Счастливые числа по многим свойствам близки к простым числам[2]. Например, их асимптотическая плотность равна то есть совпадает с асимптотической плотностью простых чисел; счастливые числа-близнецы и простые числа-близнецы также появляются с близкой частотой. Пары счастливых чисел, отличающихся на 4, 6, 8 и т. д., появляются с частотой, близкой к частоте соответствующих пар простых чисел. На счастливые числа может быть распространена версия проблемы Гольдбаха[2]. Существует бесконечное множество счастливых чисел. Из-за этих очевидных связей с простыми числами некоторые математики предположили, что эти свойства могут быть найдены в более широком классе множеств этих чисел, сгенерированных решетом неизвестного вида, хотя теоретические основания для этой гипотезы малы.
Счастливые простые числа
Счастливое простое число — это счастливое число, которое является простым. Неизвестно, бесконечно ли множество счастливых простых чисел. Первые числа этой последовательности:
↑V. Gardiner, R. Lazarus, N. Metropolis and S. Ulam, «On certain sequences of integers defined by sieves», Mathematics Magazine29:3 (1955), pp. 117—122.
С. Улам. Нерешённые математические задачи = A Collection of Mathematical Problems / Перевод с английского З. Я. Шапиро. — М.: Наука, 1964. — 168 с. — (Современные проблемы математики).