対数正規分布

対数正規分布
確率密度関数
Probability density function
μ = 0
累積分布関数
Cumulative distribution function
μ = 0
母数
確率密度関数
累積分布関数
期待値
中央値
最頻値
分散
歪度
尖度
エントロピー
モーメント母関数 -
特性関数 -
テンプレートを表示

確率論および統計学において、対数正規分布(たいすうせいきぶんぷ、: log-normal distribution)は、連続確率分布の一種である。この分布に従う確率変数対数をとったとき、対応する分布が正規分布に従うものとして定義される。そのため中心極限定理の乗法的な類似が成り立ち、独立同分布に従う確率変数の積は漸近的に対数正規分布に従う。

定義

平均 μ と標準偏差 σ > 0 に対し、正の実数を値にとる確率変数 X確率密度関数 f(x)

で与えられるとき、確率変数 X は対数正規分布に従うという。また、上記の確率密度分布に対応する対数正規分布を Λ(μ, σ2) と表記する[1]

このとき、対応する分布関数 F(X)

である。ただし、erfc は相補誤差関数Φ標準正規分布の分布関数である。

標準対数正規分布

特に μ = 0, σ2 = 1 のとき、この分布は標準対数正規分布と呼ばれる。

つまり標準対数正規分布 Λ(0, 1)

なる確率密度関数を持つ確率分布として与えられる。

正規分布との関係

対数正規分布という名は、対数正規分布 Λ(μ, σ2) に従う確率変数 X の対数関数を取ったときに、新たな確率変数 Y = ln X が正規分布 N(μ, σ2) に従うことに由来する。また、正規分布に従う確率変数が負の値を取りうるのに対して、対数正規分布に従う確率変数は正の値のみ取るという性質を有する。

性質

平均・分散

対数正規分布 Λ(μ, σ2) に従う確率変数 X に対し、平均 E(x) および分散 V(x) はそれぞれ以下で与えられる。

再生性

対数正規分布 Λ(μ1, σ12) に従う確率変数 X と対数正規分布 Λ(μ2, σ22) に従う確率変数 Y が互いに独立であるとき、確率変数の積 XY は対数正規分布 Λ(μ1 + μ2, σ12 + σ22) に従う。

この性質は正規分布が再生性を有することから導かれる。

中心極限定理の類似

正の値を取る独立同分布に従う確率変数 X1, …, Xn が条件

を満たすならば、積 X1Xn は漸近的に対数正規分布 Λ(, 2) に従う[2]

n次対数正規分布

エスペンシェイドらによって提案された次の分布 fn (x)n 次対数正規分布 (n-th order log-normal distribution) という[3]

ここで、μ, σ はそれぞれ平均、分散に関する値、cn は正規化のための定数で

である。通常の対数正規分布は n = −1 次の場合に相当する。

0次対数正規分布

特に0次対数正規分布 (ZOLD):

は、最頻値が μ に等しく、σ に依存しないことから感覚的な理解が容易で、物理学の分野で用いられることがある。

脚注

  1. ^ Crow & Shimizu 1988, p. 2.
  2. ^ Crow & Shimizu 1988, p. 5.
  3. ^ 高橋幹二 著、日本エアロゾル学会 編『エアロゾル学の基礎』森北出版、2003年、124頁。ISBN 4-627-67251-9 

参考文献

関連項目

Read other articles:

Garis keturunan evolusi adalah keturunan spesies, yang membentuk keturunan sebuah garis keturunan, setiap spesies baru merupakan hasil langsung dari spesiasi dari spesies leluhurnya.[1][2] Garis keturunan merupakan rangkaian dari pohon evolusi kehidupan. Garis keturunan sering ditentukan oleh teknik sistematika molekuler. Filogenetik representasi garis keturunan Gambar 1: Pohon filogenetika untuk gen rRNA Garis keturunan biasanya divisualisasikan sebagai rangkaian dari pohon e...

 

Bay in Flinders Chase, South AustraliaMaupertuis BayMaupertuis BayLocation in South AustraliaLocationFlinders Chase, South Australia[1]Coordinates35°59′46″S 136°39′36″E / 35.996°S 136.66°E / -35.996; 136.66[1]TypeBayPrimary inflowsRocky RiverBasin countriesAustraliaMax. length13 kilometres (8.1 mi)[2]Max. widthabout 3 kilometres (1.9 mi)[2]Average depth30–60 metres (98–197 ft)[2] Maupertuis Ba...

 

Voce principale: Coppa Svizzera. Questa voce o sezione sull'argomento edizioni di competizioni calcistiche non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Coppa Svizzera 2004-2005Schweizer Cup 2004-2005Coupe de Suisse 2004-2005 Competizione Coppa Svizzera Sport Calcio Edizione 80ª Organizzatore ASF/SFV D...

Arbir Arbir: (a)Ujung bawah berupa tombak kecil, (b)ujung bawah berupa duri silindris Jenis Halberd Negara asal Indonesia Sejarah pemakaian Digunakan oleh Pendekar Pencak Silat Spesifikasi Panjang 1,5 m Tipe pedang Bermata satu Tipe gagang Kayu Arbir adalah senjata dari Indonesia, seperti halberd, kira-kira sepanjang lima kaki (1,5 m). Tongkatnya memiliki alur di sisinya untuk menandai sisi tajamnya, memungkinkan pengguna untuk menentukan dengan tepat di mana ujung tajamn...

 

Short story by Philip K. Dick The Last of the MastersShort story by Philip K. DickCountryUnited StatesLanguageEnglishGenre(s)Science fiction(post-apocalyptic/social science);political fictionPublicationPublished inOrbit Science Fiction No.5Publication typePeriodicalPublisherHanro CorporationMedia typePulp magazinePublication dateNovember/December 1954 The Last of the Masters (also known as Protection Agency) is a science fiction novelette by American writer Philip K. Dick. The original manusc...

 

† Человек прямоходящий Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапсиды�...

Tsvetana Pironkova and Jill Craybas during the coin toss, before their 2009 Wimbledon Championships first round. Bulgaria has established traditions in a great variety of sports. Olympics Main article: Bulgaria at the Olympics An Olympic-standard swimming pool in Varna. Bulgaria participates both in the Summer and Winter Olympics, and its first appearance dates back to the first modern Olympic Games in 1896, when the Swiss gymnast Charles Champaud represented the country. Since then Bulgaria ...

 

American political thriller television series (2011-2020) HomelandGenre Serial drama Espionage thriller Psychological thriller Political thriller Based onPrisoners of War (Israel)by Gideon RaffDeveloped by Howard Gordon Alex Gansa Starring Claire Danes Damian Lewis Morena Baccarin David Harewood Diego Klattenhoff Jackson Pace Morgan Saylor Mandy Patinkin Jamey Sheridan David Marciano Navid Negahban Rupert Friend Sarita Choudhury Tracy Letts F. Murray Abraham Nazanin Boniadi Laila Robins Sebas...

 

Natsumi Abe安倍 なつみGambar langsung Abe Natsumi di Bangkok, Thailand, 2014Lahir安倍 なつみ (Natsumi Abe)10 Agustus 1981 (umur 42)Muroran, Hokkaidō, JepangPekerjaanSingerSuami/istriIkusaburo Yamazaki ​(m. 2015)​Anak1Karier musikGenrePopTahun aktif1997–sekarangLabel Zetima Hachama Artis terkait Morning Musume (1997–2004) Nochiura Natsumi Def.Diva Sakuragumi Kiiro 5 10-nin Matsuri Odoru 11 Salt5 H.P. All Stars Dream Morning Musume (2011–) Mai...

Pintu peron di Stasiun MRT Dukuh Atas Pintu peron (bahasa Inggris: platform screen doors, PSD) atau pintu tepi peron (bahasa Inggris: platform edge doors, PED) adalah pintu yang digunakan di beberapa stasiun kereta api atau kereta bawah tanah untuk memisahkan peron dan kereta. Pintu ini berguna untuk keselamatan penumpang. Pintu peron banyak dipasang pada sistem angkutan cepat yang lebih baru di seluruh dunia, beberapa telah dipasang di sistem yang sudah ada. Pintu peron banyak diguna...

 

Condition in which a parasite infects the gastro-intestinal tract of humans and other animals This article needs more reliable medical references for verification or relies too heavily on primary sources. Please review the contents of the article and add the appropriate references if you can. Unsourced or poorly sourced material may be challenged and removed. Find sources: Intestinal parasite infection – news · newspapers · books · scholar · JSTOR (Dec...

 

One of the three main commercial banks in Ireland, operating in multiple market segments Not to be confused with Anglo Irish Bank. Allied Irish Banks, p.l.c.AIB Office Central Park, Leopardstown, Dublin 18Company typePublic limited company (p.l.c.)Traded asEuronext Dublin: A5G ISEQ 20 componentISINIE00BF0L3536IndustryBankingPredecessorProvincial Bank of IrelandRoyal Bank of Ireland Founded21 September 1966; 57 years ago (1966-09-21)Headquarters10 Molesworth Street,...

نيوس مارماراس (باليونانية: Νέος Μαρμαράς)‏  تقسيم إداري البلد اليونان  [1] خصائص جغرافية إحداثيات 40°05′48″N 23°46′59″E / 40.09666667°N 23.78305556°E / 40.09666667; 23.78305556   الارتفاع 20 متر  السكان التعداد السكاني 2884 (resident population of Greece) (2021)2787 (resident population of Greece) (2001)2426 (resident pop...

 

哥德堡Göteborg 圖章哥德堡哥德堡在瑞典的位置坐标:57°42′27″N 11°58′03″E / 57.7075°N 11.9675°E / 57.7075; 11.9675国家 瑞典省西约塔兰省冊立為城市1621年政府 • 市长Anneli Hulthén面积 • 城市450 平方公里(170 平方英里) • 水域14.5 平方公里(5.6 平方英里)  3.2% • 市區199 平方公里(77 平方英里)...

 

14th-century Bishop of Winchester and Chancellor of England For the 16th-century bishop, see William Wickham (bishop). This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (June 2023) (Learn how and when to remove this message) William of WykehamBishop of WinchesterWilliam of Wykeham, Bishop of Winchester, 1367-1404: from his tomb at Winchester.ChurchRoman Catholic...

В Википедии есть статьи о других людях с именем Леотихид. Леотихид IIΛεωτυχίδης Царь Спарты 491 до н. э. — 476 до н. э. Предшественник Демарат Преемник Архидам II Рождение ок. 545 до н. э.Спарта Смерть 469 до н. э.(-469)Тегея Род Эврипонтиды Отец Менар, сын Агиса Дети Завксидам[итал.], �...

 

This article's plot summary may be too long or excessively detailed. Please help improve it by removing unnecessary details and making it more concise. (August 2013) (Learn how and when to remove this message) Soap opera character Tracy QuartermaineGeneral Hospital characterJane Elliot as Tracy QuartermainePortrayed byJane Elliot (1978–present) Christine Jones (1989) Allison Miller (2006)Duration 1978–1980 1989–1993 1996–1997 2003–2017 2019–present First appearanceJune 1...

 

Das Königreich Sizilien (grün) um 1154. Die normannische Eroberung von Süditalien fand über einen Zeitraum von mehreren Jahrzehnten im 11. Jahrhundert statt. Normannische Söldner dienten im Mezzogiorno verschiedenen langobardischen und byzantinischen Parteien. Mit der Zeit begannen die Normannen, eigene Besitztümer und Vorformen von Kleinstaaten zu errichten. Diese schlossen sich zusammen, was die Normannen mit der Zeit zu einem de facto unabhängigen Machtfaktor in der Region machte. D...

أميد الصوديوم أميد الصوديوم الاسم النظامي (IUPAC) أميد صوديوم أسماء أخرى أميد الصودا المعرفات رقم CAS 7782-92-5 بوب كيم 24533  مواصفات الإدخال النصي المبسط للجزيئات [NH2-].[Na+][1]  المعرف الكيميائي الدولي InChI=1S/H2N.Na/h1H2;/q-1;+1[1]  InChIKey:ODZPKZBBUMBTMG-UHFFFAOYSA-N[1]  الخواص الصيغة الجزي...

 

The Imperial Constitution of 1824 was the one that for the longest time was in the history of Brazil, between 1824 and 1889 Politics of the Empire of Brazil took place in a framework of a quasi-federal parliamentary representative democratic monarchy, whereby the Emperor of Brazil was the head of state and nominally head of government although the Prime Minister, called President of the Council of Ministers, was effectively the de facto head of government, and of a multi-party system. Executi...