^ ab“Molecular mechanisms regulating the differential association of kainate receptor subunits with SAP90/PSD-95 and SAP97”. J. Biol. Chem.276 (19): 16092–9. (May 2001). doi:10.1074/jbc.M100643200. PMID11279111.
^“Heteromer formation of delta2 glutamate receptors with AMPA or kainate receptors”. Brain Res. Mol. Brain Res.110 (1): 27–37. (Jan 2003). doi:10.1016/s0169-328x(02)00561-2. PMID12573530.
^“Biochemical and assembly properties of GluR6 and KA2, two members of the kainate receptor family, determined with subunit-specific antibodies”. J. Biol. Chem.269 (2): 1332–9. (Jan 1994). doi:10.1016/S0021-9258(17)42262-9. PMID8288598.
^“Expression and heteromeric interactions of non-N-methyl-D-aspartate glutamate receptor subunits in the developing and adult cerebellum”. Neuroscience82 (2): 485–97. (Jan 1998). doi:10.1016/s0306-4522(97)00296-0. PMID9466455.
^ ab“The PDZ proteins PICK1, GRIP, and syntenin bind multiple glutamate receptor subtypes. Analysis of PDZ binding motifs”. J. Biol. Chem.277 (18): 15221–4. (May 2002). doi:10.1074/jbc.C200112200. PMID11891216.
^“Genetic manipulation of key determinants of ion flow in glutamate receptor channels in the mouse”. Brain Res.907 (1–2): 233–43. (July 2001). doi:10.1016/S0006-8993(01)02445-3. PMID11430906.
^“Control of human potassium channel inactivation by editing of a small mRNA hairpin”. Nat. Struct. Mol. Biol.11 (10): 950–6. (October 2004). doi:10.1038/nsmb825. PMID15361858.
^ ab“Assessing the extent of RNA editing in the TMII regions of GluR5 and GluR6 kainate receptors during rat brain development”. J. Neurochem.62 (5): 2057–60. (May 1994). doi:10.1046/j.1471-4159.1994.62052057.x. PMID7512622.
^Niswender CM (September 1998). “Recent advances in mammalian RNA editing”. Cell. Mol. Life Sci.54 (9): 946–64. doi:10.1007/s000180050225. PMID9791538.
^ abc“Determinants of Ca2+ permeability in both TM1 and TM2 of high affinity kainate receptor channels: diversity by RNA editing”. Neuron10 (3): 491–500. (March 1993). doi:10.1016/0896-6273(93)90336-P. PMID7681676.
^“Editing status at the Q/R site of the GluR2 and GluR6 glutamate receptor subunits in the surgically excised hippocampus of patients with refractory epilepsy”. NeuroReport9 (10): 2219–24. (July 1998). doi:10.1097/00001756-199807130-00013. PMID9694203.
^Nadler JV (November 1981). “Minireview. Kainic acid as a tool for the study of temporal lobe epilepsy”. Life Sci.29 (20): 2031–42. doi:10.1016/0024-3205(81)90659-7. PMID7031398.
^Ben-Ari Y (February 1985). “Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy”. Neuroscience14 (2): 375–403. doi:10.1016/0306-4522(85)90299-4. PMID2859548.
^“RNA editing at the Q/R site for the glutamate receptor subunits GLUR2, GLUR5, and GLUR6 in hippocampus and temporal cortex from epileptic patients”. Neurobiol. Dis.8 (3): 459–68. (June 2001). doi:10.1006/nbdi.2001.0394. PMID11442354.
関連文献
“RNA editing of brain glutamate receptor channels: mechanism and physiology.”. Brain Res. Brain Res. Rev.26 (2–3): 217–29. (1998). doi:10.1016/S0165-0173(97)00062-3. PMID9651532.
“Functional expression and pharmacological characterization of the human EAA4 (GluR6) glutamate receptor: a kainate selective channel subunit.”. Recept. Channels2 (4): 327–37. (1995). PMID7536611.
“Refinement of map position of the human GluR6 kainate receptor gene (GRIK2) and lack of association and linkage with idiopathic generalized epilepsies.”. Neurology45 (9): 1713–20. (1995). doi:10.1212/wnl.45.9.1713. PMID7675232.
“A transmembrane model for an ionotropic glutamate receptor predicted on the basis of the location of asparagine-linked oligosaccharides.”. J. Biol. Chem.269 (19): 14159–64. (1994). doi:10.1016/S0021-9258(17)36768-6. PMID8188697.
“Biochemical and assembly properties of GluR6 and KA2, two members of the kainate receptor family, determined with subunit-specific antibodies.”. J. Biol. Chem.269 (2): 1332–9. (1994). doi:10.1016/S0021-9258(17)42262-9. PMID8288598.
“Normalization and subtraction: two approaches to facilitate gene discovery.”. Genome Res.6 (9): 791–806. (1997). doi:10.1101/gr.6.9.791. PMID8889548.
“Distribution of kainate receptor subunit mRNAs in human hippocampus, neocortex and cerebellum, and bilateral reduction of hippocampal GluR6 and KA2 transcripts in schizophrenia.”. Brain Res.751 (2): 217–31. (1997). doi:10.1016/S0006-8993(96)01404-7. PMID9099808.
“Expression and heteromeric interactions of non-N-methyl-D-aspartate glutamate receptor subunits in the developing and adult cerebellum.”. Neuroscience82 (2): 485–97. (1998). doi:10.1016/S0306-4522(97)00296-0. PMID9466455.
“Subtype-specific assembly of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunits is mediated by their n-terminal domains.”. J. Biol. Chem.274 (24): 16907–16. (1999). doi:10.1074/jbc.274.24.16907. PMID10358037.
Smith HJ (2001). “The introduction of MR in the Nordic countries with special reference to Norway: central control versus local initiatives.”. Journal of Magnetic Resonance Imaging13 (4): 639–44. doi:10.1002/jmri.1090. PMID11276111.
“Molecular mechanisms regulating the differential association of kainate receptor subunits with SAP90/PSD-95 and SAP97.”. J. Biol. Chem.276 (19): 16092–9. (2001). doi:10.1074/jbc.M100643200. PMID11279111.