A számelméletben jó prímnek nevezzük az olyan prímszámokat, melyek négyzete nagyobb, mint bármely két olyan számnak a szorzata, amik a prímszámok sorozatában valamennyivel a jó prím előtt és ugyanannyival utána vannak.
Egy jó prímszám tehát kielégíti a következő egyenlőtlenséget:
minden 1 ≤ i ≤ n−1 -re, ahol pn az n-edik prímszám.
Példa: Az első néhány prímszám a 2, 3, 5, 7 és a 11. Az 5-re a következő feltételek teljesülnek:
- ,
ezért az 5 egy jó prím.
Végtelen sok jó prímszám létezik.[1] Az első néhány jó prím:
- 5, 11, 17, 29, 37, 41, 53, 59, 67, 71, 97, 101, 127, 149 (A028388 sorozat az OEIS-ben).
Jegyzetek
|
---|
Képlet alapján | |
---|
Számsorozat alapján | |
---|
Tulajdonság alapján | |
---|
Számrendszerfüggő | |
---|
Mintázatok |
- Iker (p, p + 2)
- Ikerprímlánc (n − 1, n + 1, 2n − 1, 2n + 1, …)
- Prímhármas (p, p + 2 vagy p + 4, p + 6)
- Prímnégyes (p, p + 2, p + 6, p + 8)
- prím n−es
- Unokatestvér (p, p + 4)
- Szexi (p, p + 6)
- Chen
- Sophie Germain (p, 2p + 1)
- Cunningham-lánc (p, 2p ± 1, …)
- Biztonságos (p, (p − 1)/2)
- Számtani sorozatban (p + a·n, n = 0, 1, …)
- Kiegyensúlyozott (egymást követő p − n, p, p + n)
|
---|
Méret alapján | |
---|
Komplex számok | |
---|
Összetett számok | |
---|
Kapcsolódó fogalmak | |
---|
Az első 100 prím | |
---|
|