У этого термина существуют и другие значения, см.
Интерполяция.
- О функции, см.: Интерполянт.
Интерполя́ция, интерполи́рование (от лат. inter–polis — «разглаженный, подновлённый, обновлённый; преобразованный») — в вычислительной математике нахождение неизвестных промежуточных значений некоторой функции, по имеющемуся дискретному набору её известных значений, определенным способом. Термин «интерполяция» впервые употребил Джон Валлис в своём трактате «Арифметика бесконечных» (1656).
В функциональном анализе интерполяция линейных операторов представляет собой раздел, рассматривающий банаховы пространства как элементы некоторой категории[1].
Многим из тех, кто сталкивается с научными и инженерными расчётами, часто приходится оперировать наборами значений, полученных опытным путём или методом случайной выборки. Как правило, на основании этих наборов требуется построить функцию, на которую могли бы с высокой точностью попадать другие получаемые значения. Такая задача называется аппроксимацией. Интерполяцией называют такую разновидность аппроксимации, при которой кривая построенной функции проходит точно через имеющиеся точки данных.
Существует также близкая к интерполяции задача, которая заключается в аппроксимации какой-либо сложной функции другой, более простой функцией. Если некоторая функция слишком сложна для производительных вычислений, можно попытаться вычислить её значение в нескольких точках, а по ним построить, то есть интерполировать, более простую функцию. Разумеется, использование упрощенной функции не позволяет получить такие же точные результаты, какие давала бы первоначальная функция. Но в некоторых классах задач достигнутый выигрыш в простоте и скорости вычислений может перевесить получаемую погрешность в результатах.
Следует также упомянуть и совершенно другую разновидность математической интерполяции, известную под названием «интерполяция операторов». К классическим работам по интерполяции операторов относятся теорема Рисса — Торина и теорема Марцинкевича[англ.], являющиеся основой для множества других работ.
Определения
Рассмотрим систему несовпадающих точек () из некоторой области . Пусть значения функции известны только в этих точках:
Задача интерполяции состоит в поиске такой функции из заданного класса функций, что
- Точки называют узлами интерполяции, а их совокупность — интерполяционной сеткой.
- Пары называют точками данных или базовыми точками.
- Разность между «соседними» значениями — шагом интерполяционной сетки. Он может быть как переменным, так и постоянным.
- Функцию — интерполирующей функцией или интерполянтом.
Пример
1. Пусть мы имеем табличную функцию, наподобие описанной ниже, которая для нескольких значений определяет соответствующие значения :
|
|
0
|
0
|
1 |
0,8415
|
2 |
0,9093
|
3 |
0,1411
|
4 |
−0,7568
|
5 |
−0,9589
|
6 |
−0,2794
|
Интерполяция помогает нам узнать, какое значение может иметь такая функция в точке, отличной от указанных точек (например, при x = 2,5).
К настоящему времени существует множество различных способов интерполяции. Выбор наиболее подходящего алгоритма зависит от ответов на вопросы: как точен выбираемый метод, каковы затраты на его использование, насколько гладкой является интерполяционная функция, какого количества точек данных она требует и т. п.
2. Найти промежуточное значение (способом линейной интерполяции).
6000 |
15.5
|
6378 |
?
|
8000 |
19.2
|
Способы интерполяции
Интерполяция методом ближайшего соседа
Простейшим способом интерполяции является интерполяция методом ближайшего соседа.
Интерполяция многочленами
На практике чаще всего применяют интерполяцию многочленами. Это связано прежде всего с тем, что многочлены легко вычислять, легко аналитически находить их производные и множество многочленов плотно в пространстве непрерывных функций (теорема Вейерштрасса).
Обратное интерполирование (вычисление x при заданной y)
Интерполяция функции нескольких переменных
Другие способы интерполяции
Смежные концепции
См. также
Примечания
Литература
- Й. Берг, Й. Лёфстрём. Интерполяционные пространства. Введение. — М.: Мир, 1980. — 264 с.
- Ибрагимов И. И. Методы интерполяций функций и некоторые их применения. — М.: Высшая школа, 1971. — 520 c.
- Уолш Дж. Л.[англ.] Интерполяция и аппроксимация рациональными функциями в комплексной области. — М.: Иностранная литература, 1961. — 508 c.
- Трибель Х. Теория интерполяции, функциональные пространства, дифференциальные операторы. — М.: Мир, 1980. — 664 c.
Ссылки на внешние ресурсы |
---|
| |
---|
Словари и энциклопедии | |
---|
В библиографических каталогах | |
---|