정칙 범주

범주론에서 정칙 범주(正則範疇, 영어: regular category)는 모든 유한 극한을 갖고, 모든 사상을 그 치역으로의 전사 사상과 치역에서 공역으로 가는 단사 사상으로 유일하게 분해할 수 있는 범주이다.

정의

정칙 사상

범주 에서, 어떤 두 사상 쌍대 동등자

로 나타낼 수 있는 사상을 정칙 전사 사상(영어: regular epimorphism)이라고 한다. 정칙 단사 사상은 (쌍대 극한이므로) 항상 단사 사상이다.

마찬가지로, 범주 에서, 어떤 두 사상 동등자

로 나타낼 수 있는 사상을 정칙 단사 사상(영어: regular monomorphism)이라고 한다. 정칙 단사 사상은 (극한이므로) 항상 단사 사상이다.

유효 사상

사상 가 스스로와의 당김

을 가지며, 쌍대 동등자와 같다면, 유효 전사 사상(영어: effective epimorphism)이라고 한다. 유효 전사 사상은 정의에 따라 정칙 전사 사상이다. 이와 같은 스스로와의 당김은 핵쌍(영어: kernel pair)이라고 하며, 대략 대수 구조에서의 합동 관계의 일반화로 생각할 수 있다. 즉, 유효 전사 사상은 "합동 관계"에 대한 "몫"으로의 사영 사상으로 생각할 수 있다.

사상 가 스스로와의

을 가지며, 동등자와 같다면, 유효 단사 사상(영어: effective monomorphism)이라고 한다. 유효 단사 사상은 정의에 따라 정칙 단사 사상이다. 이 정의에서, 동등자의 "치역"으로 생각할 수 있다. 즉, 유효 단사 사상은 정의역치역 사이의 동형을 정의하는 단사 사상으로 생각할 수 있다.

정칙 범주

범주 가 다음 조건들을 만족시킨다면 정칙 범주라고 한다.

  • 유한 완비 범주이다.
  • 임의의 사상 의 스스로에 대한 당김 에 대하여, 쌍대 동등자가 존재한다. 이는 핵쌍이라고 한다.
  • 정칙 전사 사상의 당김은 정칙 전사 사상이다.

두 정칙 범주 사이의 정칙 함자 는 다음 조건을 만족시키는 함자이다.

작은 정칙 범주와 정칙 함자의 범주라고 하자.

유효 정칙 범주

정칙 범주 가 다음 조건을 만족시킨다면, 유효 정칙 범주(영어: effective regular category) 또는 바 완전 범주(영어: Barr-exact category)라고 한다. (이는 퀼런 완전 범주와 관계없는 개념이다.)

  • 임의의 대상 가 주어졌으며, 부분 대상 동치 관계를 이룰 때, 는 핵쌍으로부터 유도된다.

성질

정칙 범주 에서, 모든 정칙 전사 사상들의 모임 과 단사 사상들의 모임 분해계를 이룬다. 즉, 임의의 사상 에 대하여,

인 정칙 전사 사상 과 단사 사상 이 존재한다. 부분 대상 치역이라고 한다.

정칙 사상

임의의 범주 속의 사상에 대하여, 다음 세 조건이 서로 동치이다.

(반면, 임의의 범주에서는 전사 사상이자 단사 사상이지만 동형 사상이 아닌 사상이 존재할 수 있다.)

다음과 같은 포함 관계가 성립한다.

동형 사상 ⊆ 유효 단사 사상 ⊆ 정칙 단사 사상 ⊆ 강한 단사 사상극단 단사 사상단사 사상
동형 사상분할 단사 사상 ⊆ 정칙 단사 사상 ⊆ 강한 단사 사상극단 단사 사상단사 사상
동형 사상 ⊆ 유효 전사 사상 ⊆ 정칙 전사 사상 ⊆ 강한 전사 사상극단 전사 사상전사 사상
동형 사상분할 전사 사상 ⊆ 정칙 전사 사상 ⊆ 강한 전사 사상극단 전사 사상전사 사상

분할 단사 사상이 정칙 단사 사상인 이유는 분할 단사 사상 및 그 왼쪽 역사상 이 주어졌을 때 이기 때문이다. 마찬가지로, 분할 전사 사상이 정칙 전사 사상인 이유는 분할 전사 사상 및 그 오른쪽 역사상 이 주어졌을 때 이기 때문이다.

어떤 범주에서 모든 사상 의 스스로와의 당김 이 존재한다면, 이 범주에서 정칙 전사 사상의 개념과 유효 전사 사상의 개념이 일치한다. 토포스(또는 더 일반적으로 준토포스)에서, 다음이 성립한다.

  • 모든 전사 사상은 정칙 전사 사상이자 유효 전사 사상이다.
  • 모든 단사 사상은 정칙 단사 사상이다.

아벨 범주에서, 모든 단사 사상은 정칙 단사 사상이다.

완전열

정칙 범주 속에서, 짧은 완전열은 다음과 같은 꼴의 그림이다.

여기서

  • 의 핵쌍이다.

만약 가 추가로 아벨 범주라면, 가 (정칙 범주의) 짧은 완전열인 것은

가 (아벨 범주의) 완전열인 것과 동치이다.

정칙 논리

1차 논리에서 정칙 공식(영어: regular formula)은

  • 명제 변수
  • 논리곱
  • 존재 기호

만으로 나타낼 수 있는 공식이다. 정칙 논리

꼴의 명제들만을 다룰 수 있는, 1차 논리를 약화시킨 논리이다.

정칙 범주의 내부 논리는 정칙 논리이다. 구체적으로, 정칙 범주 끝 대상 을 골랐을 때, 다음과 같은 대응이 존재한다.

정칙 논리 정칙 범주
종류(영어: sort) 의 대상
인 종류 끝 대상
종류 의 상수 사상
종류 의 함수 사상
함수의 합성 사상의 합성
가 성립하는 함수 단사 사상
종류 에 대한 술어 부분 대상
가 성립하는 함수 정칙 전사 사상
,
동등자

같이 보기

참고 문헌

외부 링크