おっつけ
|
Read other articles:
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada April 2017. Jun TanakaInformasi pribadiNama lengkap Jun TanakaTanggal lahir 1 September 1983 (umur 40)Tempat lahir Prefektur Saitama, JepangPosisi bermain BekKarier senior*Tahun Tim Tampil (Gol)2006-2011 Thespa Kusatsu * Penampilan dan gol di klub senior hanya ...
Alina KukushkinaBerkas:Alina Kukushkina in А поговорить? 2022.jpgAlina pada tahun 2022Nama asalАлина Ильинична КукушкинаLahirAlina Ilinichna Kukushkina26 September 2001 (umur 22) Moskow, RusiaKebangsaan RusiaNama lainAlina KukushkinaAlmamaterAkademi Ekonomi dan Layanan Publik Rusia di bawah Presiden Federasi Rusia (РАНХиГС)PekerjaanPemeranDubbingTahun aktif2009–sekarangDikenal atasMengisi suara karakter MashaOrang tuaIrina Kukush...
Pauline ViardotLahirMichelle Ferdinande Pauline García(1821-07-18)18 Juli 1821Paris, Kerajaan PrancisMeninggal18 Mei 1910(1910-05-18) (umur 88)Paris, FrancePekerjaan Operatik mezzo-soprano Guru musik Komposer Pauline Viardot (diucapkan [po.lin vjaʁ.do]; 18 Juli 1821 – 18 Mei 1910) adalah seorang penyanyi mezzo-soprano serta pendidik, dan komposer Prancis keturunan Spanyol pada abad kesembilan belas yang terkemuka. Lahir Michelle Ferdinande Pauline García, namanya...
Часть серии статей о Холокосте Идеология и политика Расовая гигиена · Расовый антисемитизм · Нацистская расовая политика · Нюрнбергские расовые законы Шоа Лагеря смерти Белжец · Дахау · Майданек · Малый Тростенец · Маутхаузен ·&...
Square Roots: The Story of SpongeBob SquarePantsSutradaraPatrick CreadonProduserTheodore JamesDitulis olehPatrick CreadonChristine O'MalleyPemeranLihat pemeranSinematograferPatrick CreadonRobert F. SmithPenyuntingDerek BoonstraAlex CallerosMiranda YousefTanggal rilis 14 Juli 2009 (2009-07-14) Square Roots: The Story of SpongeBob SquarePants adalah film dokumenter yang disutradarai dan ditulis oleh Patrick Creadon. Film ini pertama kali ditayangkan di VH1 pada 14 Juli 2009. Film dokumente...
Designation for a radio broadcasting frequency This article appears to be a dictionary definition. Please rewrite it to present the subject from an encyclopedic point of view. (May 2023) In broadcasting, a channel or frequency channel is a designated radio frequency (or, equivalently, wavelength), assigned by a competent frequency assignment authority for the operation of a particular radio station, television station or television channel. See also Frequency allocation, ITU RR, article 1.17 ...
2002 American filmThe FashionistasU.S. DVD cover artDirected byJohn Stagliano[1]Written byJohn StaglianoProduced byJohn StaglianoTricia DevereauxStarringRocco SiffrediBelladonnaTaylor St. ClaireChelsea BlueManuel FerraraCinematographyDon CraneEdited byJohn StaglianoMusic byJavierJohn FurtherMistress MinxDJ UneasyProductioncompanyEvil Angel Productions[1]Distributed byEvil Angel VideoRelease date October 1, 2002 (2002-10-01) Running time276 minutes[1]Coun...
Belgian cyclist Philippe GilbertGilbert at the 2017 Tour de FrancePersonal informationFull namePhilippe GilbertNicknameBoar of the Ardennes[1] Monsieur Cauberg[2]Born (1982-07-05) 5 July 1982 (age 41)Verviers, Belgium[3]Height1.79 m (5 ft 10+1⁄2 in)[4]Weight69 kg (152 lb; 10 st 12 lb)[4]Team informationCurrent teamRetiredDisciplineRoadRoleRiderRider typeClassics specialistPuncheurProfessional ...
Mathematical rule for evaluating some limits Example application of l'Hôpital's rule to f(x) = sin(x) and g(x) = −0.5x: the function h(x) = f(x)/g(x) is undefined at x = 0, but can be completed to a continuous function on all of R by defining h(0) = f′(0)/g′(0) = −2. Part of a series of articles aboutCalculus ∫ a b f ′ ( t ) d t = f ( b ) − f ( a ) {\displaystyle \int _{a}^{b}f'(t)\,dt=f(b)-f(a)} Fundamental theorem Limits Continuity Rolle's theor...
Town in Greater Accra Region, GhanaKaneshieTownKaneshieCoordinates: 5°33′24″N 00°13′29″W / 5.55667°N 0.22472°W / 5.55667; -0.22472Country GhanaRegionGreater Accra RegionDistrictAccra MetropolitanTime zoneGMT • Summer (DST)GMT Kaneshie is a suburb in the Accra Metropolitan district, a district of the Greater Accra Region of Ghana.[1][2] The name was derived from a word in the Ga-Adangbe , that is Kane Shie Shie, meaning under the...
烏克蘭總理Прем'єр-міністр України烏克蘭國徽現任杰尼斯·什米加尔自2020年3月4日任命者烏克蘭總統任期總統任命首任維托爾德·福金设立1991年11月后继职位無网站www.kmu.gov.ua/control/en/(英文) 乌克兰 乌克兰政府与政治系列条目 宪法 政府 总统 弗拉基米尔·泽连斯基 總統辦公室 国家安全与国防事务委员会 总统代表(英语:Representatives of the President of Ukraine) 总...
Questa voce o sezione sull'argomento competizioni di atletica leggera non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Campionati italiani assoluti di atletica leggera 1987 Competizione Campionati italiani assoluti Sport Atletica leggera Edizione LXXVII Organizzatore FIDAL Lazio Date dal 28 luglio 1987al 30 luglio 1987 Luogo Roma Discipline 38 Cro...
Lower house of the Telangana Legislature This article is about the lower house of Telangana Legislature. For the upper house, see Telangana Legislative Council. Telangana Legislative Assembly Telaṅgāṇa Sāsana Sabha3rd Telangana AssemblyTypeTypebicameral of the Telangana Legislature Term limits5 yearsHistoryFounded2 June 2014(9 years ago) (2014-06-02)Preceded byAndhra Pradesh Legislative AssemblyLeadershipGovernorC. P. Radhakrishnan(Additional charge) since 20 March 2024 S...
Election in Georgia Main article: 1952 United States presidential election 1952 United States presidential election in Georgia ← 1948 November 4, 1952[1] 1956 → All 12 Georgia votes to the Electoral College Nominee Adlai Stevenson Dwight D. Eisenhower Party Democratic Republican Home state Illinois New York[2] Running mate John Sparkman Richard Nixon Electoral vote 12 0 Popular vote 456,823 198,979 Percentage 69.66% 30.34% Count...
Mathematical function relating circular and hyperbolic functions The Gudermannian function relates the area of a circular sector to the area of a hyperbolic sector, via a common stereographic projection. If twice the area of the blue hyperbolic sector is ψ, then twice the area of the red circular sector is ϕ = gd ψ. Twice the area of the purple triangle is the stereographic projection s = tan 1/2ϕ = tanh 1/2ψ. The blue point has coordinates (cosh ψ, sinh ψ). The red point has coordinat...
2017 United Kingdom general election ← 2015 8 June 2017 2019 → ← outgoing memberselected members →All 650 seats in the House of Commons326[n 1] seats needed for a majorityOpinion pollsRegistered46,836,533Turnout68.8% ( 2.4 pp)[1] First party Second party Third party Leader Theresa May Jeremy Corbyn Nicola Sturgeon Party Conservative Labour SNP Leader since 11 July 2016 12 September 2015 14 November 2014 Leade...
Academic journalCultural DynamicsDisciplineCultural StudiesLanguageEnglishEdited byCultural Dynamics Editorial CollectivePublication detailsHistory1988 -presentPublisherSAGE PublicationsFrequencyTri-annuallyImpact factor(2010)Standard abbreviationsISO 4 (alt) · Bluebook (alt1 · alt2)NLM (alt) · MathSciNet (alt )ISO 4Cult. Dyn.IndexingCODEN (alt · alt2) · JSTOR (alt) · LCCN (alt)MIAR · NLM (a...
Federal motorway in Germany A 659Bundesautobahn 659Route informationLength6 km (3.7 mi)Major junctionsWest endViernheimEast endWeinheim LocationCountryGermanyStatesBaden-Württemberg, Hesse Highway system Roads in Germany Autobahns List Federal List State E-roads Bundesautobahn 659 (translates from German as Federal Motorway 659, short form Autobahn 659, abbreviated as BAB 659 or A 659) is an autobahn in Germany. The A 659 connects the A&...
Tibetan Buddhist deity This article is about the Vajrayana Buddhist deity Dorje Phagmo. For the incarnation lineage of Samding monastery, see Samding Dorje Phagmo. Buddha Vajravārāhī In Tibetan Buddhism, Vajravārāhī (The Indestructable Sow, Tibetan: ་རྡོ་རྗེ་ཕག་མོ, Wylie: rdo rje phag mo Dorje Pakmo)[1] is considered a female buddha[2] and the root of all emanations of dakinis.[3] As such, Vajravarahi manifests in the colors of white, ...
Hobart International 2023DoppioSport Tennis Vincitori Kirsten Flipkens Laura Siegemund Finalisti Viktorija Golubic Panna Udvardy Punteggio6-4, 7-5 Tornei Singolare Singolare (q) Doppio Doppio 2024 Voce principale: Hobart International 2023. Nadežda Kičenok e Sania Mirza erano le detentrici del titolo, ma Mirza ha scelto di partecipare al concomitante torneo di Adelaide. Kičenok ha fatto coppia con Kimberley Zimmermann, ma sono state sconfitte in semifinale da Kirsten Flipkens e Laur...