в то же время повышает риск развития чрезмерной гипертрофии миокарда; с другой стороны, нормальный аллель I даёт преимущество во время пребывания в условиях высокогорья и в видах спорта на выносливость.

Кроме гена ACE, позже были обнаружены и другие значимые гены, полиморфизмы которых ассоциируются с предрасположенностью к занятиям спортом, такие как ген альфа-актинина-3 (ACTN3), ген АМФ-дезаминазы (AMPD1), ген альфа-рецептора, активируемого пролифераторами пероксисом (PPARA), ген 1-альфа-коактиватора гамма-рецептора, активируемого пролифераторами пероксисом (PPARGC1A) и ген фактора роста эндотелия сосудов (VEGFA)[1]. К концу 2020 года обнаружено 220 генетических маркеров, ассоциированных со спортивной деятельностью и свыше 5000 генетических маркеров, имеющих отношение к физической активности / спорту (например, рост, жизненная емкость легких, гематологические показатели, мышечная масса и др.) Ahmetov et al. 2022.

Роль отечественных школ в развитии спортивной генетики

Ещё задолго до официального становления спортивной генетики, на базе ВНИИФК в 1972 году возникла Лаборатория спортивной антропологии (впоследствии названная «Лаборатория спортивной антропологии, морфологии и генетики») по инициативе Э. Г. Мартиросова, который и возглавлял её в течение последующих 20 лет. Он основал направление и создал школу спортивной антропологии. Основные направления исследований лаборатории традиционно были связаны с разработкой медико-биологических критериев и методов диагностики одарённости в системе отбора и подготовки перспективных спортсменов.

В целом в стране развивалась генетика двигательной деятельности без использования молекулярных методов, а генетическими маркерами предрасположенности к двигательной деятельности считались группы крови, тип телосложения, состав мышечных волокон, тип сенсомоторных реакций и другие фенотипические признаки [Никитюк, 1978; Москатова, 1992; Сергиенко; 1990]. Наследуемость физических качеств также активно изучалась с использованием близнецовых методов [Шварц, 1991].

Совершенно новой эпохой в российской истории генетики двигательной деятельности можно считать конец 90-х годов, когда возникла возможность применения молекулярно-генетических методов в выявлении генетической предрасположенности к выполнению физических нагрузок различной продолжительности и направленности. В 1999 году петербургские учёные из Института цитологии РАН (обеспечение лабораторной деятельности) и СПб НИИ физической культуры (обеспечение исследуемыми выборками) приступили к совместным исследованиям по выявлению ассоциации полиморфизма гена ACE с физической работоспособностью у высококвалифицированных спортсменов.

В 2001 году в секторе биохимии спорта СПбНИИФК под руководством проф. В. А. Рогозкина была организована первая в России специализированная лаборатория спортивной генетики, использующая молекулярные методы, а в 2003 году произошло официальное формирование группы спортивной генетики. Качественно новый скачок в развитии спортивная генетика получила после начала использования полногеномных технологий (GWAS) на базе Федерального научно-клинического центра физико-химической медицины ФМБА России (2014 год). В России спортивной генетикой также занимаются в Казанском медицинском университете, Уральском университете физической культуры и ряде других организаций.

Примечания

  1. Ildus I. Ahmetov, Olga N. Fedotovskaya. Current Progress in Sports Genomics (англ.) // Advances in Clinical Chemistry. — 2015. — doi:10.1016/bs.acc.2015.03.003. Архивировано 24 сентября 2015 года.

Ссылки

Литература

Основной источник информации:

  • Молекулярная генетика спорта. Монография. Ахметов И.И. М.: Советский спорт, 2009. 268 с.

Дополнительная литература:

  • Genetics of Fitness and Physical Performance. Bouchard C., Malina R.M., Perusse L. 1997. 408 pp.
  • Спортивная генетика. Учебное пособие. Сологуб Е. Б., Таймазов В. А. 2000. 127 с.
  • Основы спортивной генетики. Учебное пособие. Сергиенко Л. П. 2004. 631 с.
  • Genetics Primer for Exercise Science and Health. Roth S.M. 2007. 192 pp.
  • Genetic and Molecular Aspects of Sports Performance. Bouchard C. & Hoffman E.P. 2011. 424 pp.
  • Exercise Genomics. Pescatello L.S. & Roth S.M. 2011. 267 pp.
  • Sports, Exercise, and Nutritional Genomics: Current Status and Future Directions. Edited by Barh D. and Ahmetov I. — Academic Press, USA. — 2019. — 606 pp.
  • Ahmetov I.I., Hall E.C.R., Semenova E.A., Pranckevičienė E., Ginevičienė V. Advances in sports genomics // Advances in Clinical Chemistry. 2022; V.107, P.215-263.