ここで k はガウス引力定数と呼ばれる定義定数(実測値ではなく、約束事として決められた固有の値)で k = 0.01720209895 である。また D は 1 日の時間の長さ(86400s)を表す[8]。
これは、地球の替わりに「仮想的な粒子」(以下テスト粒子)を置いて、その運動を基準としていると解釈できる。いま、テスト粒子が太陽からのニュートン力学的な重力以外の力を受けず、重さは無視でき、その軌道は完全に円であるとする。この時テスト粒子は、太陽に近ければ強い力を受けて速く公転し、遠ければ弱い力を受けてゆっくりと公転する。そうした軌道のうち、公転周期P が P = (2π/k) D = 365.2568983... × D となる円軌道の半径が 1 天文単位となる。
このとき k の値はテスト粒子が動く角速度をラジアン/日単位で表しており、上式はケプラーの第3法則の関係 A3 (2π/P)2 = GMs に他ならない。この公転周期 P はガウス年と呼ばれ、地球の実際の公転周期である恒星年に近いものとなるよう定められているため、結果としてこの定義においても天文単位は地球と太陽の平均距離に近いものとなる[9]。
こうした定義の変更により、地球の軌道長半径は 1 au ではなくなった。現在の暦で地球の軌道を楕円軌道として近似したときの値はおよそ 1.00000261 au となる[10]。
天体暦では、力学法則にもとづく理論的計算値が、太陽系内の天体のさまざまな観測データを最もよく説明できるように、惑星の質量(太陽質量 Ms に対する質量比)や太陽の扁平率などの天文定数を同時に決定する。天文単位の大きさ A の決定もこのとき同時に行われる。実質的には、メートルと天文単位との関係づけに最も影響を及ぼすものは近距離の惑星のレーダー測定による観測データであり、このとき暦が理論的に予測する惑星表面までの天文単位距離 rtheo と電波が片道で要する時間の測定値 tobs とは、
例えば、火星が最も地球に接近するときの両者の距離は 0.37 au ほどであり、土星までは太陽からおよそ 9.5 au、最も遠い惑星の海王星までは太陽からおよそ 30 au となる。およそ 30 au から 100 au の範囲には冥王星を始めとする太陽系外縁天体が分布しているが、セドナは遠日点が 1000 au 近くにまで及ぶ。
太陽系の外縁であり彗星のふるさとと思われているオールトの雲は数万天文単位あたりに広がっていると想定されており、通常このあたりが天文単位が用いられる限界である。恒星間の距離を表すためにはパーセクや光年が用いられる。太陽系に最も近い恒星であるプロキシマ・ケンタウリまでの4.2光年を天文単位で表すと、約270000 au と桁が大きくなる。
また、地球から太陽までの実際の距離は1年の内におよそ 0.983 – 1.017 au の範囲で変化する。
太陽系内の運動を精度よく記述するためには地上とは違う単位が必要だという要請の元、1809年、ガウスは、地球の軌道長半径を長さの単位 A、太陽質量を質量の単位 S、地球の1日を時間の単位 D とする単位系を与え、太陽系の運動を記述する基礎とした。このとき導入されたガウス引力定数k はこの単位系で表した万有引力定数の平方根となるとともに、1日あたり地球が太陽をめぐる平均角をラジアン単位で表すことになった。この単位系が1938年に国際天文学連合による天文単位系と天文単位の概念に直接引き継がれた。天文単位系では、長さの天文単位A のほかに太陽質量 S を質量の天文単位、1日の時間の長さ D、すなわち 24×60×60 s = 86400 s を時間の天文単位と呼ぶ[18]。ただし普通は質量と時間の天文単位が天文単位の名で参照されることはなく、単に天文単位という場合には長さの天文単位を指す。
しかし、年周視差から距離を求めることができるのは近距離の天体に限られるため、より遠い距離を測るには様々な別の方法を使うことになる。その際、それぞれの手法が使える距離範囲はやはり限定されているため、年周視差で測れない距離は A という別の方法で、A で測れない距離は B の方法で、B で測れない距離は C の方法で、というように、別々の方法を用いていた。こうした方法は測定技術が向上するとともに梯子(はしご)の段のようにそれぞれの手法を「つないで」遠方の距離を決めていくことができるようになった。この梯子の一段目に当たるのが地球の軌道の大きさである。(詳細は「宇宙の距離梯子」を参照)
薄れた意義
万有引力定数 G の不確かさから太陽質量 Ms そのものは太陽系の質量の単位としての座を明け渡す気配はないものの、現代では長さの単位に関しては地上と天体の梯子の段はひとつにまとまりつつある。1960年代以降、太陽系の惑星や月までの距離をレーダーやレーザー、VLBI を用いて直接に測定するという新しい観測技術が出現した。これら電磁波の「ものさし」の登場によって地上の単位系の長さと太陽系の単位系の長さは今や 1 m 以下の精度で結び付けられるようになった。これに伴って天文単位の永年変化のような、従来ほとんど無視しうるほどのものであった影響が現実問題になりつつある。こうしたときに、太陽質量 Ms の値が天体の運動だけでなく「ものさし」であるべき天文単位にも影響するという定義はメリットに乏しく、天文単位の大きさをメートルに対して固定するといった定義の見直しが避けられないという声があがっていた[19]。これを受けて、国際天文学連合は2012年の新たな定義で、天文単位をメートルに対して固定した値として定めることとなった。これとともに、天文単位は観測によって決定される値ではなくなった。
2012年以前の定義においては、天文単位の定義が太陽質量 Ms に依存するため、太陽の質量の変化とともに天文単位の値は変化しえた。太陽は核融合により質量の一部をエネルギーに変えて、やがて電磁波として放射し、また大気を太陽風として放出するので、1年あたりおよそ10兆分の1の比率で質量を失っていると見積もられている。こうした減少はそのまま太陽からの重力の減少を意味し、すべての惑星の軌道半径と公転周期を増加させる。一方、それまでの天文単位の仮想的なテスト粒子はガウス年という一定の公転周期が保障されると定義されているため、重力の減少とともに粒子は内側の軌道を取らねばならず、天文単位の大きさ A が太陽質量 Ms の3乗根に比例するため、質量の減少の比率の 1/3 の比率で天文単位の大きさは減少する。この天文単位の大きさの減少は理論上100年あたり 0.4 m ほどに相当するとされる[20]。
^JIS Z 8000-3:2014(日本産業標準調査会、経済産業省) (ISO 80000-3:2006)、p. 9、付属書 C(参考)、その他の非SI単位及びその換算率 3-1.C.b 記号が 「ua」 となっている。 換算率として 1.49597870691(30)×1011 m を採用しており、データとしても古いものである。なお、標準不確かさを示す(30)の値は疑問である。
^“XVIth General Assembly” (PDF). Resolutions adopted at the General Assemblies. International Astronomical Union (1976年). 2010年11月7日閲覧。 Recommendation 1: IAU (1976) System of Astronomical Constants.
^IAU 2009 General Assembly, Resolution B2. “IAU WG on NSFA: Current Best Estimates” (2009年). 2009年12月8日時点のオリジナルよりアーカイブ。2010年11月9日閲覧。 Pitjeva, E. V. and E. M. Standish (2009). “Proposals for the masses of the three largest asteroids, the Moon-Earth mass ratio and the Astronomical Unit”. Celestial Mechanics and Dynamical Astronomy103 (4): 365–372. doi:10.1007/s10569-009-9203-8.時刻系として太陽系力学時 (TDB) を用いた値。
^O'Connor, J. J. and E. F. Robertson (1999年). “Aristarchus of Samos”. School of Mathematics and Statistics, University of St Andrews, Scotland. 2010年11月9日閲覧。 岩本卓也 (2006年). “太陽までの距離: 太陽までの距離を測るアリスタルコス (Aristarchus) の実験”. 2010年11月9日閲覧。 Van Heiden (2005) pp. 5–7.
^Beatty, Kelly (2009年6月1日). “Why is the earth moving away from the sun?”. News. Sky and Telescope. 2010年11月11日閲覧。 Miura, Takaho, Hideyoshi Arakida, Masumi Kasai, and Shuichi Kuramata (2009). “Secular increase of the Astronomical Unit: a possible explanation in terms of the total angular momentum conservation law”. Publications of the Astronomical Society of Japan61 (6): 1247–1250. (arXiv: 0905.3008)
^Neugebauer, Otto. A History of Ancient Mathematical Astronomy. Book 1 (3 volumes). New York: Springer-Verlag. pp. pp.325–326. ISBN0-387-06995-X
Van Helden (1985) pp. 10–13.