Asid asetoasetik (nama IUPAC: asid 3-oksobutanoik, juga dikenali sebagai asid asetonkarboksilik atau asid diasetik) ialah sebatian organik dengan formula CH3COCH2COOH. Ia merupakan asid beta-keto yang paling ringkat, dan seperti ahli kelas ini yang lain, ia tidak stabil. Bentuk ester metil dan etil yang agak stabil dihasilkan secara besar-besaran secara industri sebagai pendahulu bahan pewarna. Asid asetoasetik ialah asid lemah.[3]
Biokimia
Di bawah keadaan fisiologi biasa, asid asetoasetik wujud sebagai bes konjugatnya, asetoasetat:
Pemeluwapan pasangan molekul asetil-KoA seperti yang dimangkinkan oleh tiolase.[4]:393
2Ac−KoA → AcCH 2C(O)−KoA + H−KoA
Dalam mamalia, asetoasetat yang dihasilkan dalam hati (bersama dengan dua "badan keton") yang lain dilepaskan ke dalam aliran darah sebagai sumber tenaga semasa tempoh berpuasa, bersenam, atau akibat diabetes melitus jenis 1.[5] Pertama, kumpulan CoA dipindahkan dengan enzim kepadanya daripada suksinil-KoA, menukarkannya kembali kepada asetoasetil-KoA; ini kemudiannya dipecahkan kepada dua molekul asetil-KoA oleh tiolase, dan ini kemudiannya memasuki kitaran asid sitrik. Otot jantung dan korteks buah pinggang lebih cenderung menggunakan asetoasetat berbanding glukosa. Otak menggunakan asetoasetat apabila paras glukosa rendah akibat berpuasa atau diabetes.[4]:394
Sintesis dan sifat
Asid asetoasettik boleh disediakan melalui hidrolisis diketena. Esternya dihasilkan secara analog melalui tindak balas antara diketena dan alkohol,[3] dan asid asetoasetik boleh disediakan melalui hidrolisis spesies ini.[6] Secara amnya, asid asetoasetik dihasilkan pada suhu 0 °C dan digunakan in situ serta-merta.
Bentuk asid mempunyai separuh hayat 140 minit pada 37 °C dalam air, manakala bentuk asas (anion) mempunyai separuh hayat 130 jam. Iaitu, ia bertindak balas kira-kira 55 kali lebih perlahan.[7] Penyahkarboksilan trifluoroasetoasetat yang sepadan digunakan untuk menyediakan trifluoroaseton:
CF 3C(O)CH 2CO 2H → CF 3C(O)CH 3 + CO 2
Ia merupakan asid lemah (seperti kebanyakan asid alkil karboksilik), dengan pKa 3.58.
Asid asetoasettik memaparkan pentautomeran keto-enol, dengan bentuk enol distabilkan sebahagiannya melalui konjugasi lanjutan dan ikatan H intramolekul. Keseimbangan sangat bergantung kepada pelarut; dengan bentuk keto mendominasi dalam pelarut berkutub (98% dalam air) dan bentuk enol menyumbang 25-49% bahan dalam pelarut tak berkutub.[8]
Aplikasi
Ester asetoasetik digunakan dalam tindak balas asetoasetilasi yang digunakan secara meluas dalam pengeluaran arilida kuning dan pewarna diarilida.[3] Walaupun ester boleh digunakan dalam tindak balas ini, diketena juga bertindak balas dengan alkohol dan amina kepada derivatif asid asetoasetik yang sepadan dalam proses asetoasetilasi. Contohnya ialah tindak balas dengan 4-amino indana:[9]
Pengesanan
Asid asetoasetik diukur dalam air kencing orang yang menghidap diabetes untuk menguji ketoasidosis[10] dan untuk memantau orang yang menjalani diet ketogenik atau rendah karbohidrat. [11][12] Ini dilakukan dengan menggunakan batang celupan yang disalut dengan nitroprusida atau reagen yang serupa. Nitroprusida berubah daripada merah jambu kepada ungu dengan kehadiran asetoasetat, bes konjugat asid asetoasetik, dan perubahan warna digredkan oleh mata. Ujian ini tidak mengukur β-hidroksibutirat, keton yang paling banyak dalam badan; semasa rawatan ketoasidosis, β-hidroksibutirat ditukar kepada asetoasetat, menjadikan ujian ini tidak betul selepas rawatan dimulakan,[10] dan mungkin disangka rendah ketika diagnosis.[13]
^Stryer, Lubert (1995). Biochemistry (ed. Fourth). New York: W.H. Freeman and Company. m/s. 510–515, 581–613, 775–778. ISBN0-7167-2009-4.
^Robert C. Krueger (1952). "Crystalline Acetoacetic Acid". Journal of the American Chemical Society. 74 (21): 5536. doi:10.1021/ja01141a521.
^Hay, R. W.; Bond, M. A. (1967). "Kinetics of decarboxilation of acetoacetic acid". Aust. J. Chem. 20 (9): 1823–8. doi:10.1071/CH9671823.
^Grande, Karen D.; Rosenfeld, Stuart M. (1980). "Tautomeric equilibriums in acetoacetic acid". The Journal of Organic Chemistry. 45 (9): 1626–1628. doi:10.1021/jo01297a017. ISSN0022-3263.
^Kiran Kumar Solingapuram Sai; Thomas M. Gilbert; Douglas A. Klumpp (2007). "Knorr Cyclizations and Distonic Superelectrophiles". J. Org. Chem.72 (25): 9761–9764. doi:10.1021/jo7013092. PMID17999519.
^ abNyenwe, EA; Kitabchi, AE (April 2016). "The evolution of diabetic ketoacidosis: An update of its etiology, pathogenesis and management". Metabolism: Clinical and Experimental. 65 (4): 507–21. doi:10.1016/j.metabol.2015.12.007. PMID26975543.
^Sumithran, Priya; Proietto, Joseph (2008). "Ketogenic diets for weight loss: A review of their principles, safety and efficacy". Obesity Research & Clinical Practice. 2 (1): I–II. doi:10.1016/j.orcp.2007.11.003. PMID24351673.
^Tatone, EH; Gordon, JL; Hubbs, J; LeBlanc, SJ; DeVries, TJ; Duffield, TF (1 August 2016). "A systematic review and meta-analysis of the diagnostic accuracy of point-of-care tests for the detection of hyperketonemia in dairy cows". Preventive Veterinary Medicine. 130: 18–32. doi:10.1016/j.prevetmed.2016.06.002. PMID27435643.