Nonnullis insectis aquaticis exceptis, filamenta lamellaeque sanguinem vel fluidum coelomicum continent, ex quo gasia per valla tenuia permutantur. Sanguis oxygenium ad alias corporis partes portat. Carboni dioxidum ex sanguine per tenuem branchiarum textum in aquam transit. Branchiae, vel organa branchiarum similia, in variis corporis partibus sita, inveniuntur in variia animalium aquaticorum gregibus, inter quae mollusca, crustacea, insecta, pisces, amphibia sunt. Animalibusmaritimis et semiterrestrialibus, sicut brachyuris et oxudercinis, sunt receptacula branchiarum, in quibus aquam recondunt, ut oxygenio dissoluto utantur cum in terra degant.
Historia
Galenus observavit pisces multa foramina habere, tam magna ut gasia admittant, sed tam parva ut aquam cohibeant. Plinius docuit pisces per branchias spirare, sed commemoravit Aristotelem aliter credidisse.[2]
Functio
Multa animalia aquatica et microscopica, et nonnulla animalia maiora sed inertia, satis oxygenii per omne eorum corporum superficiem absorbere possunt, et ergo apte sine branchiis respirant; organismi autem multipliciores vel minus inertes plerumque branchias requirunt. Multa invertebrata, et adeo amphibia, ambo superficie corporis branchiisque ut gasia permutent utuntur.[3]
Branchiae plerumque in tenuissimis textus filamentis, lamellis, ramis, vel tenuibus processibus caespitosis consistunt, in rebus quibus est superficies multo plicata, ad aream superficialem augendam. Subtilis branchiarum ingenium fieri potest quia aqua circumiacens subsidium praebet. Ad permutationem gasiorum facilius reddendam, sanguis vel aliud fluidum corporeum cum superficie respiratoria intime contingere debet.[3]
Notae
↑"Branchia," Oxford English Dictionary, ed. secunda (Oxoniae: Oxford University Press, 1989).
↑James Knapton, John Knapton, et al., in Cyclopædia, or an Universal Dictionary of Arts and Sciences, ed. Ephraim Chambers (1728).
Cheer, A. Y., Y. Ogami, et S. Laurie Sanderson. 2001. "Computational Fluid Dynamics in the Oral Cavity of Ram Suspension-Feeding Fishes." Journal of Theoretical Biology 210 (4): 463–74.
Elsheikh, E. H. 2013. "Scanning electron microscopic studies of gill arches and rakers in relation to feeding habits of some fresh water fishes." The Journal of Basic & Applied Zoology 66 (3): 121–30.
Evans, David H. Peter M. Piermarini, et Keith P. Choe. 2005. The Multifunctional Fish Gill: Dominant Site of Gas Exchange, Osmoregulation, Acid-Base Regulation, and Excretion of Nitrogenous Waste." Physiological Reviews 85 (1): 97–177. doi:10.1152/physrev.00050.2003.
Goodrich, J. S., S. Laurie Sanderson, I. E. Batjakas, et L. S. Kaufman. 2000. "Branchial arches of suspension-feeding Oreochromis esculentus: sieve or sticky filter?" Journal of Fish Biology 56 (4): 858–75.
Kumari, U., M. Yashpal, S. Mittal, et A.K. Mittal. 2009. "Surface ultrastructure of gill arches and gill rakers in relation to feeding of an Indian major carp, Cirrhinus mrigala." Tissue and Cell 41 (5): 318–25.
Langeland, A., et T. Nost. 1995. "Gill raker structure and selective predation on zooplankton by particulate feeding fish." Journal of Fish Biology 47 (4): 719–32.
Mooij, W. M., W. L. T. Densen, et E. H. R. R. Lammens. 1996. "Formation of year-class strength in the bream population in the shallow eutrophic Lake Tjeukemeer." Journal of Fish Biology 48 (1): 30–39.
Persson, Anders, et Christer Bronmark. 2002. "Foraging capacities and effects of competitive release on ontogenetic diet shift in bream, Abramis brama." Oikos 97 (2): 271–81.
Persson, Anders, et Jonas M. Svensson. 2006. "Vertical distribution of benthic community responses to fish predators, and effects on algae and suspended material." Aquatic Ecology 40 (1): 85–95.
Ross, L. G., C. A. Martinez-Palacios, Ma. del C. Aguilar Valdez, M. C. M. Beveridge, et Ma. C. Chavez Sanchez. 2006. "Determination of feeding mode in fishes: the importance of using structural and functional feeding studies in conjunction with gut analysis in a selective zooplanktivore Chirostoma estor estor Jordan" Journal of Fish Biology 68 (6): 1782–94.
Sanderson, S. Laurie, et Sarah J. Kupferberg. 1999. Development and Evolution of Aquatic Larval Feeding Mechanisms, 301–377.
Sanderson, S. Laurie, Angela Y. Cheer, Jennifer S. Goodrich, Jenny D. Graziano, et W. Todd Callan. 2001. "Crossflow filtration in suspension-feeding fishes." Nature 412 (6845): 439–41.
Smith, Jennifer C., et S. Laurie Sanderson. 2013. "Particle retention in suspension-feeding fish after removal of filtration structures." Zoology 116 (6): 348–55.
Van Den Berg, Coen, Geert J. M. Van Snik, Jos G. M. Van Den Boogaart, Ferdinand A. Sibbing, et Jan W. M. Osse. 1994. "Comparative microanatomy of the branchial sieve in three sympatric cyprinid species, related to filter-feeding mechanisms." Journal of Morphology 219 (1): 73–87.
Van Den Berg, Coen, Ferdinand A. Sibbing, Jan W. M. Osse, et Wim Hoogenboezem. 1992. "Structure, development and function of the branchial sieve of the common bream, Abramis brama, white bream, Blicca bjoerkna and roach, Rutilus rutilus." Environmental Biology of Fishes 33 (1–2): 105–124.