동등자

수학에서 동등자(同等子, 영어: equalizer)는 여러 함수들이 같은 값을 갖게 되는, 정의역의 부분집합이다.

정의

집합의 범주에서의 정의

집합 에서 로 가는 함수들의 집합 이 주어졌다고 하자. 동등자 는 다음과 같은 집합이다.

자명한 경우로, 인 경우 이며, 로 하나의 원소만을 갖는 경우 역시 이다.

일반적 범주에서의 정의

범주 에서, 대상 및 사상 모임의 부분집합 이 주어졌다고 하자. 동등자 는 다음과 같은 데이터로 구성된다.

  • 의 대상이다.
  • 의 사상이며, 모든 에 대하여 이다.

이는 다음과 같은 보편 성질을 만족시켜야 한다.

  • 만약 가 임의의 에 대하여 을 만족시킨다면, 인 유일한 사상 가 존재한다.

이는 극한의 간단한 예이며, 이 경우 지표 범주 는 두 개의 대상 및 사상 집합 를 가진다.

주어진 범주에서 동등자는 존재하지 않을 수 있다. 다만, 만약 가 공집합이거나 하나의 원소만을 갖는 경우 동등자는 항상 존재하며, 이 경우 이다.

만약 범주 당김을 갖는다면, 항상 동등자를 갖는다. 구체적으로, 다음과 같은 사상을 생각하자.

그렇다면, 이에 대한 당김

을 정의할 수 있으며, 이는 의 동등자와 같다. 동등자 사상은 당김의 표준 사영

에 의하여 주어진다.

같이 보기

외부 링크