Reaksi kimia atau bidasan kimia adalah suatu proses alam yang selalu menghasilkan antarubahan senyawa kimia.[1] Senyawa ataupun senyawa-senyawa awal yang terlibat dalam reaksi disebut sebagai reaktan. Reaksi kimia biasanya dikarakterisasikan dengan perubahan kimiawi, dan akan menghasilkan satu atau lebih produk yang biasanya memiliki ciri-ciri yang berbeda dari reaktan. Secara klasik, reaksi kimia melibatkan perubahan yang melibatkan pergerakan elektron dalam pembentukan dan pemutusan ikatan kimia, walaupun pada dasarnya konsep umum reaksi kimia juga dapat diterapkan pada transformasi partikel-partikel elementer seperti pada reaksi nuklir.
Reaksi-reaksi kimia yang berbeda digunakan bersama dalam sintesis kimia untuk menghasilkan produk senyawa yang diinginkan. Dalam biokimia, sederet reaksi kimia yang dikatalisis oleh enzim membentuk lintasan metabolisme, di mana sintesis dan dekomposisi yang biasanya tidak mungkin terjadi di dalam sel dilakukan.
Sejarah
Reaksi kimia seperti pembakaran, fermentasi, dan reduksi dari bijih menjadi logam sudah diketahui sejak dahulu kala. Teori-teori awal transformasi dari material-material ini dikembangkan oleh filsuf Yunani Kuno, seperti Teori empat elemen dari Empedocles yang menyatakan bahwa substansi apapun itu tersusun dari 4 elemen dasar: api, air, udara, dan bumi. Pada abad pertengahan, transformasi kimia dipelajari oleh para alkemis. Mereka mencoba, misalnya, mengubah timbal menjadi emas, dengan mereaksikan timbal dengan campuran tembaga-timbal dengan sulfur.[2]
Dari abad ke-16, sejumlah peneliti seperti Jan Baptist van Helmont, Robert Boyle dan Isaac Newton mencoba untuk menemukan teori-teori dari transformasi-transformasi kimia yang sudah dieksperimenkan. Teori plogiston dicetuskan pada tahun 1667 oleh Johann Joachim Becher. Teori itu mempostulatkan adanya elemen seperti api yang disebut "plogiston", yang terdapat dalam benda-benda yang dapat terbakar dan dilepaskan selama pembakaran. Teori ini dibuktikan salah pada tahun 1785 oleh Antoine Lavoisier, yang akhirnya memberikan penjelasan yang benar tentang pembakaran.[5]
Pada bagian kimia organik, telah lama dipercaya bahwa senyawa yang terdapat pada organisme yang hidup itu terlalu kompleks untuk bisa didapatkan melalui sintesis kimia. Menurut konsep vitalisme, senyawa organik dilengkapi dengan "kemampuan vital" sehingga "berbeda" dari material-material inorganik. Tapi pada akhirnya, konsep ini pun berhasil dipatahkan setelah Friedrich Wöhler berhasil mensintesis urea pada tahun 1828. Kimiawan lainnya yang memiliki kontribusi terhadap ilmu kimia organik di antaranya Alexander William Williamson dengan sintesiseter yang dilakukannya dan Christopher Kelk Ingold yang menemukan mekanisme dari reaksi substitusi.
Persamaan
Persamaan reaksi digunakan untuk menggambarkan reaksi kimia. Persamaan reaksi terdiri dari rumus kimia atau rumus struktur dari reaktan di sebelah kiri dan produk di sebelah kanan. Antara produk dan reaktan dipisahkan dengan tanda panah (→) yang menunjukkan arah dan tipe reaksi. Ujung dari tanda panah tersebut menunjukkan reaksinya bergerak ke arah mana. Tanda panah ganda (), yang mempunyai dua ujung tanda panah yang berbeda arah, digunakan pada reaksi kesetimbangan. Persamaan kimia haruslah seimbang, sesuai dengan stoikiometri, jumlah atom tiap unsur di sebelah kiri harus sama dengan jumlah atom tiap unsur di sebelah kanan. Penyeimbangan ini dilakukan dengan menambahkan angka di depan tiap molekul senyawa (dilambangkan dengan A, B, C dan D di diagram skema di bawah) dengan angka kecil (a, b, c dan d) di depannya.[1]
Reaksi yang lebih rumit digambarkan dengan skema reaksi, tujuannya adalah untuk mengetahui senyawa awal atau akhir, atau juga untuk menunjukkan fase transisi. Beberapa reaksi kimia juga bisa ditambahkan tulisan di atas tanda panahnya; contohnya penambahan air, panas, iluminasi, katalisasi, dsb. Juga, beberapa produk minor dapat ditempatkan di bawah tanda panah.
Analisis retrosintetik dapat dipakai untuk mendesain reaksi sintesis kompleks. Analisis dimulai dari produk, contohnya dengan memecah ikatan kimia yang dipilih menjadi reagen baru. Tanda panah khusus (⇒) digunakan dalam reaksi retro.[7]
Reaksi elementer
Reaksi elementer adalah reaksi pemecahan paling sederhana dan hasil dari reaksi ini tidak memiliki produk sampingan.[8] Kebanyakan reaksi yang berhasil ditemukan saat ini adalah pengembangan dari reaksi elementer yang munculnya secara secara paralel atau berurutan. Sebuah reaksi elementer biasanya hanya terdiri dari beberapa molekul, biasanya hanya satu atau dua, karena kemungkinannya kecil untuk banyak molekul bergabung bersama.[9]
Reaksi paling penting dalam reaksi elementer adalah reaksi unimolekuler dan bimolekuler. Reaksi unimolekuler hanya terdiri dari satu molekul yang terbentuk dari transformasi atau diasosiasi satu atau beberapa molekul lain. Beberapa reaksi ini membutuhkan energi dari cahaya atau panas. Sebuah contoh dari reaksi unimolekuler adalah isomerisasi cis–trans, di mana sebuah senyawa bentuk cis akan berubah menjadi bentuk trans.[10]
Dalam reaksi disosiasi, ikatan di dalam sebuah molekul akan terpecah menjadi 2 fragmen molekul. Pemecahan ini dapat berupa homolitik ataupun heterolitik. Dalam pemecahan homolitik, ikatan akan terpecah sehingga setiap produknya tetap mempunyai satu elektron sehingga menjadi radikal netral. Dalam pemecahan heterolitik, kedua elektron dari ikatan kimia akan tersisa pada salah satu produknya, sehingga akan menghasilkan ion yang bermuatan. Reaksi disosiasi memegang peranan penting dalam reaksi berantai, seperti contohnya hidrogen-oksigen atau reaksi polimerisasi.
Disoasi dari molekul AB menjadi fragmen A dan B .
Pada reaksi bimolekular, 2 molekul akan bertabreakan dan saling bereaksi. Hasil reaksinya dinamakan sintesis kimia atau reaksi adisi.
Kemungkinan reaksi yang lain adalah sebagian dari sebuah molekul berpindah ke molekul lainnya. Reaksi tipe seperti ini, contohnya adalah reaksi redoks dan reaksi asam-basa. Pada reaksi redoks partikel yang berpindah adalah elektron, sedangkan pada reaksi asam-basa yang berpindah adalah proton. Reaksi seperti ini juga disebut dengan reaksi metatesis.
Reaksi kimia dapat ditentukan oleh hukum-hukum termodinamika. Reaksi dapat terjadi dengan sendirinya apabila senyawa tersebut eksergonik atau melepaskan energi. Energi bebas yang dihasilkan reaksi ini terdiri dari 2 besaran termodinamika yaitu entalpi dan entropi:[11]
Reaksi eksotermik terjadi apabila ΔH bernilai negatif dan energi dilepaskan. Contoh reaksi eksotermik adalah presipitasi dan kristalisasi, di mana sebuah padatan terbentuk dari gas atau cairan. Kebalikannya, dalam reaksi endotermik, panas diambil dari lingkungan. Hal ini dapat dilakukan dengan meningkatkan entropi sistem. Karena kenaikan entropi berbanding lurus dengan suhunya, maka kebanyakan reaksi endotermik dilakukan pada suhu tinggi. Kebalikannya, kebanyakan reaksi eksotermik dilakukan pada suhu yang rendah. Perubahan temperatur kadang-kadang dapat mengubah arah reaksi, seperti contohnya pada reaksi Boudouard:
Reaksi antara karbon dioksida dan karbon untuk membentuk karbon monoksida ini merupakan reaksi endotermik dengan suhu di atas 800 °C dan menjadi reaksi eksotermik jika suhunya dibawah suhu ini[12]
Beragamnya reaksi-reaksi kimia dan pendekatan-pendekatan yang dilakukan dalam mempelajarinya mengakibatkan banyaknya cara untuk mengklasifikasikan reaksi-reaksi tersebut, yang sering kali tumpang tindih. Di bawah ini adalah contoh-contoh klasifikasi reaksi kimia yang biasanya digunakan.
Empat reaksi dasar
Sintesis
Dalam reaksi kombinasi langsung atau sintesis, dua atau lebih senyawa sederhana bergabung membentuk senyawa baru yang lebih kompleks. Dua reaktan atau lebih yang bereaksi menghasilkan satu produk juga merupakan salah satu cara untuk mengetahui kalau itu reaksi sintesis.
Contoh dari reaksi ini adalah gas hidrogen bergabung dengan gas oksigen yang hasilnya adalah air.[14]
Contoh lainnya adalah gas nitrogen bergabung dengan gas hidrogen akan membentuk amoniak, dengan persamaan reaksi:
Reaksi dekomposisi atau analisis adalah kebalikan dari reaksi sintesis. Sebuah senyawa yang lebih kompleks akan dipecah menjadi senyawa yang lebih sederhana.[14][15]
Contohnya adalah molekul air yang dipecah menjadi gas oksigen dan gas hidrogen, dengan persamaan reaksi:
Dalam reaksi penggantian tunggal atau substitusi, sebuah elemen tunggal menggantikan elemen tunggal lainnya di suatu senyawa.
Contohnya adalah logam natrium yang bereaksi dengan asam klorida akan menghasilkan natrium klorida atau garam dapur, dengan persamaaan reaksi:
Dalam reaksi penggantian ganda, dua senyawa saling berganti ion atau ikatan untuk membentuk senyawa baru yang berbeda.[14]
Hal ini terjadi ketika kation dan anion dari 2 senyawa yang berbeda saling berpindah tempat, dan membentuk 2 senyawa baru.[15] Rumus umum dari reaksi ini adalah:
AB + CD → AD + CB
Contoh dari reaksi penggantian ganda adalah timbal(II) nitrat bereaksi dengan kalium iodida untuk membentuk timbal(II) iodida dan kalium nitrat, dengan persamaan reaksi:
Pb(NO3)2 + 2 KI → PbI2 + 2 KNO3
Contoh lainnya adalah natrium klorida (garam dapur) bereaksi dengan perak nitrat membentuk natrium nitrat dan perak klorida, dengan persamaan reaksi:
Reaksi redoks dapat dipahami sebagai transfer elektron dari salah satu senyawa (disebut reduktor) ke senyawa lainnya (disebut oksidator). Dalam proses ini, senyawa yang satu akan teroksidasi dan senyawa lainnya akan tereduksi, oleh karena itu disebut redoks. Oksidasi sendiri dimengerti sebagai kenaikan bilangan oksidasi, dan reduksi adalah penurunan bilangan oksidasi. Dalam praktiknya, transfer dari elektron ini akan selalu mengubah bilangan oksidasinya, tetapi banyak reaksi yang diklasifikasikan sebagai reaksi redoks walaupun sebenarnya tidak ada elektron yang berpindah (seperti yang melibatkan ikatan kovalen).[16][17]
Contoh reaksi redoks adalah:
2 S(aq) + I(aq) → S(aq) + 2 I(aq)
Yang mana I direduksi menjadi I dan S (anion tiosulfat) dioksidasi menjadi S.
Untuk mengetahui reaktan mana yang akan menjadi agen pereduksi dan mana yang akan menjadi agen teroksidasi dapat diketahui dari keelektronegatifan elemen tersebut. Elemen yang mempunyai nilai keelektronegatifan yang rendah, seperti kebanyakan unsur logam, maka akan dengan mudah memberikan elektron mereka dan teroksidasi - elemen ini menjadi reduktor. Kebalikannya, banyak ion mempunyai bilangan oksidasi tinggi, seperti H, MnO, CrO, Cr, OsO) dapat memperoleh satu atau lebih tambahan elektron, sehingga disebut oksidator.
Jumlah elektron yang diberikan atau diterima pada reaksi redoks dapat diketahui dari konfigurasi elektronn elemen reaktannya. Setiap elemen akan berusaha untuk menjadikan konfigurasi elektronnya sama seperti konfigurasi elemen gas mulia. Logam alkali dan halogen akan memberikan dan menerima satu elektron. Elemen gas alam sendiri sebenarnya tidak aktif secara kimiawi.[18]
Salah satu bagian penting dalam reaksi redoks adalah reaksi elektrokimia, di mana elektron dari sumber listrik digunakan sebagai reduktor. Reaksi ini penting untuk pembuatan elemen-elemen kimia, seperti klorin[19] atau aluminium. Proses kebalikan di mana reaksi redoks digunakan untuk menghasilkan listrik juga ada dan prinsip ini digunakan pada baterai.
Reaksi asam-basa
Reaksi asam-basa adalah reaksi yang mendonorkan proton dari sebuah molekul asam ke molekul basa. Disini, asam berperan sebagai donor proton dan basa berperan sebagai akseptor proton.
Reaksi asam basa, HA: asam, B: Basa, A–: basa konjugasi, HB+: asam konjugasi
Hasil dari transfer proton ini adalah asam konjugasi dan basa konjugasi.[20] Reaksi kesetimbangan (bolak-balik) juga ada, dan karena itu asam/basa dan asam/basa konjugasinya selalu dalam kesetimbangan. Reaksi kesetimbangan ini ditandai dengan adanya konstanta diasosiasi asam dan basa (Ka dan Kb) dari setiap substansinya. Sebuah reaksi yang khusus dari reaksi asam-basa adalah netralisasi di mana asam dan basa dalam jumlah yang sama akan membentuk garam yang sifatnya netral.
Reaksi asam basa memiliki berbagai definisi tergantung pada konsep asam basa yang digunakan. Beberapa definisi yang paling umum adalah:
Definisi Arrhenius: asam berdisosiasi dalam air melepaskan ion H3O+; basa berdisosiasi dalam air melepaskan ion OH-.
Definisi Brønsted-Lowry: Asam adalah pendonor proton (H+) donors; basa adalah penerima (akseptor) proton. Melingkupi definisi Arrhenius
Definisi Lewis: Asam adalah akseptor pasangan elektron; basa adalah pendonor pasangan elektron. Definisi ini melingkupi definisi Brønsted-Lowry.
Presipitasi
Presipitasi adalah proses reaksi terbentuknya padatan (endapan) di dalam sebuah larutan sebagai hasil dari reaksi kimia. Presipitasi ini biasanya terbentuk ketika konsentrasi ion yang larut telah mencapai batas kelarutan[21] dan hasilnya adalah membentuk garam. Reaksi ini dapat dipercepat dengan menambahkan agen presipitasi atau mengurangi pelarutnya. Reaksi presipitasi yang cepat akan menghasilkan residu mikrokristalin dan proses yang lambat akan menghasilkan kristal tunggal. Kristal tunggal juga dapat diperoleh dari rekristalisasi dari garam mikrokristalin.[22]
Reaksi pada zat padat
Reaksi dapat terjadi di antara dua benda padat. Meski begitu, karena tingkat difusi pada zat padat sangat rendah, maka reaksi kimia yang berlangsung terjadi sangat lambat. Reaksi dapat dipercepat dengan cara meningkatkan suhu sehingga akan memecah reaktan, sehingga luas permukaan kontak menjadi lebih besar.[23]
Reaksi fotokimia
Dalam reaksi fotokimia, atom dan molekul akan menyerap energi (foton) dari cahaya dan mengubahnya ke eksitasi. Atom dan molekul ini lalu dapat melepaskan energi dengan memecahkan ikatan kimia, maka menghasilkan radikal. Reaksi ang termasuk ke dalam reaksi fotokimia di antaranya reaksi hidrogen-oksigen, polimerisasi radikal, reaksi berantai dan reaksi penataan ulang.[24]
Banyak proses-proses penting menggunakan fotokimia. Contoh yang paling umum adalah fotosintesis, di mana tanaman menggunakan energi matahari untuk mengubah karbon dioksida dan air menjadi glukosa dan oksigen sebagai hasil samping. Manusia mengandalkan fotokimia dalam pembentukan vitamin D, dan persepsi visual dihasilkan dari reaksi fotokimia di rhodopsin.[10] Pada kunang-kunang, sebuah enzim pada abdomen mengkatalisasi reaksi yang menghasilkan bioluminesensi.[25] Banyak reaksi fotokimia, seperti pembentukan ozon, terjadi di atmosfer bumi yang merupakan bagian dari kimia atmosfer.
Katalisis
Pada katalisis, reaksinya tidak berlangsung secara spontan, tetapi melalui substansi ketiga yang disebut dengan katalis. Tidak seperti reagen lainnya yang ikut dalam reaksi kimia, katalis tidak ikut serta dalam reaksi itu sendiri, tetapi dapat menghambat, mematikan, atau menghancurkan melalui proses sekunder. Katalis dapat digunakan pada fase yang berbeda (katalis heterogen) maupun pada fase yang sama (katalis homogen) sebagai reaktan. Fungsi katalis hanyalah mempercepat reaksi - zat kimia yang memperlambat reaksi disebut dengan inhibitor.[26][27] Substansi yang meningkatkan aktivitas katalis disebut promoter, dan substansi yang mematikan katalis disebut racun katalis. Sebuah reaksi kimia yang semestinya tidak bisa berlangsung karena energi aktivasinya terlalu tinggi, bisa menjadi berlangsung karena kehadiran katalis ini.
Katalis heterogen biasanya padat dan berbentuk bubuk agar dapat memaksimalkan luas permukaan yang bereaksi. Zat-zat yang penting pada katalisis heterogen di antaranya logam-logam grup platinum dan logam transisi lainnya. Zat-zat ini biasanya digunakan pada hidrogenasi, pembentukan katalitik dan sintesis dari senyawa-senyawa kimia seperti asam nitrat dan amonia. Asam adalah contoh dari katalis homogen, mereka meningkatkan nukleofilitas dari karbonil. Kelebihan dari katalis homogen adalah mudah untuk dicampurkan dengan reaktannya, tetapi kekurangannya adalah susah dipisahkan dari produk akhirnya. Oleh karena itu, katalis heterogen lebih dipilih di banyak proses industri.[28]
Reaksi dalam kimia organik
Dalam kimia organik, banyak reaksi yang dapat terjadi yang melibatkan ikatan kovalen di antara atom karbon dan heteroatom lainnya seperti oksigen, nitrogen, atau atom-atom halogen lainnya. Beberapa reaksi yang lebih spesifik akan dijelaskan di bawah ini.
Pada tipe yang pertama, nukleofil, atom atau molekul yang memiliki kelebihan elektron sehingga bermuatan negatif, akan menggantikan atom lainnya atau bagian lainnya dari molekul "substrat". Pasangan elektron nukleofil akan bersatu dengan substrat membentuk ikatan baru, sedangkan gugus lepas akan lepas bersamaan dengan sebuah pasangan elektron. Nukleofil sendiri dapat bermuatan netral atau positif, sedangkan substrat biasanya bermuatan positif atau netral. Contoh nukleofil adalah ion hidroksida, alkoksida, amina, dan halida. Reaksi semacam ini biasanya ditemukan pada hidrokarbon alifatik dan jarang ditemukan pada hidrokarbon aromatik. Hidrokarbon aromatik memiliki rapatan elektron yang tingi dan hanya bisa melangsungkan substitusi aromatik nukleofilik hanya dengan gugus penarik elektron yang sangat kuat. Substitusi nukleofilik dapat berlangsung melalui 2 mekanisme, Reaksi SN1 dan SN2. Menurut namanya, S singkatan dari substitusi, N singkatan dai nukleofilik, dan, dan angka menunjukkan ordo kinetik reaksi, unimolekuler atau bimolekuler.[30]
3 tahap dalam Reaksi SN2. Nukleofil berwarna hijau dan gugus lepas berwarna merah
Reaksi SN2 menyebabkan inversi stereo (inversi Walden)
Reaksi SN1 berlangsung dalam 2 tahap. Tahap pertama, gugus lepas akan lepas dan membentuk karbokation. Tahap ini akan diikuti reaksi yang sangat cepat dengan nukleofil.[31]
Dalam mekanisme SN2, nukleofil akan membentuk tahap transisi dengan molekul yang lepas saja yang terlekang. Kedua mekanisme ini berbeda pada hasil stereokimianya. Reaksi SN1 menghasilkan adisi non-stereospesifik dan tidak menghasilkan pusat chiral, melainkan dalam bentuk isomer geometri (cis/trans). Kebalikannya, inversi Warden-lah yang diamati pada mekanisme SN2.[32]
Substitusi elektrofilik merupakan kebalikan dari substitusi nukleofilik di mana atom atau molekul yang melepas, atau elektrofilnya, mempunyai kerapatan elektron yang rendah sehingga bermuatan positif. Biasanya elektrofil ini adalah atom karbon dari gugus karbonil, karbokation atau sulfur atau kation nitronium. Reaksi ini berlangsung pada hidrokarbon aromatik saja, sehingga disebut substitusi aromatik elektrofilik. Serangan elektrofil akan menciptakan kompleks yang disebut sebagai σ-compleks, sebuah fase transisi di mana sistem aromatiknya hilang. Lalu, gugus lepas (biasanya proton), akan terpisah dan sifat kearomatikannya kembali. Alternatif lain untuk substitusi aromatik adalah substitusi alifatik elektrofilik. Substitusi ini mirip dengan substitusi aromatik elektrofilik dan juga mempunyai 2 tipe utama yaitu SE1 dan SE2[33]
Adisi dan eliminasi
Adisi dan pasangannya eliminasi merupakan reaksi yang mengubah jumlah substituen dalam atom karbon, dan membentuk ikatan kovalen. Ikatan ganda dan tiga dapat dihasilkan dengan mengeliminasi gugus lepas yang cocok. Seperti substitusi nukleofilik, ada beberapa mekanisme reaksi yang mungkin terjadi. Dalam mekanisme E1, gugus lepas terlebih dahulu melepas dan membentuk karbokation. Selanjutnya, pembentukan ikatan ganda terjadi melalui eliminasi proton (deprotonasi). Dalam mekanisme E1cb, urutan pelepasan terbalik: proton dieliminasi terlebih dahulu. Dalam mekanisme ini keterlibatan suatu basa harus ada.[34] Reaksi dalam eliminasi E1 maupun E1cb selalu bersaing dengan substitusi SN1 karena memiliki kondisi reaksi kondisi yang sama.[35]
Eliminasi E1
eliminasi E1cb
Mekanisme E2 juga memerlukan basa. Akan tetapi, pergantian posisi basa dan eliminasi gugus lepas berlangsung secara serentak dan tidak menghasilkan zat antara ionik. Berbeda dengan eliminasi E1, konfigurasi stereokimia yang berbeda dapat dihasilkan dalam reaksi yang memiliki mekanisme E2 karena basa akan lebih memfavoritkan eleminasi proton yang berada pada posisi-anti terhadap gugus lepas. Oleh karena kondisi dan reagen reaksi yang mirip, eliminasi E2 selalu bersaing dengan substitusi SN2.[36]
Kebalikan dari reaksi eliminasi adalah reaksi adisi. Pada reaksi adisi, ikatan rangkap dua atau rangkap tiga diubah menjadi ikatan rangkap tunggal. Mirip dengan reaksi substitusi, ada beberapa tipe dari adisi yang dibedakan dari partikel yang mengadisi. Contohnya, pada adisi elektrofilik hidrogen bromida, sebuah elektrofil (proton) akan mengganti ikatan rangkap ganda dan membentuk karbokation, lalu kemudian bereaksi dengan nukleofil (bromin). Karbokation dapat terbentuk di salah satu ikatan rangkap tergantung dari gugus yang melekat di akhir. Konfigurasi yang lebih tepat dapat diprediksikan dengan aturan Markovnikov.[37] Aturan Markovnikov mengatakan: "Pada adisi heterolitik dari sebuuah molekul polar pada alkena atau alkuna, atom yang mempunyai keelektronegatifan yang besar, maka akan terikat pada atom karbon yang mengikat atom hidrogen yang lebih sedikit."[38]
Isomerisasi, yang mana senyawa kimia menjalani penataan ulang struktur tanpa perubahan pada komposisi atomnya
Pembakaran, adalah sejenis reaksi redoks yang mana bahan-bahan yang dapat terbakar bergabung dengan unsur-unsur oksidator, biasanya oksigen, untuk menghasilkan panas dan membentuk produk yang teroksidasi. Istilah pembakaran biasanya digunakan untuk merujuk hanya pada oksidasi skala besar pada keseluruhan molekul. Oksidasi terkontrol hanya pada satu gugus fungsi tunggal tidak termasuk dalam proses pembakaran.
Laju reaksi suatu reaksi kimia merupakan pengukuran bagaimana konsentrasi ataupun tekanan zat-zat yang terlibat dalam reaksi berubah seiring dengan berjalannya waktu. Analisis laju reaksi sangatlah penting dan memiliki banyak kegunaan, misalnya dalam teknik kimia dan kajian kesetimbangan kimia. Laju reaksi secara mendasar tergantung pada:
Konsentrasi reaktan, yang biasanya membuat reaksi berjalan dengan lebih cepat apabila konsentrasinya dinaikkan. Hal ini diakibatkan karena peningkatan pertumbukan atom per satuan waktu,
Luas permukaan yang tersedia bagi reaktan untuk saling berinteraksi, terutama reaktan padat dalam sistem heterogen. Luas permukaan yang besar akan meningkatkan laju reaksi.
Tekanan, dengan meningkatkan tekanan, kita menurunkan volume antar molekul sehingga akan meningkatkan frekuensi tumbukan molekul.
Energi aktivasi, yang didefinisikan sebagai jumlah energi yang diperlukan untuk membuat reaksi bermulai dan berjalan secara spontan. Energi aktivasi yang lebih tinggi mengimplikasikan bahwa reaktan memerlukan lebih banyak energi untuk memulai reaksi daripada reaksi yang berenergi aktivasi lebih rendah.
Temperatur, yang meningkatkan laju reaksi apabila dinaikkan, hal ini dikarenakan temperatur yang tinggi meningkatkan energi molekul, sehingga meningkatkan tumbukan antar molekul per satuan waktu.
Keberadaan ataupun ketiadaan katalis. Katalis adalah zat yang mengubah lintasan (mekanisme) suatu reaksi dan akan meningkatkan laju reaksi dengan menurunkan energi aktivasi yang diperlukan agar reaksi dapat berjalan. Katalis tidak dikonsumsi ataupun berubah selama reaksi, sehingga ia dapat digunakan kembali.
Untuk beberapa reaksi, keberadaan radiasi elektromagnetik, utamanya ultraviolet, diperlukan untuk memutuskan ikatan yang diperlukan agar reaksi dapat bermulai. Hal ini utamanya terjadi pada reaksi yang melibatkan radikal.
Laju reaksi berhubungan dengan konsentrasi zat-zat yang terlibat dalam reaksi. Hubungan ini ditentukan oleh persamaan laju tiap-tiap reaksi. Perlu diperhatikan bahwa beberapa reaksi memiliki kelajuan yang tidak tergantung pada konsentrasi reaksi. Hal ini disebut sebagai reaksi orde nol.
Reaksi biokimia
Reaksi biokimia pada umumnya dikendalikan oleh enzim. Protein-protein ini hanya dapat mengkatalis satu jenis reaksi yang spesifik, sehingga reaksinya benar-benar dapat dikontrol. Reaksi ini berlangsung pada sisi aktif dari substrat. Reaksi katalisasi enzim ini bergantung pada banyak hal, di antaranya adalah bentuk enzimnya, jenis ikatannya, interaksi elektrostatik, pemberian dan penerimaan proton (pada reaksi asam/basa), dan lainnya.[40]
Reaksi kimia yang berlangsung di dalam tubuh makhluk hidup biasanya juga dikenal dengan sebutan metabolisme. Di antarasemua reaksi-reaksi ini, reaksi yang paling penting adalah reaksi anabolisme, di mana DNA dan enzim-terkontrol memproses pembentukan protein dan karbohidrat dari senyawa-senyawa yang lebih kecil.[41]Bioenergitika mempelajari sumber energi untuk reaksi biokimia. Sumber energi yang paling penting dalam reaksi ini adalah glukosa, yang diproduksi tanaman melalui proses fotosintesis. Semua organisme membutuhkan glukosa untuk memproduksi adenosin trifosfat (ATP), yang digunakan makhluk hidup untuk menjalankan aktivitasnya.
Penggunaan reaksi kimia
Reaksi kimia memainkan peran penting dalam bidang teknik kimia, di mana reaksi ini digunakan dalam pembuatan senyawa baru yang berasal dari sumber daya alam seperti minyak bumi, bijih mineral, dan oksigen di atmosfer. Tujuannya adalah untuk mengoptimalkan reaksi-reaksi ini untuk efisiensi maksimum, yang bertujuan untuk mencapai hasil produk yang tinggi sembari meminimalkan penggunaan reagen, energi, dan limbah. Katalis sangat berharga dalam konteks ini karena dapat secara substansial menurunkan energi aktivasi dan meningkatkan laju reaksinya.[42][43]
Beberapa reaksi yang spesifik mempunyai penggunaan yang khusus. Misalnya, reaksi termit dipakai untuk menghasilkan cahaya dan panas pada piroteknik dan pengelasan. Meskipun reaksi ini lebih agak sulit dikontrol daripada reaksi-reaksi sebelumnya, tetapi alat-alat yang dibutuhkan jauh lebih sedikit dan sampai saat ini masih digunakan untuk memperbaiki jalur-jalur kereta api di tempat-tempat terpelosok.[44]
^Weyer, Jost (1973). "Neuere Interpretationsmglichkeiten der Alchemie". Chemie in unserer Zeit (dalam bahasa German). 7 (6): 177. doi:10.1002/ciuz.19730070604.Pemeliharaan CS1: Bahasa yang tidak diketahui (link)
^Corey, E. J. (1988). "Robert Robinson Lecture. Retrosynthetic thinking?essentials and examples". Chemical Society Reviews. 17: 111. doi:10.1039/CS9881700111.
^Christoph Elschenbroich: Organometallchemie. 6th edition, Wiesbaden, 2008, ISBN 978-3-8351-0167-8, p. 263
^March, Jerry (1985). Advanced Organic Chemistry, Reactions, Mechanisms and Structure (dalam bahasa Inggris) (edisi ke-3). John Wiley & Sons. ISBN0-471-85472-7.
^Leslie C. Bateman, Mervyn G. Church, Edward D. Hughes, Christopher K. Ingold and Nazeer Ahmed Taher (1940). "188. Mechanism of substitution at a saturated carbon atom. Part XXIII. A kinetic demonstration of the unimolecular solvolysis of alkyl halides. (Section E) a general discussion". Journal of the Chemical Society: 979. doi:10.1039/JR9400000979.Pemeliharaan CS1: Banyak nama: authors list (link)
^Peter Karlson, Detlef Doenecke, Jan Koolman, Georg Fuchs, Wolfgang Gerok. Karlson Biochemistry and Pathobiochemistry, 16th edition, Georg Thieme, 2005, ISBN 978-3-13-357815-8, pp. 55–56