Quiroga
|
Read other articles:
2019 video gameThe Surge 2Developer(s)Deck13 InteractivePublisher(s)Focus Home InteractiveDesigner(s)Adam HetenyiComposer(s)Markus SchmidtBowsToHymnsStumfolTalla 2XLCPlatform(s)Microsoft WindowsPlayStation 4Xbox OneAmazon LunaReleaseWindows, PS4, Xbox One24 September 2019Amazon Luna20 October 2020Genre(s)Action role-playingMode(s)Single-player, multiplayer The Surge 2 is a 2019 action role-playing video game developed by Deck13 Interactive and published by Focus Home Interactive, that is the ...
Para Pencari Tuhan: Jilid 11PosterDibintangioleh Deddy Mizwar Agus Kuncoro Zaskia Adya Mecca Slamet Rahardjo Henidar Amroe Jarwo Kwat Asrul Dahlan Udin Nganga Akri Patrio Annisa Suci Alfie Alfandy Artta Ivano Idrus Madani Hakim Ahmad Joes Terpase Mira Zayra Erma Zarina Mpok Lin Irma Annisa Vitta Mariana Rendy Kjaernett Turaekhan Roy Negara asalIndonesiaJumlah episode28RilisSaluran asliSCTVTanggal tayang27 Mei (2017-05-27) –24 Juni 2017 (2017-6-24)Kronologi← SebelumnyaJ...
The Smith–Purcell effect was the precursor of the free-electron laser (FEL). It was studied by Steve Smith, a graduate student under the guidance of Edward Purcell. In their experiment, they sent an energetic beam of electrons very closely parallel to the surface of a ruled optical diffraction grating, and thereby generated visible light.[1] Smith showed there was negligible effect on the trajectory of the inducing electrons. Essentially, this is a form of Cherenkov radiation where ...
The Starving GamesPoster rilis teatrikalSutradaraJason FriedbergAaron SeltzerProduserPeter SafranDitulis olehJason FriedbergAaron SeltzerPemeran Maiara Walsh Cody Christian Brant Daugherty Lauren Bowles Diedrich Bader Penata musikTimothy Michael WynnPerusahaanproduksiSafran Company3 in the BoxDistributorKetchup EntertainmentTanggal rilis 08 November 2013 (2013-11-08)[1] Durasi83 menitNegaraAmerika SerikatBahasaInggrisAnggaran$4.5 jutaPendapatankotor$3,889,688[2] The...
Pour les articles homonymes, voir Tabac (homonymie). Nicotiana tabacum, vue de dessus. Tabac blond séché et haché. Stockage du tabac dans la Tabacalera del Oriente, Tarapoto, Pérou. Le tabac est un produit psychotrope manufacturé élaboré à partir de feuilles séchées de plantes de tabac commun (Nicotiana tabacum), une espèce originaire d'Amérique appartenant au genre botanique Nicotiana (famille : Solanaceae). L'usage du tabac s'est largement répandu dans le monde entier à ...
Company Seddon AtkinsonIndustryAutomotivePredecessorAtkinson VehiclesSeddon Diesel VehiclesFounded1970; 54 years ago (1970)Defunct2009; 15 years ago (2009)HeadquartersOldham, EnglandProductsBusesTrucksParentIveco Seddon Atkinson Strato truck in Harare, Zimbabwe Seddon Atkinson Vehicles Limited, was a manufacturer of large goods vehicles based in Oldham, Greater Manchester, England, was formed after the acquisition in 1970 of Atkinson Vehicles Limited of Pre...
Prince-Bishop of Speyer Lothar Friedrich von Metternich-BurscheidArchbishop of MainzChurchCatholic ChurchArchdioceseElectorate of MainzIn office1673–1675PredecessorJohann Philipp von SchönbornSuccessorDamian Hartard von der Leyen-HohengeroldseckPersonal detailsBorn29 September 1617Died3 June 1675 Lothar Friedrich von Metternich-Burscheid (29 September 1617 – 3 June 1675) was the Bishop of Speyer from 1652 to 1675 and also Archbishop of Mainz and Bishop of Worms from 1673 to 1675. Bio...
Державний комітет телебачення і радіомовлення України (Держкомтелерадіо) Приміщення комітетуЗагальна інформаціяКраїна УкраїнаДата створення 2003Керівне відомство Кабінет Міністрів УкраїниРічний бюджет 1 964 898 500 ₴[1]Голова Олег НаливайкоПідвідомчі ор...
周處除三害The Pig, The Snake and The Pigeon正式版海報基本资料导演黃精甫监制李烈黃江豐動作指導洪昰顥编剧黃精甫主演阮經天袁富華陳以文王淨李李仁謝瓊煖配乐盧律銘林孝親林思妤保卜摄影王金城剪辑黃精甫林雍益制片商一種態度電影股份有限公司片长134分鐘产地 臺灣语言國語粵語台語上映及发行上映日期 2023年10月6日 (2023-10-06)(台灣) 2023年11月2日 (2023-11-02)(香�...
Третий дивизион чемпионата мира по хоккею с шайбой среди юниорских команд 20102010 IIHF World U18 Championship Division III Логотипы 2010 IIHF World U18 Championship Division III Подробности турнира Страны проведения Турция Мексика Города проведения Эрзурум,Монтеррей Время проведения 8 марта — 20 марта Чи...
Sports division of Warner Bros. Discovery (Broadcasting) TNT SportsFormerlyTurner Sports (1995–2022)Warner Bros. Discovery Sports (2022–2023)Company typeDivisionIndustryBroadcastingGenreSportsPredecessorDiscovery Sports (2001–2022)Founded1995; 29 years ago (1995)HeadquartersAtlanta, GeorgiaKey peopleLuis Silberwasser (Chairman and CEO, TNT Sports)[1][2]Andrew Georgiou (President, WBD Sports Europe)BrandsTNT Sports (with BT Group)EurosportServices MLB NB...
هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (أكتوبر 2022) وزارة الموارد البشرية والضمان الاجتماعي (الصين) تفاصيل الوكالة الحكومية ا...
Questa voce sull'argomento centri abitati della prefettura di Gunma è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Tomiokacittà富岡市 Tomioka – Veduta LocalizzazioneStato Giappone RegioneKantō Prefettura Gunma SottoprefetturaNon presente DistrettoNon presente TerritorioCoordinate36°16′N 138°53′E36°16′N, 138°53′E (Tomioka) Superficie122,90 km² Abitanti51 256 (2012) Densità417,05 ab./km² Altre informazioniCod....
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أغسطس 2018) جودرون كلنكر معلومات شخصية الميلاد 15 فبراير 1958 (66 سنة) فورستناو الجنسية الحياة العملية المدرسة الأم جامعة إرلنغن نورنبيرغجامعة هامبورغجامعة كارنيغي �...
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Reuven Merhav – ...
Pour les articles homonymes, voir Maggio. Rosalia MaggioBiographieNaissance 1er mai 1921PalermeDécès 25 juillet 1995 (à 74 ans)NaplesNationalité italienneActivités Danseuse, chanteuse, actricePère Mimì Maggio (d)Fratrie Enzo Maggio (en)Beniamino Maggio (en)Dante MaggioPupella Maggiomodifier - modifier le code - modifier Wikidata Rosalia Maggio, née à Palerme le 1er mai 1921 et morte à Naples le 25 juillet 1995, est une actrice italienne[1]. Biographie Rosalia Maggio est née �...
В Википедии есть статьи о других людях с такой фамилией, см. Мифтахов. Амир Мифтахов Позиция вратарь Рост 185 см Вес 75 кг Хват левый Дата рождения 26 апреля 2000(2000-04-26) (24 года) Место рождения Казань, Россия Драфт НХЛ в 2020 году выбран в 6-м раунде под общим 186-м номером клубом «Та...
Partito Comunista Francese(FR) Parti Communiste Français SegretarioFabien Roussel Stato Francia Sede2, Place du Colonel Fabien, 75019 Parigi AbbreviazionePCF (dal 1943)Storicamente:SFIC (1920)PC-SFIC (1921-1943) Fondazionedicembre 1920 Derivato daSezione Francese dell'Internazionale Operaia (SFIO) IdeologiaComunismo[1] CollocazioneSinistra/Sinistra radicale CoalizioneNFP (2024-)NUPES (2022-2024) Partito europeoPartito della Sinistra Europea Gruppo parl. europeoSin...
Invariant measure of fractal dimension Example of non-integer dimensions. The first four iterations of the Koch curve, where after each iteration, all original line segments are replaced with four, each a self-similar copy that is 1/3 the length of the original. One formalism of the Hausdorff dimension uses the scale factor (S = 3) and the number of self-similar objects (N = 4) to calculate the dimension, D, after the first iteration to be D = (log N)/(log S) = (log 4)/(log 3) ≈ 1.26.[1...
Extension of the domain of an analytic function (mathematics) In complex analysis, a branch of mathematics, analytic continuation is a technique to extend the domain of definition of a given analytic function. Analytic continuation often succeeds in defining further values of a function, for example in a new region where the infinite series representation which initially defined the function becomes divergent. The step-wise continuation technique may, however, come up against difficulties. Th...